
A Proof of Theorem 1

In this paper, we consider learning a causal DAG as our regularizer. We use a squared loss in
our objective function. We find the sub-Gaussian assumption is more realistic than the bounded
assumption because the squared loss function is usually unbounded but with strong tail decay property.
We also assume our network weights have bounded spectral norm. Since a generalization bound
considers all the models in the hypothesis class, the hypothesis class’s capability should be restricted
to upper bound the expected loss for all the regression models in the class. However, this assumption
is not necessary for classification problems, since it is possible to normalize the network weight. The
network still has the same prediction as before normalization due to the ReLU homogeneity.

Theorem 1. Let fΘ : X̃ → X̃ be a M -layer ReLU feed-forward network with layer size h, and each
of its weight matrices has the spectral norm bounded by κ. Then, under Assumptions 1 and 2, for any
δ, γ > 0, with probability 1− δ over a training set of N i.i.d samples, for any Θ in (4), we have:

LP (fΘ) ≤ 4LN (fΘ) + 1
N

[
RΘ1

+ C1(VΘ1
+ VΘ2

) + log
(

8
δ

)]
+ C2 (9)

where LP (fΘ) is the expected reconstruction loss of X̃ under PX̃ , LN (fΘ), VΘ1
and RΘ1

are
defined in (6-7), VΘ2

is the `2 norm of the network weights in the output and shared hidden layers, C1

and C2 are given as C1 = (γ−1 ζ(d+ 1)κM−1)2, C2 = s2 + 6γ, and ζ = MBe
[
2 log(2eh)

]1/2
.

Proof. Our proof consists of three steps: (1) We convert the existing PAC-Bayes bound for a
randomized model fΘu to a deterministic model fΘ; (2) We upper bound the KL divergence in the
PAC-Bayes bound by the capability terms (i.e. the regularizers) of our model; (3) We discuss how to
choose the constants in our bound to make our result universal.

Step 1. We let Θ̃u denote the Θ in which we perturb each parameter by a random perturbation u
drawn from some Gaussian distribution. We collect all the random perturbation into one vector u,
and u ∼ N(0, σ2I). We let QΘu denote the distribution of Θu, and PΘu denote our prior on Θu.
For LN (fΘu), we have

Eu

[
LN (fΘu)

]
= Eu

[
1

N

N∑
i=1

∥∥fΘu(X̃i)− fΘ(X̃i) + fΘ(X̃i)− X̃i

∥∥2

]

= Eu

[
1

N

N∑
i=1

∥∥fΘu(X̃i)− fΘ(X̃i)
∥∥2

]
+

1

N

N∑
i=1

∥∥fΘ(X̃i)− X̃i

∥∥2

+ Eu

[
2

N

N∑
i=1

(
fΘu(X̃i)− fΘ(X̃i)

)(
fΘ(X̃i)− X̃i

)]

≤ Eu

[
1

N

N∑
i=1

∥∥fΘu(X̃i)− fΘ(X̃i)
∥∥2

]
+

1

N

N∑
i=1

∥∥fΘ(X̃i)− X̃i

∥∥2

+ Eu

[
1

N

N∑
i=1

∥∥fΘu(X̃i)− fΘ(X̃i)
∥∥2

]
+

1

N

N∑
i=1

‖fΘ(X̃i)− X̃i

∥∥2

≤2γ + 2LN (fΘ)

(10)

Similarly, we have

LP (fΘ) = EPEu

[∥∥fΘ(X̃)− fΘu(X̃) + fΘu(X̃)− X̃
∥∥2
]

≤ 2γ + 2Eu

[
LP (fΘu)

] (11)

where we let γ be a constant such that maxX̃∈X Eu

[
‖fΘu(X̃) − fΘ(X̃)‖2

]
≤ γ. It is the upper

bound for the maximum expected change of the network output when the weights are perturbed,
thereby the network’s sharpness as defined in [51].

