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1 Setup and Gaussian process approximation

We consider a feed-forward deep neural network with L hidden layers, activation function τ , input in
Rn and output in R. For any x ∈ Rn and l = 2, . . . , L+ 1, the network is recursively defined by

φ(1)(x) = W (1)x+ b(1) , φ(l)(x) = W (l) τ
(
φ(l−1)(x)

)
+ b(l) , x ∈ Rn , (1)

where φ(l)(x), b(l) ∈ Rnl , W (l) is an nl × nl−1 real matrix, n0 = n and nL+1 = 1. We put for
simplicity φ = φ(L+1).

We draw each entry of each W (l) and of each b(l) from independent Gaussian distributions with zero
mean and variances σ2

w/nl−1 and σ2
b , respectively. This implies for any x, y ∈ Rn

E
(
φ(l)(x)

)
= 0 , E

(
φ
(l)
i (x)φ

(l)
j (y)

)
= δij Gl(x, y) . (2)

We determine the covariance function Gl in the Gaussian process approximation of [1, 2], which
consists in assuming that for any l and any x, y ∈ Rn, the joint probability distribution of φ(l)(x)
and φ(l)(y) is Gaussian.

We start with the diagonal elements Gl(x, x), which depend on x and n only through ‖x‖2/n [1].
Since any x ∈ {−1, 1}n has ‖x‖2 = n, we put by simplicity for any x ∈ Rn with ‖x‖2 = n

Gl(x, x) = Ql . (3)
The constants Ql can be computed from the recursive relation [1]

Q1 = σ2
w + σ2

b , Ql = σ2
w

∫ ∞
−∞

τ
(√

Ql−1 z
)2

e−
z2

2
dz√
2π

+ σ2
b . (4)

We now consider the off-diagonal elements of Gl. For ‖x‖2 = ‖y‖2 = n, the correlation coefficients

Cl(x, y) =
Gl(x, y)

Ql
(5)

depend on x, y and n only through the combination x · y/n [1]. We can therefore put

Cl(x, y) = Fl

(x · y
n

)
, ‖x‖2 = ‖y‖2 = n . (6)

The functions Fl : [−1, 1] → R satisfy by definition Fl(1) = 1 and can be computed from the
recursive relation [1]

F1(t) =
σ2
w t+ σ2

b

σ2
w + σ2

b

,

QlFl(t) = σ2
w

∫
R2

τ
(√

Ql−1 z
)
τ

(√
Ql−1

(
Fl−1(t)z +

√
1− Fl−1(t)

2
w

))
e−

z2+w2

2
dz dw

2π

+ σ2
b . (7)
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Defining F = FL+1 and Q = QL+1, the covariance of the function φ generated by the deep neural
network is

E (φ(x)φ(y)) = QF
(x · y

n

)
. (8)

For the ReLU activation function, (7) simplifies to [3]

Fl(t) =
Ql−1 σ

2
w Ψ (Fl−1(t)) + 2σ2

b

Ql−1 σ2
w + 2σ2

b

, (9)

where

Ψ(t) =

√
1− t2 + (π − arccos t) t

π
. (10)

The function Ψ satisfies for t→ 1

Ψ(t) = t+O
(

(1− t) 3
2

)
. (11)

Proposition 1. For the ReLU activation function, t ≤ F (t) ≤ 1 for any −1 ≤ t ≤ 1.

Proof. We prove by induction that t ≤ Fl(t) ≤ 1. From (7), the claim is true for l = 1. Let us
assume the claim for l − 1. We have

Ψ′(t) = 1− arccos t

π
≥ 0 , (12)

hence Ψ is increasing. We also have Ψ′(t) ≤ 1 and Ψ(1) = 1, hence Ψ(t) ≥ t. Finally, we have
from (9) and from the inductive hypothesis

Fl(t) ≥ Ψ (Fl−1(t)) ≥ Ψ(t) ≥ t , (13)

and the claim for l follows.

Proposition 2 (short-distance correlations). For the ReLU activation function,

F (t) = 1− F ′(1) (1− t) +O
(

(1− t) 3
2

)
(14)

for t→ 1, where F ′(1) is determined by the recursive relation

F ′1(1) =
σ2
w

σ2
w + σ2

b

, F ′l (1) =
Ql−1 σ

2
w

Ql−1 σ2
w + 2σ2

b

F ′l−1(1) , F ′(1) = F ′L+1(1) (15)

and satisfies 0 < F ′(1) ≤ 1.

Proof. The recursive relation (15) follows taking the derivative of (9) in t = 1. Eq. (15) implies
0 < F ′l (1) ≤ 1 for any l, hence 0 < F ′(1) ≤ 1.

