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Abstract

Many machine learning models involve mapping a score vector to a probability
vector. Usually, this is done by projecting the score vector onto a probability
simplex, and such projections are often characterized as Lipschitz continuous
approximations of the argmax function, whose Lipschitz constant is controlled
by a parameter that is similar to a softmax temperature. The aforementioned
parameter has been observed to affect the quality of these models and is typically
either treated as a constant or decayed over time. In this work, we propose a
method that adapts this parameter to individual training examples. The resulting
method exhibits desirable properties, such as sparsity of its support and numerically
efficient implementation, and we find that it significantly outperforms competing
non-adaptive projection methods. In our analysis, we also derive the general
solution of (Bregman) projections onto the (n, k)–simplex, a result which may be
of independent interest.

1 Introduction

The goal of many machine learning models, such as multi-class classification or retrieval, is to learn a
conditional probability distribution. Such models often involve projecting a vector on the probability
simplex, and a general form of such a projection is given by

pα(z) = argmin
x∈∆n−1

{
−〈z, x〉+

1

α
g(x)

}
(1)

where z ∈ Rn is the vector that is being projected, ∆n−1 is the standard probability simplex, and g is
a strongly convex function. For example, in the neural network setting, z can be the output of the last
hidden layer, an unconstrained vector, and pα(z) can be the final output of the network, a probability
distribution. Problem (1) has been studied extensively. It reduces to the Euclidean projection [27, 12]
when g is the squared Euclidean norm, and the entropy projection [10, 5, 3] when g is the negative
entropy. In the latter case, pα is the widely used softmax function.

The function pα can be viewed as a continuous approximation of the argmax function, and the
parameter α directly controls its Lipschitz constant. It corresponds, for example, to the inverse
temperature in the softmax (or Gibbs) distribution. It is often treated as a constant [33, 30] or a
calibration parameter [13], but it can also be varied over time, according to a fixed schedule. One of
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the earliest examples is in simulated annealing for discrete optimization [19, 28, 14, 6], where the
temperature of a Gibbs distribution is decreased over time. This has also been studied in the context
of smooth stochastic optimization [22, 9], and recent work [31, 17, 32] shows empirical evidence
that a time-varying α can improve model quality. The existing approaches use a fixed schedule for α,
and a natural question is whether α can be made adaptive to individual training examples. To the best
of our knowledge, this has not yet been attempted.

In our derivation of an adaptive projection method, we consider a more general setting than prob-
lem (1). Instead of projecting on the simplex, we project on the (n, k) simplex, the intersection of
the simplex with a hypercube. This is motivated by applications to multi-class classification and
retrieval, where the goal is to select k items out of n. The (n, k)–simplex has a richer combinatorial
structure than the standard simplex, and has been studied in online learning [36, 18, 20, 2] and convex
optimization [29, 34].

Our first contribution is to derive a general solution of the projection when g is separable, a property
that holds for the commonly-used projections. More precisely, we show that the corresponding KKT
conditions reduce to a parameter search over a monotone one–dimensional problem (regardless of
the value of n or k) that can be solved using a simple bisection method. This unifies and generalizes
several special cases, including the projection on the standard simplex (k = 1) derived in [12, 21, 7],
and several other special cases in the entropy and the Euclidean case [36, 37, 1].

Our second and main contribution is to propose a method with adaptive α for classification problems.
Our method is derived in the Euclidean case, which is particularly attractive as the solution reduces
to a thresholding operation, and we show a one-to-one correspondence between α and the threshold.
This motivates a particular form of adaptive α, which results in several desirable properties: the
projection can be computed in closed-form, and its support becomes sparser on examples that have
a lower classification error. Finally, we test our method on a popular recommendation problem to
give some insights into its empirical performance. The results indicate that the adaptivity can give
significant performance gains.

Organization of the paper We first derive a general solution of the projection in Section 2. Then,
we consider a classification setting in Section 3 and present the adaptive projection and its properties.
In Section 4, we present numerical experiments, and close with concluding remarks in Section 5. The
proofs of our results are deferred to the supplement.