Using the Corollary 4 in [52] and Lemma 1 in [45], we have the following PAC Bayes bound for the
randomized model fΘu . Given a prior distribution PΘu over the set of predictors that is independent

13

of the training data, the PAC-Bayes theorem states that with probability at least 1− δ, over N i.i.d
training samples, the expected error of fΘu can be bounded as follows,

Eu

[
LP (fΘu)

]
≤ Eu

[
LN (fΘu)

]
+ 1

N

[
2 KL(QΘu‖PΘu) + log(8

δ)
]

+ 1
2s

2 (12)

If we upper bound Eu

[
LP (fΘu)

]
in (11) by (12), we have

LP (fΘ) ≤ 2γ + 2Eu

[
LN (fΘu)

]
+ 2

N

[
2 KL(QΘu‖PΘu) + log(8

δ)
]

+ s2

≤ 4LN (fΘ) + 2
N

[
2 KL(QΘu‖PΘu) + log(8

δ)
]

+ C2

(13)

where the last inequality is achieved by (10), and C2 = s2 + 6γ.

Step 2. For convenience, we restate the parameter set Θ in (4) here,

Θ1 = {Wk
1}d+1
k=1, Θ = Θ1 ∪ {Wm}Mk=2

Now we write the distribution QΘu and PΘu explicitly. Without loss of generality, we assume QΘu

and PΘu have the same standard deviation σ2. First, QΘu is given as QΘu = Q
(1)
Θu
Q

(2)
Θu
, where

Q
(1)
Θu

= N(zΘu,1 ; zΘ1 , 1), and

Q
(2)
Θu

=

d+1∏
k=1

N(Wk
u,1;Wk

1 , σ
2I)

M∏
m=2

N(Wu,m;Wm, σ
2I).

And PΘ is given as PΘu = P
(1)
Θu
P

(2)
Θu
, where P (1)

Θu
= N(zΘu,1

; d+ 1, 1), and

P
(2)
Θu

=

d+1∏
k=1

N(Wk
u,1;0, σ2I)

M∏
m=2

N(Wu,m;0, σ2I).

The variable zΘu,1 is given as,
zΘu,1 = Tr

(
eMu�Mu

)
where Mu is a (d + 1) × (d + 1) matrix such that [Mu]k,j is the `2-norm of the k-th row of the
matrix Wj

u,1. The variable zΘ1
is defined in the same way as zΘu,1

but on the parameters without
perturbations. Here, we use Gaussian distributions for z’s for simplicity in our deterministic model.
Formally, in Bayesian inference, we may consider using truncated normal or exponential priors for
z’s since we know zΘu,1

= Tr(I) + Tr(Mu �Mu) + · · · ≥ d+ 1 using the power series of matrix
exponential and the fact that each element of Mu is non-negative. Now we upper bound the KL
divergence as follows,

KL(QΘu‖PΘu) =

∫
Q

(1)
Θu
Q

(2)
Θu

log
(
Q

(1)
Θu

Q
(2)
Θu

P
(1)
Θu

P
(2)
Θu

)
dΘu

=

∫
Q

(1)
Θu
Q

(2)
Θu

log
(
Q

(1)
Θu

P
(1)
Θu

)
dΘu +

∫
Q

(1)
Θu
Q

(2)
Θu

log
(
Q

(2)
Θu

P
(2)
Θu

)
dΘu

≤
∫
Q

(1)
Θu

log
(
Q

(1)
Θu

P
(1)
Θu

)
dΘu +

∫
Q

(2)
Θu

log
(
Q

(2)
Θu

P
(2)
Θu

)
dΘu

= 1
2

[
zΘ1 − (d+ 1)

]2
+ 1

2σ2

(d+1∑
k=1

‖Wk
1‖2F +

M∑
m=2

‖Wm‖2F
)

≤ 1
2Rθ1 + 1

2σ2 (VΘ1 + VΘ2)

(14)

where the last inequality is achieved using the fact that the Euclidean norm of any vector is bounded
by its `1-norm. Let C1 = 1

σ2 . Bounding the KL divergence in (13) with (14) gives that

LP (fΘ) ≤ 4LN (fΘ) + 2
N

[
Rθ1 + C1(VΘ1

+ VΘ2
) + log(8

δ)
]

+ C2 (15)

