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Appendix A: Experiment Setup

We use IMAGENET [Deng et al., 2009] pre-training for its prevalence in the community and consider
CHEXPERT [Irvin et al., 2019] and three sets from DOMAINNET [Peng et al., 2019] as downstream
transfer learning tasks. CHEXPERT is a medical imaging dataset which consists of chest x-ray
images. We resized the x-ray images to to 224 ⇥ 224, and set up the learning task to diagnose 5
different thoracic pathologies: atelectasis, cardiomegaly, consolidation, edema and pleural effusion.
DOMAINNET [Peng et al., 2019] is a dataset of common objects in six different domain. All domains
include 345 categories (classes) of objects such as Bracelet, plane, bird and cello . The domains
include c�ipart: collection of clipart images; rea�: photos and real world images; sketch: sketches
of specific objects; infograph: infographic images with specific object; painting artistic depictions
of objects in the form of paintings and quickdraw: drawings of the worldwide players of game
“Quick Draw!”5. In our experiments we use three domains: rea�, c�ipart and quickdraw.

The CHEXPERT dataset default split contains a training set of 200k images and a tiny validation set
that contains only 200 studies. The drastic size difference is because the training set is constructed
using an algorithmic labeler based on the free text radiology reports while the validation set is
manually labeled by board-certified radiologists. To avoid high variance in the studies due to tiny
dataset size and label distribution shift, we do not use the default partition. Instead, we sample
two separate sets of 50k examples from the full training set and use them as the train and test set,
respectively. Different domains in DOMAINNET contain different number of training examples,
ranging from 50k to 170k. To keep the setting consistent with CHEXPERT, We sample 50k subsets
from training and test sets for each of the domains.

5https://quickdraw.withgoog�e.com/data
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Table 3: Common and uncommon mistakes between RI-T, P-T, CHEXPERT

P-T acc RI-T acc g1 g2 Common mistakes r1 r2

Class 1 0.8830 0.8734 645 832 3597 0.1878 0.1520
Class 2 0.7490 0.7296 2361 2318 4047 0.3641 0.3684
Class 3 0.9256 0.9095 71 207 3009 0.0643 0.02305
Class 4 0.6811 0.6678 2250 2460 8835 0.2177 0.2029
Class 5 0.7634 0.7374 3446 2160 4200 0.3396 0.4506

Table 4: Common and uncommon mistakes between two instances of RI-T, CHEXPERT

P-T acc RI-T acc g1 g2 Common mistakes r1 r2

Class 1 0.8734 0.8654 704 773 3469 0.1822 0.1687
Class 2 0.7292 0.7399 3139 1499 4909 0.2339 0.3900
Class 3 0.9095 0.9170 195 102 2978 0.0331 0.0614
Class 4 0.6678 0.6574 2070 2588 8497 0.2334 0.1958
Class 5 0.7374 0.7326 2001 3136 4510 0.4101 0.3073

For all our training and transfer experiments we use ResNet-50 [He et al., 2016] with fixup initializa-
tion [Zhang et al., 2019b] which eliminate batch normalization layers from the ResNet architecture.
We initialize the final linear classifier layer with uniform random values instead of using zeros from
the fixup initialization.

We run each CHEXPERT training jobs with two NVidia V100 GPUs, using batch size 256. We use
the SGD optimizer with momentum 0.9, weight decay 0.0001, and constant learning rate scheduling.
We also tried piece-wise constant learning rate scheduling. However, we found that RI-T struggles
to continue learning as learning rate decays. We train P-T for 200 epochs and RI-T for 400 epochs,
long enough for both training scenarios to converge to the final (overfitted) solutions. It takes ⇠ 90
seconds to train one epoch. We also run full evaluation on both the training and test sets each epoch,
which takes ⇠ 40 seconds each.

We run each DOMAINNET training jobs with single NVidia V100 GPU, using batch size 32. We use
the SGD optimizer with momentum 0.9, weight decay 0.0001, and piecewise constant learning rate
scheduling that decays the learning rate by a factor of 10 at epoch 30, 60, and 90, respectively. We
run the training for 100 epochs. In each epoch, training takes around 2 minutes and 45 seconds, and
evaluating on both the training and test set takes around 70 seconds each.

