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Abstract

Tractable models of human perception have proved to be challenging to build.
Hand-designed models such as MS-SSIM remain popular predictors of human
image quality judgements due to their simplicity and speed. Recent modern deep
learning approaches can perform better, but they rely on supervised data which
can be costly to gather: large sets of class labels such as ImageNet, image quality
ratings, or both. We combine recent advances in information-theoretic objective
functions with a computational architecture informed by the physiology of the
human visual system and unsupervised training on pairs of video frames, yielding
our Perceptual Information Metric (PIM). We show that PIM is competitive with
supervised metrics on the recent and challenging BAPPS image quality assessment
dataset and outperforms them in predicting the ranking of image compression meth-
ods in CLIC 2020. We also perform qualitative experiments using the ImageNet-C
dataset, and establish that PIM is robust with respect to architectural details.

1 Introduction

Many vision tasks require the assessment of subjective image quality for evaluation, including
compression and restoration problems such as denoising, deblurring, colorization, etc. The success
of many such techniques is measured in how similar the reconstructed image appears to human
observers, compared to the often unobserved original image (the image before compression is applied,
the actual scene luminances without the noise of the sensor, etc.). Predicting subjective image quality
judgements is a difficult problem.

So far, the field has been dominated by simple models with few parameters that are hand-adjusted to
correlate well with human mean opinion scores (MOS), such as SSIM and variants (Wang, Bovik,
et al., 2004; Wang, Simoncelli, and Bovik, 2003). This class of models captures well-documented
phenomena observed in visual psychology, such as spatial frequency dependent contrast sensitivity
(Van Nes and Bouman, 1967), or are based on models of early sensory neurons, such as divisive
normalization, which explains luminance and/or contrast adaptivity (Heeger, 1992). It is remarkable
these models perform as well as they do given their simplicity. However, it is also clear that these
models can be improved upon by modeling more complex and, at this point, potentially less well
understood properties of human visual perception. Examples for this can be found in the recent
literature (R. Zhang et al., 2018; Chinen et al., 2018). The underlying hypothesis in these models is
that the same image features extracted for image classification are also useful for other tasks, including
prediction of human image quality judgements. However, this approach requires model fitting in
several stages, as well as data collected from human raters for training the models. First, human
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responses are collected on a large-scale classification task, such as the ImageNet dataset (Russakovsky
et al., 2015). Second, a classifier network is trained to predict human classifications. Third, more
human responses are collected on an image quality assessment (IQA) task. Fourth, the features
learned by the classifier network are frozen and augmented with additional processing stages that are
fitted to predict the human IQA ratings. This process is cumbersome, and gathering human responses
is costly and slow.

In this paper, we follow a different, and potentially complementary approach. Our work is inspired
by two principles that have been hypothesized to shape sensory processing in biological systems.
One goes back to as early as the 1950s: the idea of efficient coding (Attneave, 1954; Barlow, 1961).
The efficient coding hypothesis proposes that the internal representation of images in the human
visual system is optimized to efficiently represent the visual information processed by it. That is,
the brain compresses visual information. The other principle is slowness (Földiák, 1991; Mitchison,
1991; Wiskott, 2003), which posits that image features that are not persistent across small time scales
are likely to be uninformative for human decision making. For example, two images taken of the
same scene within a short time interval would in most cases differ in small ways (e.g., by small
object movements, different instances of sensor noise, small changes in lighting), but informative
features, such as object identity, would persist. The concept of slowness is related to the information
theoretic quantity of predictive information (Bialek et al., 2001), which we define here as the mutual
information between the two images (Creutzig and Sprekeler, 2008). In this view, the information
that is not predictive is likely not perceived, or at least does not significantly contribute to perceptual
decision making.

We conjecture that by constructing a metric based on an image representation that efficiently encodes
temporally persistent visual information we will be able to make better predictions about human
visual perception. We find that such a metric, PIM, is competitive with the fully supervised LPIPS
model (R. Zhang et al., 2018) on the triplet human rating dataset published in the same paper (BAPPS-
2AFC), and outperforms the same model on the corresponding just-noticeable-difference dataset
(BAPPS-JND). Remarkably, our model achieves this without requiring any responses collected from
humans whatsoever.