Step 3. Recall that γ is the upper bound for maxX̃∈X Eu

[
‖fΘu(X̃) − fΘ(X̃)‖2

]
, the expected

maximum change of the network output when the weights are perturbed by u ∼ N(0, σ2I). We

14

now derive the constant γ based on σ2, the input upper bound B in Assumption 1. Our network uses
ReLU activation functions in the hidden layers. The ReLU function φ(·) is 1-Lipschitz. This proof
is similar to Lemma 2 in [45]. Let ‖ · ‖2 denote the spectral norm. We define ∆M−1

k as the output
difference in the last hidden layer:

∆M−1
k =

∥∥φ(· · ·φ(φ(X̃[Wk
1 + Uk

1]
)
[W2 + U2]

)
· · · [WM−1 + UM−1]

)
− φ

(
· · ·φ

(
φ
(
X̃Wk

1

)
W2

)
· · ·WM−1

)∥∥
We have

∆M
k =

(
[fΘ(X̃)]k − [fΘu(X̃)]k

)2
= ∆M−1

k

[
‖WM‖2 + ‖UM‖2

]
+ ‖X̃‖‖UM‖2‖Wk

1‖2
M−1∏
m=2

‖Wm‖2

≤ (1 + 1
M)‖WM‖2∆M−1

k + ‖UM‖2
‖WM‖2 ‖X̃‖‖W

k
1‖2

M∏
m=2

‖Wm‖2

≤ (1 + 1
M)‖WM‖2

(
(1 + 1

M)‖WM−1‖2∆M−2
k + ‖UM−1‖2

‖WM−1‖2 ‖X̃‖‖W
k
1‖2

M−1∏
m=2

‖Wm‖2
)

+ ‖UM‖2
‖WM‖2 ‖X̃‖‖W

k
1‖2

M∏
m=2

‖Wm‖2

≤ (1 + 1
M)2∆M−2

k

M∏
m=M−1

‖Wm‖2 +

1∑
m=0

(1 + 1
M)m ‖UM−m‖2

‖WM−m‖2 ‖X̃‖‖W
k
1‖2

M∏
m=2

‖Wm‖2

≤ (1 + 1
M)M‖X̃ − X̃‖Fk + (1 + 1

M)M−1 ‖Uk
1‖2

‖Wk
1‖2
‖X̃‖Fk

+

M−2∑
m=0

(1 + 1
M)m ‖UM−m‖2

‖WM−m‖2 ‖X̃‖Fk

≤ eBFk

(
‖Uk

1‖2
‖Wk

1‖2
+

M∑
m=2

‖Um‖2
‖Wm‖2

)

where Fk = ‖Wk
1‖2

∏M
m=2 ‖Wm‖2, the last inequality is achieved by (1 + 1

m)M ≤ e for m ≤M ,
and ‖X̃‖ ≤ B in Assumption 1. Then Eu

[
‖fΘu(X̃)− fΘ(X̃)‖2

]
is given as

d+1∑
k=1

Eu

[
∆M
k

]
≤ σreB

d+1∑
k=1

Fk

(
‖Wk

1‖−1
2 +

M∑
m=2

‖Wm‖−1
2

)

≤σreB
d+1∑
k=1

(
M∏
m=2

‖Wm‖2 +

M∑
m=2

Fk

‖Wm‖2

)
≤σreB(d+ 1)MκM−1

where r =
[
2 log(2eh)

]1/2
, and the first inequality is achieved bounding the spectral norm of

the random matrices U’s using random matrix theory (See Section 4.4 in [53]). Hence, setting
σ = (reB(d+ 1)MκM−1)−1γ, then we have

max
X̃∈X

Eu

[
‖fΘu(X̃)− fΘ(X̃)‖2

]
< γ.

Given any ReLU network satisfying the Assumptions 1 and 2 and with bounded spectral norm on
its weights, we can upper bound its expected loss using the network sharpness, measured by some
perturbations on the network parameters.

15

B Synthetic details

In this section, we cover details regarding our synthetic data generation process and experiments.
We first provide an overview of our data generation, and then we will cover a supplementary linear
example.