Appendix B: Additional Figures and Tables

B.1 Discussions of learning curves

Figure 2 shows the learning curves for P-T, RI-T models with different learning rates. In particular,
we show base learning rate 0.1 and 0.02 for both cases on CHEXPERT, DOMAINNET rea�, c�ipart
and quickdraw, respectively.

We observe that P-T generally prefer smaller learning rate, while RI-T generally benefit more from
larger learning rate. With large learning rate, P-T failed to converge on CHEXPERT, and significantly
under-performed the smaller learning rate counterpart on DOMAINNET quickdraw. On DOMAINNET
rea� and c�ipart, the gap is smaller but smaller learning rate training is still better. On the other
hand, with larger learning rate, RI-T significantly outperform the smaller learning rate counterpart on
all the three DOMAINNET datasets. On CHEXPERT, although the optimal and final performance are
similar for both small and large learning rate, the large learning version converges faster.

On all the four datasets, P-T outperforms RI-T, in both optimization speed and test performance.
Note that we subsample all the four dataset to 50, 000 training examples of 224⇥ 224 images, yet
severe overfitting is observed only on CHEXPERT. This suggests that the issue of overfitting is not
only governed by the problem size, but also by other more complicated factors such as the nature of
input images. Intuitively, the chest X-ray images from CHEXPERT are less diverse than the images
from DOMAINNET.
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Table 5: Common and uncommon mistakes between two instances of P-T, CHEXPERT

P-T acc RI-T acc g1 g2 Common mistakes r1 r2

Class 1 0.8830 0.8828 456 697 3732 0.1573 0.1088
Class 2 0.7490 0.7611 2375 1369 4996 0.2150 0.3222
Class 3 0.9256 0.9208 63 139 3077 0.0432 0.0200
Class 4 0.6811 0.6825 2030 1879 9416 0.1663 0.1773
Class 5 0.76344 0.76088 1687 2398 3962 0.3770 0.2986

Table 6: Common and uncommon mistakes between P-T, RI-T, c�ipart
g1 g2 Common mistakes r1 r2

P-T, RI-T 521 2940 3263 0.1376 0.4739
RI-T, RI-T 787 844 5359 0.1280 0.1360
P-T, P-T 619 584 3165 0.1635 0.1558

B.2 Common and uncommon mistakes

In order to look into common and uncommon mistakes, we compare two models at a time. We look
into all combinations, i.e., compare RI-T, P-T, two instances of RI-T and two instances of P-T.
Tables 3, 4, 5 show this analysis for CHEXPERT and Table 6 shows the analysis for c�ipart. For
CHEXPERT we do a per class analysis first. Since CHEXPERT looks into five different diseases, we
have five binary classification tasks. In each classification setting, we look into accuracy of each
model. g1, g2 refer to the number of data samples where only the first model is classifying correctly
and only the second model is classifying correctly, respectively. We also look into the number of
common mistakes. r1, r2 refer to ratio of uncommon to all mistakes for the first and second model
respectively.

Another interesting point about DOMAINNET is that classes are not balanced. Therefore, we
investigate the correlation of P-T and RI-T accuracy with class size. The results are shown in Figure 8
for c�ipart. Other target domains from DOMAINNET show similar trends. We also compute the
Pearson correlation coefficient [Pearson, 1895] between per class accuracy’s and class sizes for these
models and they are P-T (0.36983, 1.26e� 12), RI-T (0.32880, 3.84e� 10). Note that overall top-1
accuracy of P-T, RI-T is 74.32, 57.91 respectively. In summary, P-T has higher accuracy overall,
higher accuracy per class and it’s per-class accuracy is more correlated with class size compared to
RI-T.

B.3 Feature similarity and different distances

Table 7 shows feature similarity using CKA Kornblith et al. [2019a] for output of different layers of
ResNet-50 when the target domain is c�ipart. In Section 3.2 in the main text we showed a similar

Figure 8: Accuracy of P-T and RI-T vs class size for c�ipart
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Figure 9: Uncommon Mistakes RI-T and P-T, top row shows samples of the images RI-T classifies
incorrectly while P-T classifies them correctly. bottom row shows samples of the images P-T
classifies incorrectly while RI-T classifies them correctly. Classes from left to right are: barn, apple,
backpack, angel.