Notation The set of real numbers is denoted by R. The set of strictly positive real numbers is
denoted by R+. The nonnegative part of a scalar α ∈ R is denoted by (α)+ = max{0, α}. The inner
product of two vectors x, y ∈ Rn is denoted by 〈x, y〉. The support of a vector x ∈ Rn is denoted
by supp(x) = {i ∈ {1, . . . , n} : xi 6= 0}. We now consider a proper, lower semicontinuous, and
convex function f : Rn 7→ (−∞,∞]. Let ∂f denote the subdifferential of f , given by

∂f(x) = {v ∈ Rn : f(u) ≥ f(x) + 〈v, u− x〉,∀u ∈ Rn} ∀x ∈ Rn.

Let dom f = {x ∈ Rn : f(x) <∞} denote the effective domain of f .

2 Projection on the (n, k)–simplex

We consider the following projection problem:

pα(z) = argmin
x∈∆n−1

k

{
−〈z, x〉+

1

α
g(x)

}
, (2)

where z ∈ Rn is a given vector, g is a 1-strongly convex function, α > 0 is a parameter, and the
feasible set is the (n, k)–simplex given by ∆n−1

k := {x ∈ Rn :
∑n
i=1 xi = k, 0 ≤ x ≤ 1}. The

(n, k)–simplex can be viewed as the convex hull of vertices of the n-hypercube that have exactly
k entries equal to 1. It arises for example in combinatorial online learning [36, 18, 20, 2]. It is
also sometimes referred to as the capped simplex [36], since it is the intersection of the standard
simplex scaled by k, with the n-hypercube. Our motivation in studying this problem comes form
applications to classification and information retrieval, as discussed in the next section. Figure 1
gives an illustration of the (3, 2)–simplex. We also note that problem (2) is equivalent to the Bregman
projection with distance generating function g, in a sense that is made more precise in the supplement.
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2.1 A Lipschitz continuous approximation of k-argmax

It can be shown that for certain functions g, the function pα(z) is a Lipschitz continuous approximation
of the (generally discontinuous) k-argmax function given below.

p∞(z) := argmax
x∈∆n−1

k

〈z, x〉. (3)

The following proposition makes the previous statement more precise.

Proposition 1. Suppose g is 1–strongly convex and ∆n−1
k ⊆ dom g. Then the following properties

hold for any z ∈ Rn and α > 0:

(a) limα→∞ pα(z) ∈ p∞(z);

(b) for any 1 ≤ i, j ≤ n, we have that pα(z)i ≥ pα(z)j if and only if zi ≥ zj;

(c) the function pα is α–Lipschitz continuous on Rn.

Intuitively, p∞(z) is a function that assigns probability 1 to the top k coordinates i that maximize zi,
and part (a) states that this is the case in the limit α→∞, regardless of g. Note that p∞ is set-valued
since the maximizer is in general not unique, i.e. when there are ties in the entries of z. In contrast,
for any finite α, the maximizer of (2) is unique by strong convexity of g. Part (b) states that the
projection is component-wise monotone, in the sense that coordinates that have a higher score are
assigned a higher weight. Part (c) states that the parameter α directly controls the Lipschitz constant
of the projection, a fact which motivates our adaptive method derived in Section 3.

2.2 Solution of the projection for separable g

We now give a characterization of the solution of (2) and a method to compute it, under the additional
assumption that g is separable. A characterization of the solution for a general function g can be
found in the supplement.

We first recall the definition of a separable function: a function g : Rn → R is said to be separable
if there exists another function h : R → R such that for all z, we have g(z) =

∑n
i=1 h(zi). This

condition holds for commonly used functions such as the squared Euclidean norm, the negative
entropy, and the potential functions defined in [2]. We also recall the definition of the proximal
operator: given a convex function h, the proximal operator of h is given by

proxh(z) := argmin
x∈Rn

{
h(z) +

1

2
‖u− z‖2

}
. (4)

The result below gives the characterization.