The claim in (14) follows if we prove by induction that

Fl(t) = 1− F ′l (1) (1− t) +O
(

(1− t) 3
2

)
(16)

for any l. The claim is true for l = 1. Let us assume by induction (16) for l − 1. We have from (11)

Ψ (Fl−1(t)) = 1− F ′l−1(1) (1− t) +O
(

(1− t) 3
2

)
, (17)

and the claim (16) for l follows from (9) and (15).
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2 Proof of Theorem 1

Let x, y ∈ {−1, 1}n with h(x, y) = hn. From (8) we get E(φ(x)φ(y)) = QF (1− 2hn

n ), then

E
(
φ(y)

∣∣∣φ(x) =
√
Qz

)
= F

(
1− 2hn

n

)√
Qz ,

Var
(
φ(y)

∣∣∣φ(x) =
√
Qz

)
=
(

1− F
(
1− 2hn

n

)2)
Q, (18)

so that

Pn(a, z) = P
(
φ(y) < 0

∣∣∣φ(x) =
√
Qz

)
= Φ

− F
(
1− 2hn

n

)
z√

1− F
(
1− 2hn

n

)2


= Φ

(
−z

2

√
n

F ′(1)hn

(
1 +O

(√
hn

n

)))
, (19)

where

Φ(t) =

∫ t

−∞
e−

s2

2
ds√
2π

(20)

and we have used (14). Using that ln Φ(−t) = − t2

2 −
1
2 ln(2πt2) +O( 1

t2 ) for t→∞ we get

lnPn(a, z) = − n z2

8F ′(1)hn
+O

(√
n
hn

)
= −z

2
√
n lnn

8F ′(1)a
+O

(
4
√
n lnn

)
. (21)

We have

Nn(a, z) =

(
n

hn

)
Pn(a, z) . (22)

Using that ln k! =
(
k + 1

2

)
ln k − k +O(1) for k →∞ we get

ln

(
n

hn

)
= hn

(
ln

n

hn
+ 1

)
− 1

2
lnhn +O(1) =

a

2

√
n lnn+

a

2

√
n

lnn
ln

lnn

a2
+O(lnn) , (23)

and the claim follows.

3 Proof of Theorem 2

Let ϕ : [0, 1]→ R be a random function with a Gaussian probability distribution such that for any
s, t ∈ [0, 1]

E (ϕ(t)) = 0 , E (ϕ(s)ϕ(t)) = F (1− 2 |s− t|) . (24)
From (24), for any s, t ∈ [0, 1], ϕ(s)− ϕ(t) is a Gaussian random variable with zero average and
variance

E
(

(ϕ(s)− ϕ(t))
2
)

= 2− 2F (1− 2 |s− t|) . (25)

Recalling that F (1) = 1, there exists ε > 0 such that for any 0 ≤ u ≤ 2ε we have 1− F (1− u) ≤
(F ′(1) + 1)u. Hence, if |s− t| ≤ ε we have

E
(

(ϕ(s)− ϕ(t))
4
)

= 12 (1− F (1− 2 |s− t|))2 ≤ 48 (F ′(1) + 1)
2 |s− t|2 . (26)

Then, the Kolmogorov continuity theorem [4] implies that with probability one the function ϕ is
continuous. Let t(ϕ) be the minimum 0 ≤ t ≤ 1 such that ϕ(t) = 0:

t(ϕ) = min {inf {0 ≤ t ≤ 1 : ϕ(t) = 0} , 1} . (27)
Since with probability one ϕ is continuous and ϕ(0) 6= 0, we have ϕ(t) 6= 0 in a neighborhood of
0, hence t(ϕ) > 0 with probability one. Therefore, the expectation value of t(ϕ) is strictly positive:
t0 = E(t(ϕ)) > 0.

From (8), for any i, j = 0, . . . , n we have E(φ(x(i))) = 0 and

E
(
φ
(
x(i)
)
φ
(
x(j)

))
= QF

(
1− 2|i−j|

n

)
. (28)

Comparing with (24) we get that {φ(x(i))}ni=0 have the same probability distribution as
{
√
Qϕ( i

n )}ni=0. From the definition of t(ϕ), for any 1 ≤ i < n t(ϕ), ϕ( i
n ) has the same sign

as ϕ(0). Therefore, hn ≥ n t0, and the claim follows.
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Table 1

1 2 3 4 5+
50 Exhaustive 45.4% 28.0% 14.6% 6.7% 5.3%

Greedy 45.2% 28.8% 14.3% 6.4% 5.3%

100 Exhaustive 38.3% 27.1% 15.9% 9.8% 8.9%

Greedy 35.8% 26.7% 15.6% 10.8% 11.1%

150 Exhaustive 29.1% 26.3% 17.9% 12.0% 14.7%

Greedy 31.6% 22.6% 18.2% 11.2% 16.4%

% of points at distanceNumber of 
input bits Search method

4 Experiments on random deep neural networks

Table 1 shows Hamming distances of random bit strings to the nearest differently classified bit
string measured using a heuristic greedy search algorithm and an exact search algorithm. Resulting
breakdowns for the two algorithms are consistent across all network input sizes tested. For each
algorithm and network input size, Hamming distances to nearest differently classified bit strings from
a random bit string were evaluated 1000 times with each evaluation performed on a randomly created
neural network.
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