B.1 Synthetic data generating process

Here we describe our synthetic data generation process in detail. We enumerated all nodes in G
randomly. We generated random DAG instantiations with a randomly sampled branching factor up to
the number of nodes in the DAG for our synthetic DAG generation. Edges were randomly added to
the graph until either the branching factor was met or no more edges can be added without violating
graphical acyclicity. We provide pseudocode for our synthetic DGP in Algorithm 1. For each random
DAG in our experiment we randomly chose a σ between 0.3 and 1, and we set µ = 0 and w = 1.

For our experiments in the main paper, we use the following settings. In the linear case, each variable
is equal to the sum of its parents plus noise. For the nonlinear case, each variable is equal to the sum
of the sigmoid function of each parent plus noise.

Algorithm 1 Synthetic Data Generating Process (DGP)

Input: A Graphical structure G, a mean µ, standard deviation σ, edge weights w, a dataset size n.
Output: A dataset according to G with n samples.
Function: gen_data(G,µ, σ, w, n):
e← edges of G
Gsorted ← topological_graph_sort(G)
ret← empty list
for node ∈ G do

Append to ret[node] a list of Gaussian (µ and σ) randomly sampled list of size n.
end for
for node ∈ Gsorted do

for par ∈ {parents(node)} do
ret[node] += ret[par] ∗ w(par, node), where w(par, node) is the edge weight from par
to node. Note that a non-linear function can be applied to ret[par] to convert this into a
non-linear data generator.

end for
end for
return ret.

B.2 Experiments on linear toy example

Table 4: Comparison of benchmark regularizers in terms of MSE (± standard deviation) for linear
synthetic datasets of size n generated according to Fig. 1 using 10-fold cross-validation. A held-out
test set of 1000 samples was generated and used for evaluating each method. Bold denotes best
performing regularizer.

Regularizer n = 500 n = 1000 n = 5000 n = 10000 n = 50000

L1 1.413± 0.091 1.210± 0.045 1.051± 0.009 1.022± 0.005 1.004± 0.006
L2 1.327± 0.057 1.208± 0.064 1.027± 0.009 1.022± 0.008 1.008± 0.004
Dropout (0.2) 1.287± 0.045 1.237± 0.011 1.216± 0.003 1.213± 0.004 1.209± 0.002
Dropout (0.5) 1.227± 0.036 1.191± 0.017 1.159± 0.003 1.161± 0.006 1.157± 0.006
SAE 1.323± 0.152 1.164± 0.033 1.138± 0.026 1.137± 0.009 1.145± 0.019
Batch Norm 1.470± 0.056 1.320± 0.055 1.095± 0.020 1.044± 0.009 1.018± 0.009
Input Noise 1.340± 0.068 1.268± 0.034 1.089± 0.020 1.049± 0.011 1.017± 0.009
MixUP 1.306± 0.074 1.214± 0.040 1.112± 0.012 1.075± 0.008 1.047± 0.006
CASTLE 1.205± 0.093 1.042± 0.024 1.009± 0.018 1.008± 0.015 1.004± 0.018

Using our linear method, we performed experiments on our toy example in Figure 1. We use the
same experimental setup from the toy example in the main manuscript but with linear settings. Our

16

results are shown in Table 4, which demonstrates that CASTLE is the superior regularizer over all
dataset sizes (similar to the nonlinear case).

C Supplementary experiments, details, and results

In this section, we provide additional experiments to supplement the main manuscript.

C.1 Sensitivity analysis and hyperparameter optimization

2 1 0 1 2
 (log scaled)

1

2

3

4

5

Av
er

ag
e

ra
nk

Figure 4: Sensitivity analysis on
λ.

Before we present further results, we first provide a sensitivity
analysis on λ from (5). We use our synthetic DGP to synthesize a
random DAG with between 10 and 150 nodes. We generated 2000
test samples and a training set with between 1000 and 5000 sam-
ples. We repeated this 50 times. Using 10-fold cross-validation
we show a sensitivity analysis over λ ∈ {0.01, 0.1, 1, 10, 100} in
Figure 4 in terms of average rank. We compare using average
rank since each experimental run (random DAG) will vary signif-
icantly in the magnitude of errors. Based on these results, for all
of our experiments in this paper we use λ = 1, i.e., log(λ) = 0.
After fixing λ, our model has only one hyperparameter β to tune.
For β in (6), we performed a standard grid search for the hyper-
parameter β ∈ {0.001, 0.01, 0.1, 1}.

