Meta-Reinforced Synthetic Data for One-Shot Fine-Grained Visual Recognition

Part of Advances in Neural Information Processing Systems 32 (NeurIPS 2019)

AuthorFeedback Bibtex MetaReview Metadata Paper Reviews Supplemental


Satoshi Tsutsui, Yanwei Fu, David Crandall


This paper studies the task of one-shot fine-grained recognition, which suffers from the problem of data scarcity of novel fine-grained classes. To alleviate this problem, a off-the-shelf image generator can be applied to synthesize additional images to help one-shot learning. However, such synthesized images may not be helpful in one-shot fine-grained recognition, due to a large domain discrepancy between synthesized and original images. To this end, this paper proposes a meta-learning framework to reinforce the generated images by original images so that these images can facilitate one-shot learning. Specifically, the generic image generator is updated by few training instances of novel classes; and a Meta Image Reinforcing Network (MetaIRNet) is proposed to conduct one-shot fine-grained recognition as well as image reinforcement. The model is trained in an end-to-end manner, and our experiments demonstrate consistent improvement over baseline on one-shot fine-grained image classification benchmarks.