2 Perceptual Information Metric

A principled approach to defining an IQA metric is to construct an image representation, for example,
by transforming the image via a deterministic function into an alternate space, and then measuring
distances in this space. Thresholding the distance between two image representations can be used
to make predictions about the just-noticeable difference (JND) of image distortions; comparing the
distance between two alternate image representations and a reference representation can be used to
make predictions about which of the alternate images appears more similar to the reference.

More generally, we can construct a probabilistic representation by representing an image as a
probability distribution over a latent space. This gives the model flexibility to express uncertainty, such
as when image content is ambiguous. Here, we construct a multi-scale probabilistic representation
q(Z|X), where X is an image, and Z is a random variable defined on a collection of multi-scale
tensors. The encoder distribution q is parameterized by artificial neural networks (ANNs) taking
images as inputs (Figs. 1 and 2), which allows amortized inference (i.e., the latent-space distribution
can be computed in constant time). To use this representation as an IQA metric, we measure
symmetrized Kullback–Leibler divergences between q given different images, which gives rise to our
Perceptual Information Metric (PIM).

To train this representation unsupervisedly, we are guided by a number of inductive biases, described in
the following sections. Note that implementation details regarding the optimization (e.g. optimization
algorithm, learning rate) and pre-processing of the training dataset can be found in the appendix.

2.1 Choice of objective function

Our choice of objective function is informed by both the efficient coding and the slowness principles:
it must be compressive, and it must capture temporally persistent information. We choose a stochastic
variational bound on the Multivariate Mutual Information (MMI) to satisfy these constraints, called
IXYZ. IXYZ learns a stochastic representation, Z, of two observed variables, X and Y (in this
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case two temporally close images of the same scene), such that Z maximizes a lower bound on the
Multivariate Mutual Information (MMI) I(X;Y ;Z) (Fischer, 2019a):

I(X;Y ;Z) =

Z
dx dy p(x, y)

Z
dz p(z|x, y) log p(z|x)p(z|y)

p(z)p(z|x, y)

= E log
p(z|x)p(z|y)
p(z)p(z|x, y) � E log

q(z|x)q(z|y)
p̂(z)p(z|x, y) ⌘ IXYZ (1)

Here, p(z|x, y) is our full encoder of the pair of images, and q(z|x) and q(z|y) are variational
approximations to the encoders of X and Y , which we call marginal encoders, since they must
learn to marginalize out the missing conditioning variable (e.g., y is the marginalization variable
for q(z|x)). All three of those can be parameterized by the outputs of neural networks. p̂(z) is
a minibatch marginalization of p(z|x, y): p̂(z) ⌘ 1

K

PK
i=1 p(z|xi, yi), where K is the number of

examples in the minibatch.1 These substitutions make it feasible to maximize IXYZ using stochastic
gradient descent. To see that this objective is compressive, decompose the MMI into three additive
terms, which are each lower bounded by three terms that analogously constitute IXYZ:

I(X;Y ;Z) =

8
><

>:

I(Z;X,Y ) = E log p(z|x,y)
p(z) � E log p(z|x,y)

p̂(z)

�I(X;Z|Y ) = �E log p(z|x,y)
p(z|y) � �E log p(z|x,y)

q(z|y)
�I(Y ;Z|X) = �E log p(z|x,y)

p(z|x) � �E log p(z|x,y)
q(z|x)

9
>=

>;
= IXYZ (2)

By maximizing IXYZ, we maximize a lower bound on I(Z;X,Y ), encouraging the representation Z

to encode information about X and Y . Simultaneously, we minimize upper bounds on I(X;Z|Y ) and
I(Y ;Z|X). This discourages Z from encoding information about X that is irrelevant for predicting
Y , and vice versa.