C.2 Scalability analysis

0 100 200 300 400 500
Number of features

0

50

100

150

Co
m

pu
ta

ti
on

 t
im

e
(s

) Training
Inference

Figure 5: CASTLE scalability
analysis

We perform an analysis of the scalability of CASTLE. Using our
synthetic DAG and dataset generator, we synthesized datasets
of 1000 samples. We used the same experimental setup used
for the synthetic experiments. We present the computational
timing results for CASTLE as we increase the number of input
features on inference and training time in Figure 5. We see
that the time to train 1000 samples grows exponentially with
the feature size; however, the inference time remains linear as
expected. Inference time on 1000 samples with 400 features takes
approximately 2 seconds, while training time takes nearly 70
seconds. Computational time scales linearly with increasing the
number of input samples. Experiments were conducted on an
Ubuntu 18.04 OS using 6 Intel i7-6850K CPUs.

C.3 Additional results

SP CM FB BC BH WQ
Dataset label

1

2

3

4

5

6

7

8

9

10

Av
er

ag
e

ra
nk

Baseline
L1

L2
DO(0.2)

DO(0.5)
SAE

BN
IN

MU
CASTLE

(a) Regression

RP CC BC LV PD SH
Dataset label

1

2

3

4

5

6

7

8

9

10

Av
er

ag
e

ra
nk

Baseline
L1

L2
DO(0.2)

DO(0.5)
SAE

BN
IN

MU
CASTLE

(b) Classification

Figure 6: Comparison of CASTLE against benchmark regularization methods in terms or average
rank across each fold (10-fold cross-validation) for regression (a) and classification (b) tasks. For
clarity, we have sorted the datasets by average rank of CASTLE in decreasing order. In comparison to
the other benchmarks, CASTLE maintains stable performance across datasets. Higher rank is better.

17

Table 5: Complete table of benchmark regularizers on regression in terms of test MSE (± standard
deviation) for experiments on real datasets using 10-fold cross-validation. Bold denotes lowest test
MSE. For readability we split the table into two.

D Baseline L1 L2 Dropout 0.2 Dropout 0.5

BH 0.141± 0.023 0.137± 0.025 0.131± 0.014 0.168± 0.032 0.389± 0.106
WQ 0.747± 0.038 0.747± 0.043 0.746± 0.039 0.738± 0.029 0.850± 0.068
FB 0.758± 1.017 0.663± 0.796 1.341± 1.069 0.429± 0.449 0.597± 0.313
BC 0.359± 0.061 0.342± 0.037 0.370± 0.142 0.334± 0.030 0.434± 0.080
SP 0.416± 0.108 0.421± 0.181 0.550± 0.291 0.285± 0.042 0.482± 0.128
CM 0.536± 0.103 0.574± 0.125 0.527± 0.060 0.327± 0.025 0.519± 0.064
ME 0.885± 0.056 0.878± 0.062 0.935± 0.060 0.729± 0.032 0.710± 0.022

D SAE Batch Norm Input Noise MixUp CASTLE

BH 0.148± 0.027 0.139± 0.021 0.137± 0.018 0.194± 0.064 0.123± 0.016
WQ 0.727± 0.030 0.723± 0.039 0.771± 0.036 0.712± 0.018 0.708± 0.030
FB 0.372± 0.168 0.705± 0.396 0.609± 0.511 0.385± 0.208 0.246± 0.153
BC 0.322± 0.021 0.325± 0.024 0.319± 0.022 0.322± 0.030 0.318± 0.036
SP 0.228± 0.022 0.318± 0.062 0.389± 0.095 0.267± 0.072 0.200± 0.020
CM 0.387± 0.034 0.470± 0.047 0.495± 0.081 0.376± 0.030 0.326± 0.031
ME 0.800± 0.046 0.892± 0.096 0.855± 0.042 0.866± 0.068 0.694± 0.023

Table 6: Comparison of benchmark regularizers on classification in terms of test AUROC (± standard
deviation) for experiments on real datasets using 10-fold cross-validation. Bold denotes highest test
test AUROC. For readability we split the table into two.