Table 7: Feature similarity for different layers of ResNet-50, target domain c�ipart

models/layer conv1 layer 1 layer 2 layer 3 layer 4

P-T & P 0.3328 0.2456 0.1877 0.1504 0.5011
P-T & P-T 0.4333 0.1943 0.4297 0.2578 0.1167
P-T & RI-T 0.0151 0.0028 0.0013 0.008 0.0014
RI-T & RI-T 0.0033 0.0032 0.0088 0.0033 0.0012

table for target domain CHEXPERT. We observe a similar trend when we calculate these numbers for
quickdraw and rea� target domain as well.

Figure 10 depicts `2 distance between modules of two instances of P-T and two instances of RI-T for
both CHEXPERT and c�ipart target domain. Table 2 shows the overall distance between the two
networks. We note that P-T’s are closer in `2 parameter domain compared to RI-Ts. Drawing this
plot for rea�, quickdraw leads to the same conclusion.

We also looked into distance to initialization per module, and overall distance to initialization for
P-T, RI-T for different target domains in Figure 11 and Table 8.

B.4 Additional plots for performance barriers

Figure 12 shows the performance barrier plots measured with on all the three DOMAINNET datasets.
Figure 13 show results measured with the cross entropy loss. On both plots, we observe performance
barrier between two RI-T solutions, but not between two P-T solutions.

Table 8: Distance to initialization between P-T and RI-T for different target domains
domain/model P-T RI-T

CHEXPERT 4984 4174
c�ipart 5668 23249

quickdraw 7501 24713
rea� 5796 24394
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(a) CHEXPERT (b) c�ipart
Figure 10: Feature `2 distance per module

(a) CHEXPERT (b) c�ipart
Figure 11: Distance to Initialization per module

Figure 14 and Figure 15 show the performance barrier plots of CHEXPERT measured by AUC and
loss, respectively. The two panes in each of the figures show the two cases where RI-T is trained with
learning rate 0.1 and 0.02, respectively. Note that on CHEXPERT the models overfit afer a certain
number of training epochs and the final performances are worse than the optimal performances along
the training trajectory. So we show more interpolation pairs than in the case of DOMAINNET. Those
plots are largely consistent with our previous observations. One interesting observation is that while
the final performance of P-T is better than RI-T when measured with (test) AUC, the former also has
higher (test) loss than the latter.

B.5 Performance barrier experiments with identical initialization for RI-T

In the experiments of comparing the performance barrier interpolating the weights of two RI-T
models vs. interpolating the weights of two P-T models, the two P-T models are initialized from the
same pre-trained weights, while the two RI-T models are initialized from independently sampled
(therefore different) random weights. In this section, we consider interpolating two RI-T models that
are trained from identical (random) initial weights. The results are shown in Figure 16 and Figure 17.
Comparing with their counterparts in Figure 12 and Figure 13, respectively, we found that the barriers
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Figure 12: Performance barrier of rea�, c�ipart, quickdraw, respectively, measured by test accuracy.

Figure 13: Loss barrier of rea�, c�ipart, quickdraw, respectively, measured by the cross entropy
loss.

Figure 14: Performance barrier on CHEXPERT. Left: RI-T is using base learning rate 0.1; Right:
RI-T is using base learning rate 0.02.
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Figure 15: Loss barrier on CHEXPERT. Left: RI-T is using base learning rate 0.1; Right: RI-T is
using base learning rate 0.02.

Figure 16: Performance barrier of rea�, c�ipart, quickdraw, respectively, measured by test accuracy.
Like P-T, the two RI-T models are initialized from the same (random) weights. This figure can be
compared with Figure 12.

between two RI-T models become slightly smaller when the initial weights are the same. However,
significant barriers still exist when comparing with the interpolation between two P-T models.

B.6 Performance barrier plots with extrapolation

In order to estimate the boundary of the basin according to Definition 3.1, we extend the interpolation
coefficients from [0, 1] to extrapolation in [�1, 2]. The results are shown in Figure 18. We can see
that in this 1D subspace, the two P-T solutions are close to the boundary of the basin, while RI-T
solutions do not live in the same basin due to the barriers on the interpolating linear paths.