2.2 Parameterization of encoder distributions

As stated above, we seek a distribution over the representation conditioned on an image; the marginal
encoder q(z|x) is the core piece we are trying to learn. The full encoder p(z|x, y) is only necessary
for training, and it is the only distribution we need to sample from. We are able to use mixture
distributions for the marginal encoders, since taking gradients of their log probability densities is
tractable. This is a benefit of IXYZ compared to other approaches like the Variational Information
Bottleneck (VIB) (Alemi et al., 2017) or the Conditional Entropy Bottleneck (Fischer, 2019b).2

Using mixture distributions for q(z|x) allows us to learn very expressive inference encoders that,
in the limit of infinite mixtures, can exactly marginalize the full encoder distribution, p(z|x, y). In
practice, we find that a mixture of 5 Gaussians for q(z|x) and q(z|y) is sufficient to learn powerful
models with tight upper bounds on the compression terms. For the full encoder, we parameterize
only the mean of a multivariate Gaussian, setting the variance to one. Correspondingly, the marginal
encoders are mixtures of multivariate Gaussians, also with unit variance for each mixture component.

We evaluate PIM by estimating the symmetrized Kullback–Leibler divergence using Monte Carlo
sampling:

PIM(x,y) = DKL[q(z|x) k q(z|y)] +DKL[q(z|y) k q(z|x)]

⇡ 1
N

NX

zn⇠q(z|x)

log
q(zn|x)
q(zn|y)

+ 1
N

NX

zn⇠q(z|y)

log
q(zn|y)
q(zn|x)

. (3)

While this yields accurate results, it is not an expression that is differentiable with respect to the
images, which would be useful for optimization purposes. We note, however, that the predictive
performance of PIM suffers only slightly when collapsing the marginal encoders to just one mixture
component (Table 1). In that case, the KL divergence collapses to a simple squared distance between
the means, which is desirable both in terms of computational complexity and interpretability – we treat

1See Fischer (2019a) and Poole et al. (2019) for detailed descriptions of the minibatch marginal distribution.
2In contrast, VIB uses the same encoder for both training and inference, which means that the encoder

distribution cannot be a discrete mixture, since sampling the distribution during training would require taking
gradients through the discrete sample.
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Figure 1: System diagram of frontend shared between all encoders. An image (x) is decomposed
using linear filtering (LF) into a multi-scale pyramid representation. Each scale is then subjected to
processing by a convolutional neural network (CNN) with trained parameters ✓, which are not shared
across scales. The result is a multi-scale collection of tensors we denote f✓(x).
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Figure 2: Left: system diagram of marginal encoder q✓,�(z|x) (identical for q✓,�(z|y)). Each
tensor produced by the frontend is fed into a three-layer neural network consisting of two rectified
linear layers (R) with 50 units each, and one linear layer (L), which outputs 5 mixture weights
and 5 mean vectors of length 10 per spatial location and scale. The parameters of both marginal
encoders are identical, not shared across scales, and denoted together as �. Right: system diagram
of full encoder p✓, (z|x,y), whose parameters we denote as  . Each tensor of f✓(x) is fed into a
three-layer network with 10 units per layer, the final outputs representing one mean vector per spatial
location and scale. f✓(y) is subjected to a linear layer, which outputs 10 factors and 10 offsets of an
additional elementwise affine transformation (A) of the activations of the second layer (R). All layers
are separable in space, i.e. convolutions with 1⇥ 1 spatial support.

the latent space then as a perceptually uniform space like, for example, the �E
⇤ metric developed by

the International Commission on Illumination (CIE) for color perception. In the remainder of the
paper, we report KL divergences as per Eq. (3).

