
Addressing all reviewers: We thank the reviewers for their careful review of our paper. Following the reviewers1

comments, we: (1) have made the write-up of the paper better, (2) fixed all typos and comments from the additional2

feedback sections of the review, (3) added more graphs that compare our result to prior work, and additional graphs3

that compare time vs accuracy against uniform sampling to emphasize our improvements as requested, (4) added an4

explanation to our definitions, theorems and figures to make things more clear, specifically speaking Definition 1 and5

Figure 1, (5) discussed the differences between our result and previous works.6

Reviewer 1: We thank the reviewer for his constructive review and detailed comments.7

Q: Many such contributions focus on one specific problem, but in this paper we deal with a fairly general class. This is8

challenging non-trivial work. A: This is the main contribution of the paper. We thank the reviewer for pointing this out.9

Q: I am missing a critical discussion of the necessities of the assumptions in Definition 1 and the limitations that they10

impose. A: Added to the introduction. In short: Assumptions (i)-(iii) in Definition 1 are used to reduce the problem to11

dealing with an “easier” pair of functions where the first is a convex “bi-log-log-Lipschitz” function “g” and the second12

function “h” being independent of the input points. Finally, assumption (iv) ensures that the ellipsoid which encloses13

the level set of g (the convex function) exists and to be centered at the origin to avoid dealing with the center throughout14

the technical proofs. Combining the properties associated with the level set of g (the convex function) and Assumptions15

(i)-(iv), allow us to bound the loss function from above and below by the mahalanobis distance with respect to the16

enclosing ellipsoid. This is due to the fact that the level set encloses a contracted version of the ellipsoid that encloses17

the level set of g. As future work, we aim to relax the aforementioned assumptions and use the center of the enclosing18

ellipsoid, since we think that this step will widen the applicability of our framework. What do you think?19

Q: The SVM result depends on regularization and additionally on the structure of the data which seems quite restrictive20

to rely on both relaxations. A: The SVM problem formulation presented quite an obstacle when trying to show that the21

loss function is near convex. As presented in the proof of Lemma 29 in the supplementary material, we had to split the22

query space into two parts, where the first lead to having a bound on the sensitivity as a function of the structure of the23

data, while the latter was handled using our f -SVD. We think that relaxing our assumptions in Definition 1, will yield a24

tighter upper bound on the sensitivity of each input point in P and in turn on the total sensitivity.25

Q: Can you explain your solution to this intuitively, especially why it is sufficient to use the convex `1 level set instead26

and "outsource" the power of z. A: First let P̃ ∈ R|P |×d be a matrix such that every point in P is a row in P̃ . Now27

observe that for any z ∈ (0, 1),
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, where the equality holds by definition of P̃ and the28

inequality follows from properties of norms. Using this we can bound the denominator of the sensitivity for each p ∈ P29

from below by
(∑

p∈P
∣∣pTx∣∣)z . This allows us to use the f-SVD with respect to the `1-regression problem as done.30

Q: Corrections are needed for related work. A: All suggested corrections were accepted and added to the related work,31

we thank the reviewer for pointing this out.32

Reviewer 2: We thank the reviewer for the constructive suggestions. We incorporate them in the new version as33

explained below, and hope to raise the final scoring.34

Q: Do we assume that g and h are given? A: As for the applications specified in our framework, g and h were established35

theoretically, and we assume they are given. As part of our future work, we aim to generalize this framework as well as36

having a polynomial algorithm for finding the proper g, h for each “near-convex” function (see Definition 1).37

Q: Moreover, some more explanation on finding matrices D and V would be helpful. A: We have added intuition and38

explanation regarding this. Basically, we explain (in a more detailed fashion) that D is a diagonal matrix where its39

diagonal entries are proportional to the Löwner ellipsoid’s axis lengths, while V represent the basis of the ellipsoid.40

Q: It might be helpful to discuss an example after Definition 1. A: Added for the logistic regression problem.41

Reviewer 3: We thank the reviewer for his supportive comments and very helpful suggestions.42

Q: Figure 1 is nice. It would be good if they bring it to the beginning of the paper and explain the intuition better. A:43

We thank the reviewer for this very nice suggestion. We changed its place and explained the intuition better.44

Q: They can sell better this nice results. A: We are not so good at selling, but hope that the strong result will help us45

here. We thank the reviewer also for the selling suggestions.46

Reviewer 4: We thank the reviewer for the supportive scoring and for the detailed review.47

Q: The Figure captions are in a font that is too small!!!. A: We thank the reviewer for pointing this out. We changed the48

fonts as requested.49