Theorem 2. Suppose g is 1–strongly convex and separable. and let x, z ∈ Rn. Then, there exists
µ ∈ R such that

x = pα(z) if and only if
{
∀i, xi = Π[0,1](yi(µ)),∑n
i=1 xi = k,

(5)

where Π[0,1] is the projection onto the interval [0, 1] and the vector yi(µ) has the following simple
characterizations:

(a) (general case) we have

yi(µ) =


α(zi − µ)− v0, if proxh(α(zi − µ)) ≤ 0,

proxh(α(zi − µ)), if proxh(α(zi − µ)) ∈ (0, 1),

α(zi − µ)− v1, if proxh(α(zi − µ)) ≥ 1,

(6)

for some v0 ∈ ∂h(0), v1 ∈ ∂h(1), and every µ ∈ R;

(b) (differentiable case) if h is differentiable on its effective domain and h′ : R→ R is surjective,
then we have

yi(µ) = (h′)−1(α(zi − µ)) ∀µ ∈ R. (7)
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Figure 1: Illustration of the Euclidean projection on the (3, 2)–simplex, highlighted in red. Three
example projections of vectors z are given. As in eq. (8), the projection amounts to translating z in
the direction of the vector of all ones, followed by a projection on the unit hypercube.

Theorem 2 states that in order to solve the projection, it suffices to find a dual variable µ ∈ R
that satisfies the condition

∑n
i=1 Π[0,1][yi(µ)] = k, where yi(µ) is given by (6) or (7), depending

on differentiability of h. Observe, in particular, that yi(µ) is a monotone function of µ in both
cases. Indeed, under assumption (b), h′ is strictly increasing by strong convexity of g, and so is its
inverse; under assumption (a), a similar, though more involved argument, is given in the supplement.
Therefore, the function µ 7→

∑
i Π[0,1](yi(µ)) is a monotone function of µ and an approximate

solution can be computed using a bisection method. In other words, the projection is reduced to
a one dimensional bisection problem regardless of the values of n and k. Special cases of this
result were derived in [37, 1] for the Euclidean and entropy projection, respectively. We also note
that [25] derives an algorithm to compute the solution to a more general problem: projections on
the permutahedron. Their algorithm MergeAndPool can be applied to compute projections on the
(n, k)-simplex. However, Theorem 2 is more direct to obtain, and easier to interpret and implement.

We now specialize Theorem 2 to some common cases.

Standard simplex When k = 1, case (b) is equivalent to the Bregman projection solution derived
in [21, 7] (up to the change of variable described in Appendix A).

Entropy projection Let h(x) = x log x, defined for x ≥ 0. Its derivative h′(x) = 1 + log x is
surjective on R thus assumption (b) holds, and the projection is given by xi = Π[0,1](e

α(zi−µ)−1),
where α is the inverse temperature. With the change of variable Z = eαµ+1, this is equivalent to
xi = Π[0,1](e

αzi/Z). For k = 1, this reduces to the softmax function. For k > 1, one can use the
iterative algorithm in [36] to compute the normalization constant Z in O(n2) operations.

Euclidean projection Let g(x) = 1
2‖x‖

2
2. Then h(x) = x, assumption (b) applies, and the solution

is
pα(z)i = Π[0,1](α(zi − µ)), (8)

which has a simple geometric interpretation illustrated in Figure 1: the vector αz is first translated
orthogonally to the hyperplane containing the simplex, then projected orthogonally onto the hypercube.
This simple form of the Euclidean projection motivates the adaptive Rankmax method derived in the
next section.

3 Adaptive projection for classification

In this section, we consider a multi-label classification setting. We denote the feature set by X ⊂ Rd
and the label set by Y = {1, . . . , n}, where n is the number of classes. We are given a training set T
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consisting of examples (x, Yx), such that for all x, the set Yx is a non-empty subset of Y , potentially
consisting of more than one label. For example, in information retrieval, x represents a query and Yx
is a set of documents relevant to that query. In item recommendation with implicit feedback [16], x
represents a user, and Yx is the set of items that the user interacted with.