D Baseline L1 L2 Dropout 0.2 Dropout 0.5

CC 0.764± 0.009 0.766± 0.007 0.768± 0.010 0.776± 0.009 0.756± 0.023
PD 0.799± 0.008 0.793± 0.013 0.788± 0.024 0.797± 0.010 0.800± 0.012
BC 0.721± 0.018 0.726± 0.011 0.712± 0.045 0.713± 0.022 0.718± 0.024
LV 0.559± 0.061 0.594± 0.020 0.586± 0.028 0.579± 0.053 0.580± 0.033
SH 0.915± 0.015 0.921± 0.006 0.919± 0.011 0.922± 0.017 0.914± 0.010
RP 0.782± 0.071 0.801± 0.013 0.796± 0.013 0.743± 0.052 0.721± 0.057
MG 0.644± 0.109 0.675± 0.114 0.647± 0.134 0.628± 0.081 0.679± 0.090

D SAE Batch Norm Input Noise MixUp CASTLE

CC 0.774± 0.012 0.773± 0.009 0.772± 0.012 0.778± 0.009 0.787± 0.007
PD 0.796± 0.010 0.773± 0.024 0.796± 0.013 0.802± 0.016 0.817± 0.004
BC 0.605± 0.068 0.727± 0.012 0.722± 0.026 0.700± 0.055 0.731± 0.010
LV 0.542± 0.095 0.583± 0.026 0.597± 0.041 0.553± 0.092 0.595± 0.032
SH 0.701± 0.205 0.913± 0.013 0.922± 0.005 0.921± 0.005 0.929± 0.007
RP 0.774± 0.103 0.802± 0.018 0.796± 0.009 0.730± 0.043 0.814± 0.014
MG 0.597± 0.135 0.672± 0.072 0.671± 0.138 0.685± 0.081 0.731± 0.036

In this subsection, we provide supplementary results on real data. In addition to the public datasets
in the main paper, we provide experiments on some additional datasets. Specifically, we perform
experiments on the Medical Expenditure Panel Survey (MEPS) [54]. This dataset contains samples
from a broad survey of families and individuals, their medical providers, and employers across the
US. MEPS is mainly concerned with collecting data related to health service utilization, frequency,
cost, payment, and insurance coverage for Americans. For this dataset, we predicted health service
utilization. We abbreviate MEPS as ME. We also provided additional experimentation on the Meta-
analysis Global Group in Chronic heart failure database (MAGGIC), which holds data for 46,817
patients gathered from 30 independent clinical studies or registries [55]. For this dataset, we predicted
mortality in patients with heart failure. We abbreviate MAGGIC as MG in Table 6.

18

We provide regression results on real data in Table 5. We provide classification results on real data in
Table 6. Lastly, we depict the regression and classification results highlighted in the main paper in
terms of rank. In Figure 6, we see that for both regression and classification, CASTLE performs the
best, and there is no definitive runner-up benchmark method testifying to the stability of CASTLE as
a reliable regularizer.

C.4 CASTLE ablation study

We provide an ablation study on CASTLE to understand the sources of gain of our methodology.
Here we execute this experiment on our real datasets used in the main manuscript. We show the
results of our ablation on our CASTLE regularizer to highlight our sources of gain in Table 7.

Table 7: Ablation study of CASTLE on real datasets to highlight sources of gain.

Dataset LN (fΘ) + VΘ1
RΘ1

+ VΘ1
LN (fΘ) +RΘ1

LN (fΘ) +RΘ1
+ VΘ1

Regression (MSE)

BH 0.162± 0.018 0.226± 0.158 0.174± 0.025 0.123± 0.016
WQ 0.711± 0.035 0.753± 0.013 0.713± 0.019 0.708± 0.030
FB 0.265± 0.045 0.327± 0.088 0.451± 0.032 0.246± 0.150
BC 0.362± 0.040 0.416± 0.009 0.373± 0.016 0.318± 0.036
SP 0.338± 0.181 0.212± 0.018 0.572± 0.340 0.200± 0.020
CM 0.347± 0.016 0.334± 0.007 0.478± 0.078 0.326± 0.031