2.3 Choice of dataset

In line with the slowness principle, we seek to extract the predictive information of two images X
and Y taken within short time intervals. We approximate this by extracting pairs of consecutive
frames from video sequences, 1/30th of a second apart, which is generally short enough to simulate
continuous motion to the human visual system (HVS). The nature of the imagery used for training can
of course vary according to video content. For example, the statistics of horizontal and vertical edges,
as well as the amount of and type of texture tends to differ between motifs, e.g., in city scenes vs.
nature scenes. Importantly, image composition can have an effect on the distribution of object scales.
Natural visual environments tend to exhibit scale equivariance: both the statistics of images recorded
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by photographers as well as the properties of feature detectors in the early human visual system
themselves are self-similar across scales, such as the neurons found in cortical region V1 (Field,
1987; Ruderman, 1997). Our training data is largely determined by its availability: we leveraged the
database of publicly available videos on YouTube. In our experiments, we were forced to reduce the
spatial resolution of the video to eliminate existing compression artifacts, which limits the expression
of scale equivariance in the training dataset. We addressed this issue by imposing approximate scale
equivariance on the computational architecture described in the next section.

2.4 Choice of architectural components

As we specify the model details, we now indicate learned parameters with Greek subscripts, and
vectors with bold. The mean parameters of the multivariate Gaussians and the mixture weights of
the marginal encoders are computed by a multi-stage architecture of ANNs, as shown in Figs. 1
and 2. All encoder distributions are defined jointly on a collection of multi-scale latent variables (i.e.,
z = {z0

, . . . , z4}), but the distribution parameters (means, and mixture weights for the marginal
encoders) are computed independently for each scale. Each zs has 10 dimensions per spatial location.

All three encoders share the same computational frontend with parameters ✓, which we denote f✓(x).
This frontend, shown in Fig. 1, consists of a multi-scale transform with no trainable parameters,
followed by a set of convolutional neural networks (CNNs). We use a steerable pyramid (Simoncelli
and Freeman, 1995) with 3 bandpass scales. Each bandpass scale has 2 oriented subbands, making
for 8 sub-bands per color channel total, including the highpass and lowpass residuals. Note that
the spatial resolution of the scales varies as defined by the multi-scale pyramid. The CNNs each
consist of 4 layers with 64, 64, 64 and 3 units, respectively, a spatial support of 5 ⇥ 5, and ReLU
activation function. The marginal encoder takes the output of the frontend as its input, and outputs
the conditional mean vectors and weights of a 10-dimensional Gaussian mixture distribution with 5
unit-variance mixture components (Fig. 2, left panel) per spatial location and scale. The marginal
encoders for X and Y are identical, i.e. share all parameters. The full encoder takes the output of the
frontend to both x and y, and computes the conditional mean via a separate set of neural networks
(Fig. 2, right panel).

The architectural inductive bias can thus be summarized in three constraints: spatial translation
equivariance via the convolutionality of all components of the architecture; approximate spatial scale
equivariance, by separating the image representation into multiple scales and forcing the computation
to be independent across scales (effectively forcing the model to equally weight information from
each of the scales, although it does not explicitly assume scale equivariance of the computation); and
temporal translation equivariance by sharing parameters between the marginal encoders.

3 Evaluation

We assess the properties of our unsupervised representation in four ways. First, we use PIM to
make predictions on two datasets of human image quality ratings, previously collected under a
two-alternative forced choice (2AFC) paradigm, comparing it to other recently proposed metrics
on this task. Second, we posit that shifting an image by a small number of pixels should only have
negligible effect on human perceptual decision making. We quantify this on PIM and a variety of
metrics. Third, we generalize this experiment to gather intuitions about the relative weighting of
different types of distortions via the ImageNet-C dataset (Hendrycks and Dietterich, 2019). Finally,
we assess the robustness of our approach using a number of ablation experiments.

3.1 Predictive performance on BAPPS/CLIC 2020

We evaluate the performance of PIM on BAPPS, a dataset of human perceptual similarity judgements
(R. Zhang et al., 2018). BAPPS contains two task-specific datasets: a triplet dataset, in which humans
were asked to identify the more similar of two distorted images compared to a reference image,
named “2AFC”, and a dataset of image pairs judged as identical or not, named “JND”. For reporting
the performance of PIM, we follow the original authors: for BAPPS-2AFC, we report the fraction
of human raters agreeing with the metric as a percentage. For BAPPS-JND, we report mAP, an
area-under-the-curve score.