A common modeling approach is to define a model that outputs a score vector zθ : X → Rn,
parameterized by θ ∈ Θ ⊆ Rr, such that a higher score zθ(x)y indicates a higher relevance of the
label y. The quality of the model is measured using retrieval metrics, such as Precision@k, defined
as follows. Given an example2 (x, Yx), we define

Precision@k(x) :=
1

k

∣∣{y ∈ Yx : zθ(x)y ≥ zθ(x)[k]

}∣∣ , (9)

where z[i] denotes the ith largest element of z (ties are broken arbitrarily). The condition zθ(x)y ≥
zθ(x)[k] simply means that the label y has one of the top k scores. Precision@k, and other similar
metrics such as Recall@k, focus on the top k scoring items, and are intended to reflect that a user
will rarely look beyond the top retrieved items.

Projection on ∆n−1
k is particularly well suited to this problem, and has been used in [23, 24, 1] for

optimizing top-k metrics. Indeed, since the precision (9) is entirely determined by the set of top k
labels (regardless of the order within the set), it is natural to describe the problem in terms of selecting
k labels out of n. The set of subsets of size k corresponds exactly to the extreme points of ∆n−1

k ,
making projections on ∆n−1

k suitable for this formulation.

Finally, while the precision metric (9) is neither continuous nor differentiable in θ, several approaches
have been proposed to circumvent this, by optimizing a different loss as a proxy, often defined on the
simplex. For example, [11] uses an approximation based on an optimal transport formulation; [35]
uses a piece-wise linear approximation; [26] uses a quadratic loss; and one of the most widely used
methods is to optimize the cross-entropy loss, or more generally, Fenchel-Young losses [7, 8].

3.1 Cross-entropy optimization

The cross-entropy3 loss on the projected vector pα(zθ(x))y given by

min
θ∈Θ

∑
(x,Yx)∈T

∑
y∈Yx

− log pα(zθ(x))y. (10)

Using cross-entropy as a proxy for top-k metrics can be motivated by the following consistency result.
Suppose pα is surjective (this is, for example, the case for the Euclidean projection). Then, for any
example (x, Yx), if z ∈ argminz∈Rn

∑
y∈Yx

− log pα(z)y, we have z ∈ argmaxz∈Rn |{y ∈ Yx :

zθ(x)y ≥ zθ(x)[k]}|. Indeed, if z ∈ argminz∈Rn

∑
y∈Yx

− log pα(z)y, then there exists c ∈ (0, 1]

such that pα(z)y = c for every y ∈ Yx, and pα(z)y ≤ c for y 6∈ Yx. By monotonicity of the
projection (see Proposition 1(b)), we must then have zy+ ≥ zy for all y+ ∈ Yx and y 6∈ Yx and thus
z maximizes the precision.

In other words, if there exists a classifier that perfectly fits a given training example (x, Yx) in the
sense of (10), then such a classifier also has maximal precision (9) for that x. Of course, this has
little implication for examples which are not perfectly classified. Nevertheless, this gives an intuitive
justification for optimizing the cross-entropy loss (10) as a proxy for the recall metric (9).

3.2 Rankmax for the (n, k)–simplex

In this section, we derive an adaptive Euclidean projection function that we call Rankmax. Its
primary goal is to make the parameter α in pα (i.e., the Lipschitz constant of the projection) adapt to
individual training examples. Another goal is to solve the following practical issue with the entropy
formulation (10): the cross-entropy is undefined whenever pα(zθ(x)) assigns zero probability to a
label y ∈ Yx.

2Equation (9) defines the precision for one example. To measure the quality on the training or test set, it can
be averaged over that set.

3The vector pα should be scaled by 1/k to be a probability vector, but we omit this term as it only adds a
constant to the loss.
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Before presenting the Rankmax function, we state some technical properties about the Euclidean
projection. Recall that it has the simple form pα(z)i = Π[0,1](α(zi − µ)) given by equation (8).
Moreover, the support of the projection is determined by µ, since i ∈ supp(pα(z)) if and only if
zi > µ. In particular, given a positive label y, if we can choose α such that µ < zy , then we guarantee
that y is in the support. In the result below, we establish the existence of such an α and show that it
can be computed efficiently.
Proposition 3. Fix η > 0, z ∈ Rn, and a positive label y ∈ {1, . . . , n}. Moreover, let

µy := min{zy, z[k]} − η. (11)

Then, there exists αy > 0 such that pαy
(z) = Π[0,1](αy(z − µy)). Furthermore, if s := |{i : zi >

µy}|, then there exists 0 ≤ t < min(s, k) such that

αy =
k − t∑s

i=t+1(z[i] − µy)
. (12)

Finally, the index t can be computed in O(n log k), as detailed in Algorithm 1 in the supplement.