B.7 Cross-domain weight interpolation on DOMAINNET

Because all the domains in DOMAINNET have the same target classes, we are able to directly apply a
model trained on one domain to a different domain and compute the test performance. Moreover, we
can also interpolate the weights between models that are trained on different domains. In particular,
we tested the following scenarios:
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Figure 17: Performance barrier of rea�, c�ipart, quickdraw, respectively, measured by cross
entropy loss. Like P-T, the two RI-T models are initialized from the same (random) weights. This
figure can be compared with Figure 13.

Figure 18: Performance barrier of rea�, c�ipart, quickdraw, respectively, measured by test accuracy.
The linear combination of weights are extrapolated beyond [0, 1] (to [�1, 2]).

Results Evaluated on Training data for Model 1 Training data for Model 2

Figure 19 c�ipart c�ipart rea�
Figure 20 c�ipart quickdraw rea�
Figure 21 rea� quickdraw c�ipart
Figure 22 rea� rea� c�ipart
Figure 23 rea� rea� quickdraw

It is interesting to observe that when directly evaluated on a different domain that the models are
trained from, we could still get non-trivial test performance. Moreover, P-T consistently outperforms
RI-T even in the cross-domain cases. A more surprising observation is that when interpolating
between P-T models, (instead of performance barrier) we observe performance boost in the middle
of the interpolation. This suggests that all the trained P-T models on all domains are in one shared
basin.

B.8 Cross-domain weight interpolation with training on combined domains

In this section, we investigate interpolation with models that are trained on combined domains. In
particular, some models are trained on a dataset formed by the union of the training set from multiple
DOMAINNET domains. We tested the following scenarios:
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Figure 19: Performance barrier of cross-domain interpolation. The test accuracy (left) and the cross
entropy loss (right) are evaluated on the c�ipart domain. The interpolation are between models
trained on c�ipart and models trained on rea�.

Figure 20: Performance barrier of cross-domain interpolation. The test accuracy (left) and the cross
entropy loss (right) are evaluated on the c�ipart domain. The interpolation are between models
trained on quickdraw and models trained on rea�.
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Figure 21: Performance barrier of cross-domain interpolation. The test accuracy (left) and the cross
entropy loss (right) are evaluated on the rea� domain. The interpolation are between models trained
on quickdraw and models trained on c�ipart.

Figure 22: Performance barrier of cross-domain interpolation. The test accuracy (left) and the cross
entropy loss (right) are evaluated on the rea� domain. The interpolation are between models trained
on rea� and models trained on c�ipart.
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Figure 23: Performance barrier of cross-domain interpolation. The test accuracy (left) and the cross
entropy loss (right) are evaluated on the rea� domain. The interpolation are between models trained
on rea� and models trained on quickdraw.

Figure 24: Performance barrier of cross-domain interpolation with training on combined domains.
The test accuracy (left) and the cross entropy loss (right) are evaluated on the rea� domain. The
interpolation are between models trained on rea�+c�ipart and models trained on c�ipart.
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Figure 25: Performance barrier of cross-domain interpolation with training on combined domains.
The test accuracy (left) and the cross entropy loss (right) are evaluated on the rea� domain. The
interpolation are between models trained on rea�+quickdraw and models trained on quickdraw.

Figure 26: Performance barrier of cross-domain interpolation with training on combined domains.
The test accuracy (left) and the cross entropy loss (right) are evaluated on the rea� domain. The
interpolation are between models trained on rea�+quickdraw and models trained on rea�.
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Figure 27: Performance barrier of cross-domain interpolation with training on combined domains.
The test accuracy (left) and the cross entropy loss (right) are evaluated on the rea� domain. The
interpolation are between models trained on c�ipart+quickdraw and models trained on c�ipart.

Figure 28: Performance barrier of cross-domain interpolation with training on combined domains.
The test accuracy (left) and the cross entropy loss (right) are evaluated on the c�ipart domain. The
interpolation are between models trained on rea�+c�ipart and models trained on rea�.
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Figure 29: Performance barrier of cross-domain interpolation with training on combined domains.
The test accuracy (left) and the cross entropy loss (right) are evaluated on the c�ipart domain. The
interpolation are between models trained on rea�+quickdraw and models trained on quickdraw.