We compare PIM to two traditional perceptual quality metrics, MS-SSIM and NLPD, and the more
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BAPPS-2AFC BAPPS-JND

Metric Trad. CNN SuperRes Deblur Coloriz. Interp. All Trad. CNN All

MS-SSIM 61.24 79.34 64.62 58.88 57.28 57.29 63.26 36.20 63.77 52.50
NLPD 58.23 80.29 65.54 58.83 60.07 55.40 63.50 34.91 61.49 50.80
LPIPS Alex 71.91 83.55 71.57 60.45 64.94 62.74 68.98 46.88 67.86 59.47
LPIPS Alex-lin 75.27 83.52 71.11 61.17 65.17 63.35 69.53 51.92 67.78 61.50
PIM 75.74 82.66 70.33 61.56 63.32 62.64 69.11 60.07 68.49 64.40

PIM-1 76.41 82.81 69.14 61.53 63.40 62.48 68.82 60.00 68.69 64.46

Table 1: Scores on BAPPS. Best values are underlined, the bold values are within 0.5% of the best.
All numbers reported for LPIPS were computed using the code and weights provided by R. Zhang
et al. (2018). Categories follow the same publication and “all” indicates overall scores.

Metric Spearman’s ⇢

PSNR –0.139
MS-SSIM (Wang, Simoncelli, and Bovik, 2003) 0.212
SSIMULACRA (Sneyers, 2017) –0.029
Butteraugli (2019) (1-norm) –0.461
Butteraugli (2019) (6-norm) –0.676
LPIPS Alex-lin (R. Zhang et al., 2018) –0.847
PIM –0.864

Table 2: Rank correlations of metrics on CLIC 2020 human ratings. Ideally, correlation values are
either 1 or -1. According to their definitions, PSNR, MS-SSIM, and SSIMULACRA are expected to
be positively correlated. The others are expected to be inversely correlated with the human ratings.

recent LPIPS, published with the BAPPS dataset (Table 1). For LPIPS, we use two models provided
by the authors: LPIPS Alex, which uses pretrained AlexNet features, and LPIPS Alex-lin, which adds
a linear network on top, supervisedly tuned on the 2AFC dataset. The numbers reported for PIM are
the best out of 5 repeats. PIM scores 69.06± 0.07% on 2AFC and 64.14± 0.15% on BAPPS-JND
on average across the 5 runs. The best model at 64.40% performs the best out of all metrics on
BAPPS-JND, outperforming both LPIPS Alex and Alex-lin. On BAPPS-2AFC, it scores 69.06%,
outperforming LPIPS Alex and performing at about the same level as Alex-lin. The single-component
model, for which the KL divergence in Eq. (3) collapses to a Euclidean distance, performs only
slightly worse on 2AFC at 68.82%.

R. Zhang et al. (2018) report that on the BAPPS-2AFC dataset, the cross-rater agreement is 73.9%.
As such, it is remarkable that PIM performs this well, absent any training data that involves humans
(neither ImageNet classification labels nor quality ratings, as used in LPIPS). Our results can thus
be interpreted as empirical evidence supporting the validity of the inductive biases we employ as
characterizations of the human visual system.

To assess the utility of PIM in predicting human ratings on larger images, we used it to predict the
human ranking of contestants in the Workshop and Challenge on Learned Image Compression (CLIC
2020). The image compression methods were ranked using human ratings and the ELO system (Elo,
2008). Subsequently, the same patches viewed by the raters were evaluated using each metric, and the
Spearman rank correlation coefficient was computed between the ranking according to each metric
and the ranking according to ELO. Table 2 shows that PIM performs best in predicting the ranking of
learned compression methods.