This allows us to define the following Rankmax projection function:
Definition 4. Given a score vector z ∈ Rn and label y ∈ {1, . . . , n}, the Rankmax projection
function is given by

Rankmax(z, y) = Π[0,1](αy(zθ(x)− µy)) (13)
where µy is given by (11) with η set to 1 and αy is given by (12).

We now make several remarks about Proposition 3 and the definition of the Rankmax function. First,
the indices s, t have a simple interpretation: s is the size of the support, and t is the number of labels
that are assigned weight 1. In other words,

Rankmax(z, y)[i] =


1 if i ∈ [1, t]

αy(z[i] − µy) if i ∈ [t+ 1, s]

0 if i ∈ [s+ 1, n],

and thus eq (12) is just a rephrasing of the condition
∑n
i=1 pα(z)i = k. Second, the choice of α

given by the proposition makes the support of the projection adapt to the positive label y. Indeed, by
definition of µy , the label y is guaranteed to be in the support since zy ≥ µy + η, and labels that have
a score below the η margin are assigned zero weight. In particular, when the positive label is ranked
higher, the support of the projection becomes smaller. Third, we choose a unit margin (η = 1) in the
Rankmax definition since the projection is unchanged when z and η are simultaneously scaled by a
constant γ. This can be seen from equations (11)-(12), where if µy is scaled by γ and αy is scaled
by 1/γ then the product αy(z − µy) remains unchanged. Fourth, note that whenever zy ≤ z[k], i.e.,
the positive label is not in the top k, we have Rankmax(z, y)y = αy(zy − (zy − 1)) = αy, giving a
concrete interpretation of the adaptivity. The parameter αy , which controls the Lipschitz constant of
the projection, scales directly with the probability of the positive label y. To make an analogy with
the temperature in softmax, this would correspond to decreasing the temperature for examples which
have a lower loss.

It’s also important to emphasize that both µy and αy, in the expression of the Rankmax function,
depend on y, i.e., the projection depends on the positive label, as well as θ. This is not an issue
during training, but at first glance may seem problematic for inference, since the label is not available.
However, since the task is to rank the labels, it suffices to compute the score vector zθ(x) without a
projection, since z entirely determines the ranking; any projection pα preserves ranks by monotonicity
(Proposition 1(b)), regardless of α. Another interpretation of the previous remark is that the projection
is not part of the model, but instead part of the training procedure.

Finally, we give the expression of the cross-entropy loss under the Rankmax projection. Applying (10)
to the Rankmax function, we obtain

min
θ∈Θ

∑
(x,Yx)∈T

∑
y∈Yx

− log min(1, αy(zθ(x)y − µy)). (14)

It is worth mentioning that the Rankmax function can be used in losses aside from cross-entropy.
One example is the set of Fenchel-Young (FY) losses [7, 8] which are of the form L(z, y) =
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fz(y)− fz(pα(z)) where pα is the projection defined in (2), z is a score vector, y is a label, and fz
is a regularization function. In particular, one could consider replacing the static function pα above
with the adaptive Rankmax.