Classification (AUROC)

CC 0.778± 0.006 0.780± 0.008 0.768± 0.011 0.787± 0.007
PD 0.795± 0.012 0.792± 0.012 0.766± 0.012 0.817± 0.004
BC 0.712± 0.018 0.722± 0.008 0.712± 0.020 0.731± 0.010
LV 0.562± 0.033 0.586± 0.023 0.566± 0.027 0.595± 0.032
SH 0.895± 0.006 0.889± 0.011 0.890± 0.010 0.929± 0.007
RP 0.801± 0.012 0.802± 0.014 0.791± 0.012 0.814± 0.014

C.5 Weight characterization

In this subsection, we provide a characterization of the input weights that are learned during the
CASTLE regularization. We performed synthetic experiments using the same setup for generating
Figure 3. We investigated two different scenarios. In the first scenario, we randomly generated DAGs
where the target must have causal parents. We examine the average weight value of the learned DAG
adjacency matrix in comparison to the truth adjacency matrix for the parents, children, spouses, and
siblings of the target variable. The results are shown in Figure 7. As expected, the results show
that when causal parents exist, CASTLE prefers to predict in the causal direction, rather than the
anti-causal direction (from children).

0 25 50 75 100 125 150
DAG vertex cardinality |G|

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

w
ei

gh
t

parents
children
spouses
siblings

50 100 150 200
 = Dataset size / |G|

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

w
ei

gh
t

parents
children
spouses
siblings

0 20 40 60 80 100
Num added noise variables

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

w
ei

gh
t

parents
children
spouses
siblings
noise

Figure 7: Weight values on synthetic data when true causal structure is known. Our method favors
using the parents of the target when available.

19

As a secondary experiment, we ran the same sets of experiments, except for DAGs without parents of
the target variable. Results are shown in Figure 8. The results show that when parents are not available
that CASTLE finds the children as predictors rather than spouses. Note that in this experiment, there
will be no siblings of the target variable, since the target variable has no parents.

Lastly, CASTLE does not reconstruct features that do not have causal neighbors in the discovered
DAG. To highlight this, in our noise variable experiment, we show the average weighting of the
input layers. In the right-most figures of Figure 7 and Figure 8, it is evident that the weighting is
much lower (near zero) for the noise variables in comparison to the other variables in the DAG. This
highlights the advantages of CASTLE over SAE, which naively reconstructs all variables.

0 25 50 75 100 125 150
DAG vertex cardinality |G|

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

w
ei

gh
t

children
spouses

50 100 150 200
 = Dataset size / |G|

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

w
ei

gh
t

children
spouses

0 20 40 60 80 100
Num added noise variables

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

w
ei

gh
t

children
spouses
noise

Figure 8: Weight values on synthetic data when true causal structure is known. This simulation
was run with target variables not having any causal parents (and therefore no siblings as well). Our
method favors using the children rather than spouses of the target.

C.6 Dataset details

In Table 8, we provide details of the real world datasets used in this paper. We demonstrated improved
performance by CASTLE across a diverse collection of datasets in terms of sample and feature size.

Table 8: Real-world dataset details.

Dataset Sample size Feature size

Boston Housing (BH) 506 14
Wine Quality (WQ) 4894 12
Facebook Metrics (FB) 500 19
Bioconcentration (BC) 779 14
Student Performance (SP) 649 33
Community and Crime (CM) 1994 128
Contraceptive Choice (CC) 1472 9
Pima Diabetes (PD) 768 9
Las Vegas Ratings (LV) 504 20
Statlog Heart (SH) 270 13
Retinopathy (RP) 1151 20
Medical Expenditure Panel Survey (ME) 15786 139
Meta-analysis Global Group in Chronic (MG) 40367 33

Additional References for Appendices
[54] Agency for Healthcare Research and Quality. Medical expenditure panel survey (meps), 2020.

[55] Chih M. Wong et al. Heart failure in younger patients: the Meta-analysis Global Group in
Chronic Heart Failure (MAGGIC). European Heart Journal, 35(39):2714–2721, 06 2014.

20