Results Evaluated on Training data for Model 1 Training data for Model 2

Figure 24 rea� rea�+c�ipart c�ipart
Figure 25 rea� rea�+quickdraw quickdraw
Figure 26 rea� rea�+quickdraw rea�
Figure 27 rea� c�ipart+quickdraw c�ipart
Figure 28 c�ipart rea�+c�ipart rea�
Figure 29 c�ipart rea�+quickdraw quickdraw

B.9 Additional criticality plots

Figure 30 in shows the criticality analysis for Conv1 module of the ResNet-50 using training data or
test data or generalization gap. As we see, all of them can be used interchangeably for the analysis.
The accompanying file ‘criticality-plots-chexpert.pdf’ includes the figures from main text along with
many more such plots for different layers of ResNet-50.

Appendix C: Spectrum of weight matrices

We recover the spectrum of every module using the algorithm derived in [Sedghi et al., 2019] and we
also look at the spectrum for the whole network in different cases of training.Sedghi et al. [2019]
proposes an exact and efficient method for finding all singular values corresponidng to the convolution
layers with a simple two-lines of NumPy which essentially first takes 2D-FFT of the kernel and
then takes the union of singular values for different blocks of the result to find all singular values.
Figure 31a shows the spectrum of the whole network for different models for CHEXPERT domain.
The plots for other domains and for individual modules are shown in the Supplementary material. We
note that for individual modules as well as the whole network, RI-T is more concentrated towards zero.
In other words, it has a higher density in smaller singular values. This can be seen in Figure 31a, 31b.
In order to depict this easier, we sketch the number of singular values smaller than some threshold
vs the value of the threshold in Figure 33. Intuitively, among two models that can classify with
certain margin, which translates to having low cross-entropy loss, then we can look at concentration
of spectrum and concentration towards low values shows less confidence. More mathematically
speaking, the confident model requires a lower-rank to get ✏-approximation of the function and
therefore, has lower capacity. Intuitively, distribution around small singular values is a hint of model
uncertainty. When starting from pre-trained network, the model is pointing strongly into directions
that have signals about the data. Given that RI-T does not start with strong signals about the data, it
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a P-T, direct path b RI-T, direct path

c P-T, optimization path d RI-T, optimization path

Figure 30: Module Criticality plots for Conv1 module. x-axis shows the distance between initial and optimal
✓, where x = 0 maps to initial value of ✓. y-axis shows the variance of Gaussian noise added to ✓. The four
subplots refer to the four paths one can use to measure criticality. All of which provide good insight into this
phenomenon. Each subplot has 3 rows corresponding to train error, test error and generalization error. Heat map
is used so that the colors reflect the value of the measure under consideration.

(a) Histogram of spectrum of the whole model (b) Lower part of spectrum
Figure 31: Spectrum of the whole network, CHEXPERT.
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Figure 32: Spectrum of the whole model for target domain Clipart

(a) CHEXPERT (b) c�ipart
Figure 33: Count of singular values smaller than a threshold

finds other explanations compared to P-T and hence ends up in a different basin of loss landscape,
which from a probabilistic perspective is more concentrated towards smaller singular values.

Figure 32 shows the spectrum of the whole network for target domain c�ipart. The accompanying
files ‘spectrum-plots-chexpert.pdf’, ‘spectrum-plots-clipart.pdf’ in the Supplementary material folder
include the spectrum for each module of ResNet-50 as well as the whole spectrum for target domain
CHEXPERT, c�ipart respectively.

There is a vast literature in analyzing generalization performance of DNNs by consider-
ing the ratio of Frobenius norm to spectral norm for different layers [Bartlett et al., 2017,
Neyshabur et al., 2018]. They prove an upper bound on generalization error in the form of
O

⇣
1/�, B, d,⇧i2lk✓ik2

P
i2l

k✓ikF

k✓ik2

⌘
where �, B, d, l refer to margin, norm of input, dimension of

the input, depth of the network and ⇥is refer to module weights and Frobenius and spectral norm are
shown with k · kF , k · k2. For details, see [Neyshabur et al., 2018]. The product of spectral norm can
be considered as a constant times the margin, B,d are the same in the two networks. Therefore, we
compare the term

P
i2d

kWikF

kWik2
for two networks. Calculating this value shows bigger generalization

bound for RI-T and hence predicts worse generalization performance.
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