3.3 Rankmax for the standard simplex

In this section, we specialize the previous results to the standard simplex. Since k = 1, this simplifies
the expressions of µy and αy . Indeed, equation (11) simplifies to µy = zy− η (since we always have
zy ≤ z[1]), and equation (12) simplifies to αy = 1/

∑n
i=1(zi − zy + η)+, since t ∈ [0,min(s, k))

and must be equal to 0. The Rankmax projection is then

Rankmax(z, y) =
(z − zy + 1)+∑n
i=1(zi − zy + 1)+

. (15)

Comparison to Softmax cross-entropy

To illustrate the difference with the softmax function, we compare their cross-entropy losses (cf. (14))
and their corresponding gradients. Denote the cross-entropy losses

`Rankmax(z, y) := − log Rankmax(z, y)y = log
∑n

i=1
(zθ(x)i − zθ(x)y + 1)+,

`Softmax(z, y) := − log Softmax(z)y = −zy + log
∑n

i=1
exp(zθ(x)i).

Then,

∂`Rankmax(z, y)

∂zi
=


−sRankmax(z, y)y, if i = y,

Rankmax(z, y)y, if i 6= y and zi ≥ zy − 1,

0, otherwise.
(16)

where s is the size of the support, s = |{i ∈ [1, n] : zi > zy − 1}| as defined in Proposition 3, and

∂`Softmax(z, y)

∂zi
=

{
−1 + Softmax(z)y, if i = y,

Softmax(z)i, if i 6= y.

We highlight some similarities and differences. In both cases, we have
∑n
i=1 ∂`(z, y)/∂zi = 0.

In fact this is the case for all projections of the form given in (2), since for all λ ∈ R, we have
pα(z + λe) = pα(z), where e is the vector of ones, i.e., pα is constant along the direction e, and
thus its gradient is orthogonal to e. One difference is that in the case of Rankmax, the support of the
gradient is sparser when the positive label is ranked higher, potentially leading to faster updates. It is
also interesting to observe that the gradient is entirely determined by the probability of the positive
label y and the support of the projection.

Comparison to Sparsemax

We now discuss how the Rankmax function compares to the Sparsemax loss proposed in [26]. Both
use a Euclidean projection onto the (n, k)–Simplex in (8) under different choices of α and k. In
particular, Sparsemax chooses α = 1 and k = 1, whereas Rankmax chooses α adaptively and applies
to any k in [1, n]. On the other hand, for any label y ∈ Y , the Rankmax projection assigns, by design,
a positive probability to y, whereas the Sparsemax function may assign zero probability. Finally, the
evaluation of the Rankmax and Sparsemax functions require O(n log k) and O(n log n) operations,
respectively (see [26, Algorithm 1] and the supplement).

Connection with pairwise losses

In the standard simplex case, the Rankmax projection is reminiscent of pairwise losses. For instance,
the Weighted Approximate-Rank Pairwise (WARP) loss [35, 38] can be written, in our notation, as
`WARP(z, y) =

∑n
i=1

ws

s (zi−zy+1)+ wherew is a fixed vector of increasing weights, and s is the size
of the support. Comparing this to equation (15), we see that `WARP(z, y) = ws/(sRankmax(z, y)y),
and its gradient is

∂`WARP(z, y)

∂zi
=


−ws if i = y,
ws

s if i 6= y and zi > zy − 1,

0 otherwise.
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Comparing this to the expression of the Rankmax loss gradient in (16), we see that both have the
same direction, but different magnitudes. For WARP, both the direction and magnitude of the gradient
are entirely determined by s, which is the number of negatives above the margin. For Rankmax, the
magnitude depends on the probability of y: for a fixed s, the magnitude of the gradient is proportional
to Rankmax(z, y)y, but since Rankmax(z, y)y = αy, this magnitude is also proportional to the
adaptive parameter αy .

Movielens 100k Movielens 20M Movielens 1B

# examples (users) 600 138K 2.2M
# labels (movies) 9K 26K 849K
# example-label pairs 101K 20M 979M

Table 1: Characteristics of datasets used.

