
Supplement: Online Convex Matrix Factorization
with Representative Regions

S.1 Proofs of the Main Results

In what follows, we provide detailed proofs for the performance results pertaining to the online cvxMF
algorithm presented in the main text. Technical auxiliary results needed to establish the findings in
the text below are prefixed by A, and proved in Section S.2. Previously known results invoked in our
discussion are presented in Section S.3.
We start with the proof of Lemma 2 from the main text, restated below for convenience.
Lemma 2. Let Δt ≜ ĝt(Dt) − ĝt(D⋆t ). Then

E
[

Δt
]

≤ O
(1
t

)

+ E
[

Δt−1
]

− Vm E
[

Δt−1
]
m+2
2 ,

where Vm ≜
8�mini pi

�
m
2

Γ(m2 +1)

cĝ(m+2) vol()

(

2
A k

)m∕2
, and � is the same constant that appears in Equation (8)

of assumption (A.1). Also, A = maxi At[i, i] ∀t, while cĝ denotes an upper bound on the condition
number of At, ∀t, and pi denotes the probability of selecting it = i in Step 7 of Algorithm 2.

Proof. Let ‖D1 − D2‖ĝ ≜ |ĝ(D1) − ĝ(D2)|. Then, we have the following inequalities
Δt = ‖Dt − D⋆t ‖ĝt (1a)
= min

{

‖Dt−1 − D⋆t ‖ĝt , ‖Dt − D⋆t ‖ĝt
}

(1b)
≤ min{‖Dt−1 − D⋆t−1‖ĝt + ‖D⋆t−1 − D⋆t ‖ĝt , ‖Dt − D⋆t ‖ĝt} (1c)
≤ min

{

‖Dt−1 − D⋆t−1‖ĝt + O
(1
t

)

, ‖Dt − D⋆t ‖ĝt
}

, (1d)
where (1b) follows from Algorithm 2, since

Dt = argmin
D[i] ∈ cvx(X̂(i)t )

⋃

cvx(X̂(i)t−1), i∈[k]
ĝt(D),

and (1d) follows form the fact that ĝt(D) is Lipschitz and from the bound in Proposition A4. Sub-
sequently, from Proposition A4, we have ‖Dt−1 − D⋆t−1‖ĝt = ‖Dt−1 − D⋆t−1‖ĝt−1 + O

(

1
t

)

and
‖Dt − D⋆t ‖ĝt ≤ ‖Dt − D⋆t−1‖ĝt−1 + O

(

1
t

)

. Therefore,

Δt ≤ min
{

Δt−1, ‖Dt − D⋆t−1‖ĝt−1
}

+ O
(1
t

)

, (2)
so that one has
E
[

min
{

Δt−1, ‖Dt − D⋆t−1‖ĝt−1
}

|

|

|

|

t−1
]
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≤ Δt−1 −
2m∕2+1�vm
(m + 2)

∑

i∈[k]

pi
At−1[i, i]m∕2 vol()

⎛

⎜

⎜

⎜

⎝

ĝt−1(Dt−1) − min
ei∈

ej=Dt−1[j],j≠i

ĝt−1([e1,… ek])

⎞

⎟

⎟

⎟

⎠

m∕2+1

(3)

≤ Δt−1 −
2m∕2+1p�vm

(m + 2) vol()Am∕2
∑

i∈[k]

⎛

⎜

⎜

⎜
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ej=Dt−1[j],j≠i

ĝt−1([e1,… ek])

⎞

⎟

⎟

⎟

⎠

m∕2+1

(4)

≤ Δt−1 −
2p�vm

vol()(m + 2)

( 2
A k

)m∕2
⎛

⎜

⎜

⎜

⎝

∑

i∈[k]

⎛

⎜

⎜

⎜

⎝

ĝt−1(Dt−1) − min
ei∈

ej=Dt−1[j],j≠i

ĝt−1([e1,… ek])

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

m∕2+1

(5)

≤ Δt−1 −
8p�vm

cĝ vol()(m + 2)

( 2
A k

)m∕2(

ĝt−1(Dt−1) − min
D∶D[i]∈ ∀i

ĝt−1(D)
)