3.2 Invariance under pixel shifts

Metrics such as MS-SSIM and NLPD, which operate on pairwise comparisons between corresponding
spatial locations in images, typically do not perform well on geometric transformations (and older
benchmarks often do not contain this type of distortion). More complex metrics such as LPIPS and
PIM should perform better. To verify this, we follow the approach of Ding et al. (2020) and shift the
reference images in BAPPS by a few pixels (5 for a 64x64 image). Because the shifts are very small,
we reasonably assume that human judgements of the modified pairs would be essentially unchanged.
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BAPPS-2AFC BAPPS-JND

Metric \ Shift 1 2 3 4 5 1 2 3 4 5

MS-SSIM –1.18 –7.62 –11.10 –12.70 –13.50 –11.60 –17.60 –19.98 –21.20 –21.80
NLPD –2.18 –7.22 –10.40 –12.40 –13.80 –13.20 –18.10 –19.99 –20.70 –21.00
LPIPS Alex –0.06 –0.25 –0.34 –0.48 –0.68 –3.90 –6.96 –8.64 –9.77 –11.50
LPIPS Alex-lin –0.11 –0.18 –0.27 –0.30 –0.48 –1.99 –3.34 –4.56 –5.49 –7.06
PIM –0.03 –0.07 –0.13 –0.27 –0.40 –0.1 –0.97 –2.61 –4.52 –6.33

Table 3: Score differences on pixel-shifted BAPPS. Bold values indicate best for a column.

The score differences w.r.t. the unmodified BAPPS results on this transformed dataset are presented in
Table 3. MS-SSIM and NLPD lose over 7 percentage points on BAPPS-2AFC when shifting by only
2 pixels, while the deep metrics (including PIM) have only a negligible decrease. On BAPPS-JND
the effect is even more stark, where both traditional metrics’ scores decrease by almost 12 when
shifting by 1 pixel, and 18 for 2 pixels. LPIPS’ scores show a more noticeable decrease on shifting
by 2 pixels as well, 7 for LPIPS Alex and 3 for LPIPS Alex-lin. PIM performance decreases by less
than one.

3.3 Qualitative comparisons via ImageNet-C

Hendrycks and Dietterich (2019) provide a dataset, ImageNet-C, which consists of 15 corruption
types with 5 different severity levels applied to the ImageNet validation set, meant as a way to assess
classifiers. We compared the predictions PIM, LPIPS and MS-SSIM make with respect to the various
types of corruptions subjectively; we also added two additional corruptions, pixel shift and zoom,
also with 5 levels of severity. We observed two significant effects across the dataset: First, MS-SSIM
deviates from the other metrics on geometric distortions such as zoom, shift, and “elastic transform”,
further giving weight to the observations made in the previous section. Second, we noted that LPIPS
deviates from PIM and MS-SSIM on global changes of contrast and similar distortions such as “fog”.
Subjectively, we found that LPIPS was not sensitive enough to this kind of corruption. We speculate
this may be due to LPIPS using pre-trained features from a classifier network, which in principle
should be invariant to global changes in lighting. Indeed, it is plausible that the invariances of a
model predicting image quality should not necessarily be identical to the invariances of a network
solving a classification task.

To quantify these effects, we conducted the following simple experiment: For a given metric, we
computed the metric value between a reference and a corrupted image and then found an equivalent
amount of Gaussian noise to add to the reference that yields the same metric value. We plotted the
average standard deviation of required Gaussian noise across the dataset in Fig. 3(a). Clearly, MS-
SSIM is more sensitive to the “zoom” corruption than the other metrics, and LPIPS is less sensitive
to “fog” than MS-SSIM and PIM, both relative to their sensitivity to Gaussian noise. Fig. 3(b) and
(c) show the corresponding noise strengths for a representative image. It is interesting to note that
the images corrupted by fog are distinguishable at a glance, even at the lowest corruption strength.
However, they remain recognizable (i.e. classifiable), suggesting that a classifier, which LPIPS is
based on, should be invariant to the corruption.

Further details of this experiment can be found in the appendix. Note that these results are not
necessarily conclusive, and more sophisticated experiments are needed to assess the different classes
of metrics, such as with the methods presented by Wang and Simoncelli (2008) or Berardino et al.
(2017).

3.4 Ablations

To study the effect of the different inductive biases we impose, specifically the loss, the use of a
multi-scale architecture, and the training technique and dataset, we conduct ablation experiments
detailed below.