4 Numerical experiments

In our experiments, we studied how well Rankmax performs as a multilabel classification loss, and
compared it to both Softmax and Sparsemax [26]. For evaluation, we chose a recommender system
task where the goal is to learn which movies (=labels) to recommend to a user (=example). We
experimented with Movielens datasets [15], namely the datasets of 100K, 20M, and 1B ratings,
the latter being artificially generated from the 20M dataset [4]. Basic statistics about the datasets
are summarized in Table 1. The datasets were partitioned into 80% training, 10% cross-validation
and 10% test. All models were trained using the first part of this split. The models were then used
to rank all movies for each user. The resulting ranking is compared to the movies in the test set
(=relevant movies) and we compute three metrics: (1) Recall@K (R@K) measures how many of
the relevant movies appear in the top K. When K is large, this metric is particularly useful to
assess the retrieval capabilities of a model. (2) Accuracy measures how often the very top ranked
movie was actually relevant, and is useful for classification tasks. (3) AveragePrecision@K (AP@K)
assigns a decaying weight to each rank, so it is affected by the order within the top K items, and
favors models which rank relevant items higher. For all metrics, the higher the value, the better the
quality. Hyper-parameters were tuned based on the cross-validation set. A detailed description of the
experimental setting can be found in the supplement. Bolded numbers indicate the best performing
loss function for a particular metric.

Loss Function
ML 100K ML 20M ML 1B

AP@10 Accuracy R@100 AP@10 Accuracy R@100 R@1000
Rankmax 0.154 0.342 0.387 0.210 0.397 0.492 0.0116

Softmax 0.147 0.300 0.401 0.182 0.342 0.483 0.0117

Sparsemax 0.147 0.286 0.384 0.191 0.369 0.464 –

Table 2: Qualitative comparison of loss functions

The results are reported in Table 2. We see that Rankmax improves over Softmax and Sparsemax on
all metrics for the mid-size Movielens 20M dataset. On the smaller dataset, the metrics are noisier,
and the difference between the different losses is less clear. It appears however that Rankmax has
slightly better precision but worse recall. On the larger dataset we focused on large values of K as the
metrics for smaller K were noisy. On R@1000, we did not find any noticeable difference between
Rankmax and Softmax, and both algorithms take the same amount of time for each training step. Our
implementation of Sparsemax is much slower than Rankmax and Softmax, mainly because it requires
sorting the vector of scores zθ(x). We did not succeed in running Sparsemax on the largest dataset
(n = 849K).

We also carried out numerous experiments on Movielens 20M using a Softmax loss with temperature
annealing according to an exponential decay, as in [17, 32]. Treating the final temperature as an
additional hyperparameter, a joint hyperparameter search of the learning rate, the final temperature,
and the regularization consistently indicated that temperature annealing does not improve the results
on this particular dataset.

8



Figure 2 illustrates the evolution of AP@10 and R@100 over the course of training, for different learn-
ing rates. We plot these metrics as a function of the number of epochs to avoid any implementation
specific effects. Wall-time plots for the same experiment are given in the appendix.

On the smaller dataset, the retrieval metrics improve rapidly using Rankmax but also deteriorate more
significantly after some epochs, while this pattern is less pronounced for Softmax or Sparsemax (at
least not within 20,000 epochs), suggesting that the use of Rankmax should be combined with an
early stopping criterion. On Movielens 20M, Rankmax produces a 15% improvement over Softmax
and a 8% improvement over Sparsemax across a range of learning rates. For this dataset, Rankmax is
a better choice for any computational budget.
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Figure 2: Evolution of retrieval metrics on MovieLens 100K and 20M over training epochs.

5 Concluding remarks

We derived an adaptive Euclidean projection method motivated by multi-label classification problems.
The method adapts the parameter α to individual training examples, and shows good empirical
performance.

Under cross-entropy loss, Rankmax is closely related to the pairwise losses as discussed in Section 3.3.
While pairwise losses do not immediately fit into the projection framework of equation (1), this
connection suggests that they may be closely related, and we believe this merits further investigation.

While we focused our discussion on the cross-entropy loss, the Rankmax projection can be used
with other losses. Combining the adaptivity of Rankmax with the Fenchel-Young losses [7, 8] is an
interesting direction for future work.

Broader Impact

We derived a training method that is theoretically motivated and that shows a good performance on a
popular benchmark. It can be used to expand the toolbox of practitioners, and may potentially lead
to an improved model quality in some applications. Similarly to other optimization methods, the
method we develop is not specific to a particular model or application.
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