,m∕2+1 (6)

where p = mini pi, A = maxt,i At−1[i, i], and vm = �
m
2

Γ(m2 +1)
, and Equations (3), (5) and (6) follow from

Proposition A1, Hölder’s inequality, and Proposition A2, respectively.
Using Equations (2) and (6) we have

E
[

Δt || t−1
]

≤ O
(1
t

)

+ Δt−1 − Vm Δt−1
m+2
2

⟹ E
[

Δt
]

≤ O
(1
t

)

+ E
[

Δt−1
]

− Vm E
[

Δt−1
]
m+2
2 ,

which completes the proof.
We are now ready to prove Lemma 3 from the main text.
Lemma 3.

∑

t
‖Dt−D⋆t ‖
t+1 converges almost surely.

Proof. Almost sure convergence of the sequence∑n≤t
‖Dn−D⋆n ‖

n can be established using the quasi-
martingale convergence Theorem A8. In this setting, the necessary condition in the convergence
theorem is of the form

∑

t
E

[

‖Dt − D⋆t ‖
t

]

= O(1), (7)

which follows from the sufficient condition, E[‖Dt−D⋆t ‖] = O
(

1
t1∕(m+2)

)

. To prove this condition, we
use Lemma 2 to compute the expected rate of decrease ofΔt. Then, from Lemma 2 and Proposition A3,
we have

E[Δt] = O
(

1
t2∕(m+2)

)

,

⟹ E[‖Dt − D⋆t ‖] ≤
√

E[‖Dt − D⋆t ‖
2] ≤

√

1
�min

E[Δt] (8)

⟹ E[‖Dt − D⋆t ‖] = O
(

1
t1∕(m+2)

)

,

where Equation (8) follows by lower bounding the smallest eigenvalue of At ∀t by �min, basedon assumption (A.2). This establishes the condition required in Equation (7) of Lemma 3.
We are now ready to prove Lemma 4 and Theorem 1 from the main text, restated below.
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Lemma 4. One has the following:

1.) ĝt(Dt) converges almost surely;

2.) ĝt(D⋆t ) converges almost surely;

3.) ĝt(Dt) − ĝt(D⋆t ) converges almost surely to 0;

4.) ĝt(D⋆t ) − g(D
⋆
t ) converges almost surely to 0;

5.) g(D⋆t ) converges almost surely.

Proof. To prove that ĝt(Dt) converges almost surely, we follow the outline of the approach de-
scribed [1]. The first three claims require new proof techniques and arguments, while the latter two
results may be established using arguments similar to those described in [1].
Let t ≜ ĝt(Dt). For Claims 1 and 2, we prove almost sure convergence by showing that the positive
stochastic process {t} satisfies

∑

t
E[E

[

t+1 − t || t
]+] < ∞, and (9)

∑

t
E[E

[

⋆t+1 − 
⋆
t
|

|

|

t
]+
] < ∞, (10)

where t denotes the filtration up to time t. The above condition guarantees that the process is a
quasi-martingale [2] that converges almost surely.
To establish the inequality on t needed in Equation (9), we write

t+1 − t = ĝt+1(Dt+1) − ĝt(Dt)
= ĝt+1(Dt+1) − ĝt+1(Dt) + ĝt+1(Dt) − ĝt(Dt)

= ĝt+1(Dt+1) − ĝt+1(Dt) +
l(xt+1,Dt) − gt(Dt)

t + 1
+
gt(Dt) − ĝt(Dt)

t + 1
(11)

≤
l(xt+1,Dt) − gt(Dt)

t + 1
, (12)

where Equations (11) and (12) follows since Algorithm 2 guarantees that
(t + 1)ĝt+1(Dt+1) − tĝt(Dt) = l(xt+1,Dt),

ĝt+1(Dt+1) − ĝt+1(Dt) ≤ 0,
gt(Dt) − ĝt(Dt) ≤ 0.

Therefore, we have

E
[

t+1 − t || t
]

≤
E
[

l(xt+1,Dt)
|

|

|

t
]

− gt(Dt)

t + 1

=
g(Dt) − gt(Dt)

t + 1
≤

‖g − gt‖∞
t + 1

.