Alternate objective functions. We compare the IXYZ objective to two other information theoretic
objectives: InfoNCE and Single variable InfoNCE (Oord et al., 2018; Poole et al., 2019). In-
foNCE is a lower bound on I(X;Y ) that uses the same form of minibatch marginal as IXYZ.
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(a) Dataset averages (b) “Fog” example (c) “Zoom” example

Figure 3: (a): standard deviation of Gaussian noise added to images on average to yield the same
metric value as the given corruption strength. (b) and (c): Each column shows equivalent amount of
Gaussian noise to the corruption in the first row, according to the metric.

CNN 2AFC JND

4-layer 64.88 51.69
AlexNet 56.8 37.84
VGG16 57.31 36.43
AlexNet (+ hidden layers) 61.09 44.52
VGG16 (+ hidden layers) 67.46 60.07

Pyramid CNN 2AFC JND

Laplacian 2-layer 68.26 62.43
Laplacian 3-layer 67.50 62.77
Laplacian 4-layer 67.43 61.85
Steerable 2-layer 69.00 61.18
Steerable 3-layer 69.21 63.79
Steerable 4-layer 69.09 64.29

Figure 4: Left: BAPPS performance for various CNN architectures without using a frontend multi-
scale decomposition. “+ hidden layers” indicates that the hidden layer activations were used as part
of the representation (in place of the multi-scale tensors of f✓(x)). Right: BAPPS performance of
our approach with alternate architectural choices. Bold indicates the choice used in PIM.

We can write InfoNCE as I(X;Y ) � I(Y ;Z) � Ex,y,z⇠p(x,y)q✓,�(z|x) log
q✓,�(z|y)

1
K

PK
i=1 q✓,�(z|yi)

.

Single variable InfoNCE3 also uses a minibatch marginal and can be written as I(X;Z) �
Ex,z⇠p(x)q✓,�(z|x) log

q✓,�(z|x)
1
K

PK
i=1 q✓,�(z|xi)

. The primary difference between InfoNCE and IXYZ is
that InfoNCE is not explicitly compressive. The learned representation, Z, is not constrained to only
capture information shared between both X and Y . Single variable InfoNCE is even less constrained,
since Z just needs to learn to distinguish between images (X) that are independently sampled in
the minibatch, whereas InfoNCE and IXYZ have to be able to use Z to select the correct Y for the
observed X . Training the PIM architecture using InfoNCE gives 68.99% and 64.12% on 2AFC and
JND respectively, whereas single variable InfoNCE gives 65.15% and 44.79%. This shows that losing
the compression and slow feature aspects of the IXYZ objective result in weaker performance for the
PIM architecture.

No multi-scale decomposition. We trained a number of models analogous to PIM, but without
enforcing approximate scale equivariance: omitting the frontend multiscale pyramid, and with only
one CNN, either using only its outputs or its outputs as well as hidden layer activations in place of
f✓(x). For this we chose two networks used in LPIPS, VGG16 (Simonyan and Zisserman, 2015)
and AlexNet (Krizhevsky et al., 2012), and the 4-layer CNN used in the frontend of PIM. Figure 4
(left) shows that none of these experiments achieved a performance close to PIM. Imposing scale
equivariance thus leads to better predictions. We also note that VGG and AlexNet perform worse
than the 4-layer CNN, which has much fewer parameters.

Alternate multi-scale/CNN architectures. We considered the Laplacian pyramid (Burt and Adelson,
1983) as an alternative linear multi-scale decomposition, and multiple alternative CNN architectures
for the frontend. Specifically, we compare against shallower variations of the 4-layer deep convolu-

3This bound is called “InfoNCE with a tractable conditional” in Poole et al. (2019).
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tional network that PIM uses. The results in Fig. 4 (right) show that of all these choices, the PIM
architecture gives the best results, but nonetheless the others still do reasonably well. The approach
thus is robust with respect to architectural details.