The differences g − gt are bounded and smooth, which allows us to use Donsker’s theorem [3, Lemma
19.36]. Hence,

E
[

E
[

‖g − gt‖∞
t + 1

]+]

= O
(

1
t3∕2

)

. (13)

To prove Claim 2, we again use the quasi-martingale convergence theorem by establishing that Equa-
tion (10) holds. Let l̃(x,D, �) ≜ 1

2‖x − D�‖2 + �‖�‖1 and note that l̃(xt+1,Dt, �t+1) = l(xt+1,Dt).Then, we have,
⋆t+1 − 

⋆
t = ĝt+1(D

⋆
t+1) − ĝt(D

⋆
t )
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= ĝt+1(D⋆t+1) − ĝt+1(D
⋆
t )

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≤0

+ĝt+1(D⋆t ) − ĝt(D
⋆
t )

≤ ĝt+1(D⋆t ) − ĝt(D
⋆
t )

=
l̃(xt+1,D

⋆
t , �t+1) − l̃(xt+1,Dt, �t+1)

t + 1
+

l̃(xt+1,Dt, �t+1) − ĝt(D
⋆
t )

t + 1

≤ O(1)
‖Dt − D⋆t ‖
t + 1

+
l(xt+1,Dt) − ĝt(D

⋆
t )

t + 1
.

Therefore,

E
[

⋆t+1 − 
⋆
t
|

|

|

t
]

≤ O(1)
‖Dt − D⋆t ‖
t + 1

+
E
[

l(xt+1,Dt)
|

|

|

t
]

− ĝt(D⋆t )

t + 1

= O(1)
‖Dt − D⋆t ‖
t + 1

+
g(Dt) − ĝt(D⋆t )

t + 1

= O(1)
‖Dt − D⋆t ‖
t + 1

+
g(Dt) − gt(Dt)

t + 1
+
gt(Dt) − gt(D⋆t )

t + 1
+
gt(D⋆t ) − ĝt(D

⋆
t )

t + 1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

≤0

≤ O(1)
‖Dt − D⋆t ‖
t + 1

+
g(Dt) − gt(Dt)

t + 1

≤ O(1)
‖Dt − D⋆t ‖
t + 1

+
‖g − gt‖∞
t + 1

.

Thus, using Lemma 3 and Equation (13) we can establish Equation (10) similarly to Claim 1.
The proof of Claim 3 follows from Claims 1 and 2 if we show that ĝt(Dt) − ĝt(D⋆t ) converges to 0 inprobability. We prove the latter by using the following well-known fact: If t converges almost surely,
for all ", � ≥ 0 there exists a T ′ ∈ ℕ such that

ℙ(sup
t≥T

|t − T | ≥ ") ≤ �, ∀T ≥ T ′. (14)
For some constant �1, from Proposition A4 we have

|t+k − ⋆t | = |ĝt+k(Dt+k) − ĝt(D⋆t )|

≤ ‖

‖

Dt+k − D⋆t ‖‖ĝt + �1
k
t
.

Let pi denote the probability that it = i in Step 7 of Algorithm 2. Using Equation (8) in assump-
tion (A.1), and the Lipschitz property of ĝt, we have

ℙ
(

‖

‖

Dt+k − D⋆t ‖‖ĝt ≤ " ||
|

t
)

≥
∏

i∈[k]

⎛

⎜

⎜

⎜

⎝

pi�
vol

(

B
(

�
�2

))

vol()

⎞

⎟

⎟

⎟

⎠

,

for some constant �2. Therefore, for T ≥ max
{

T ′, 2k �1"
}

we have

∏

i∈[k]

⎛

⎜

⎜

⎜

⎝

pi�
vol

(

B
(

�
2�2

))

vol()

⎞

⎟

⎟

⎟

⎠

≤ ℙ
(

‖

‖

‖

DT+k − D⋆T
‖

‖

‖ĝT
≤ "
2
|

|

|

|

|T − ⋆T | ≥ 2"
)

≤ ℙ
(

|T+k − ⋆T | ≤ " ||
|

|T − ⋆T | ≥ 2"
)