4 Related work

Early IQA metrics were based strictly on few hand-tunable parameters and architectural inductive
biases informed by observations in visual psychology and/or computational models of early sensory
neurons (e.g., Watson, 1993; Teo and Heeger, 1994). SSIM and its variants, perhaps the most popular
descendant of this class (Wang, Bovik, et al., 2004; Wang, Simoncelli, and Bovik, 2003), define a
quality index based on luminance, structure and contrast changes as multiplicative factors. FSIM
(L. Zhang et al., 2011) weights edge distortions by a bottom-up saliency measure. PSNR-HVS and
variant metrics explicitly model contrast sensitivity and frequency masking (Egiazarian et al., 2006;
Ponomarenko et al., 2007).

Another member of this class of metrics, the Normalized Laplacian Pyramid Distance (NLPD;
Laparra et al., 2016) has more similarities to our approach, in that an architectural bias – a multi-scale
pyramid with divisive normalization – is imposed, and the parameters of the model (<100, much
fewer than PIM) are fitted unsupervisedly to a dataset of natural images. However, the authors use a
spatially predictive loss function, which is not explicitly information theoretic. While the model is
demonstrated to reduce redundancy in the representation (i.e. implements efficient coding), it does
not use temporal learning.

More recently, deep representations emerged from the style transfer literature, where pre-trained
classifier features are used as an image embedding (Gatys et al., 2016). R. Zhang et al. (2018) and
Chinen et al. (2018) trained models using IQA-specific datasets on such VGG-based representations.
Ding et al. (2020) refined this by computing an SSIM-like measure on a VGG representation. As
discussed earlier, these representations require collecting human responses, as well as pre-training on
other tasks such as classification, that are otherwise unrelated to IQA.

A different class of IQA tasks are represented by no-reference quality metrics. In this paradigm, the
subject is asked to rate image quality without referring to a reference (undistorted) image. Thus,
no-reference metrics predict the perceived realism of an image. Typically, these metrics are targeted
at detecting specific types of artefacts, such as from blurring, sensor noise, low-light conditions,
JPEG compression (e.g., Ying et al., 2020), and as such do not need to generalize to arbitrary types of
distortions. Thus, they are not necessarily useful as an optimization target for novel image processing
algorithms, in particular if the latter are based on ANNs. To our knowledge, PIM is the first IQA
metric that explicitly uses the slowness principle as an inductive bias, or that uses a contrastive
learning objective.

5 Conclusion

In this paper, we demonstrate that making accurate predictions of human image quality judgements
does not require a model that is supervisedly trained. Our model is competitive with or exceeds the
performance of LPIPS, a recent supervised model (R. Zhang et al., 2018), while only relying on a
few essential ingredients: a dataset of natural videos; a compressive objective function employed
to extract temporally persistent information from the data; a distributional parameterization that
is flexible enough to express uncertainty; a computational architecture that imposes spatial scale
equivariance, as well as spatial and temporal translation equivariance. We demonstrate that our basic
approach is not overly dependent on the implementation details of the computational architecture,
such as the multi-scale transform or the precise neural network architecture. Instead, it is robust
with respect to changes in the architecture that do not fundamentally alter the ingredients mentioned
above. Not only does our method achieve a level of agreement to human ratings that matches models
using human-collected data for training (e.g., classification labels and human quality ratings, such as
used in LPIPS), it also gets remarkably close to matching the agreement of human ratings among
each other (69.1% vs. 73.9% for BAPPS-2AFC). As such, we can interpret our results as empirical
evidence that the inductive biases we employ are useful descriptions of the human visual system
itself, particularly the efficient coding and slowness principles.
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Broader Impact

Many deep perceptual image metrics rely on the collection of large datasets of rated images as training
data; such data could reflect the biases of human raters. While we cannot claim that PIM is free of
bias, by being completely unsupervised, one possible source of bias is removed.

The broad concern about AI reducing work opportunities, in this case, seems inapplicable. Perceptual
metrics are most often used as loss functions in the development of some other product, but the
final quality ultimately needs to be verified by human eye. We envision this need for verification
continuing into the foreseeable future.

On the other hand, good perceptual metrics have the potential to enable other research and technology
which improves the lives of AI consumers, as well as reduce the burden on researchers of frequent,
tiresome – and often infeasible at scale – human evaluations.
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