≤ ℙ
(

|T+k − T | ≥ " ||
|

|T − ⋆T | ≥ 2"
)

≤ ℙ
(

sup
t≥T

|t − T | ≥ "
|

|

|

|

|

|T − ⋆T | ≥ 2"
)

. (15)
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Combining Equation (14) with Equation (15), ∀ T ≥ max
{

T ′, 2k �1"
}

we have

� ≥ ℙ
(

sup
t≥T

|t − T | ≥ "
)

≥ ℙ
(

sup
t≥T

|

|

t − T || ≥ "
⋂

|

|

|

T − ⋆T
|

|

|

≥ 2"
)

= ℙ
(

sup
t≥T

|

|

t − T || ≥ "
|

|

|

|

|

|

|

|

T − ⋆T
|

|

|

≥ 2"
)

ℙ
(

|

|

|

T − ⋆T
|

|

|

≥ 2"
)

≥
∏

i∈[k]

⎛

⎜

⎜

⎜

⎝

pi�
vol

(

B
(

�
2�2

))

vol()

⎞

⎟

⎟

⎟

⎠

ℙ
(

|T − ⋆T | ≥ 2"
)

.

Hence, |T − ⋆T |
P
←←←←←←←←←→ 0 ⟹ ĝt(Dt) − ĝt(D⋆t )

P
←←←←←←←←←→ 0. Consequently, since ĝt(Dt) and ĝt(D⋆t ) convergealmost surely, we have

ĝt(Dt) − ĝt(D⋆t )
a.s.
←←←←←←←←←←←←←←←←←→ 0.

To prove Claims 4 and 5, we use the quasi-martingale convergence theorem of [2] and Equation (11)
which gives us

∑

t
|E
[

t+1 − t || t
]

| < ∞ ⟹
∑

t

ĝt(Dt) − gt(Dt)
t + 1

< ∞.

Therefore,
∞ >

∑

t

ĝt(Dt) − gt(Dt)
t + 1

≥
∑

t

ĝt(D⋆t ) − gt(D
⋆
t )

t + 1
+
∑

t

gt(D⋆t ) − gt(Dt)
t + 1

.

Using Lemma 3 and the Lipschitz continuity of gt(D), we have
∑

t

|gt(D⋆t ) − gt(Dt)|
t + 1

≤
∑

t

�2‖D⋆t − Dt‖
t + 1

< ∞

⟹
∑

t

ĝt(D⋆t ) − gt(D
⋆
t )

t + 1
< ∞.

Therefore, since D⋆t − D⋆t+1 = O(1∕t) and ĝt(D) − gt(D) has a Lipschitz constant independent on t,using Lemma A5 we get
ĝt(D⋆t ) − gt(D

⋆
t )

a.s.
←←←←←←←←←←←←←←←←←→ 0.

The proofs of Claims 4 and 5 then follow from the Glivenko-Cantelli theorem [3, Thm 19.4]
and Lemma 3.
Theorem 1. Under assumptions (A.1) to (A.3), the sequence {Dt}t converges almost surely to a
stationary point of g(D).

Proof. The proof is similar to that of [1, Proposition 4] and follows from Algorithm 2 and Lemma 4.

S.2 Auxiliary Proofs

This section contains the proofs of a number of auxiliary results used in the previous section.
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Propositions A1 and A2 allow us to compute the expectation E[Δt+1] and describe it recursively interms of E[Δt] in Lemma 2. While Proposition A1 follows from assumptions (A.1) to (A.3) and some
simple algebra, proving Proposition A2 requires using properties of the random coordinate descent
approach described in Algorithm 2.
Proposition A1. It holds

E
[

min
{

ĝt(Dt), ĝt(Dt+1)
}

|

|

|

t, it+1 = i
]

≤ ĝt(Dt) − V (i)m
⎛

⎜

⎜

⎝

ĝt(Dt) − min
E∶ E[i]∈

E[j]=Dt[j],j≠i

ĝt(E)
⎞

⎟

⎟

⎠

m∕2+1

,

where V (i)m =
2m∕2+1� �

m
2

Γ(m2 +1)

At[i,i]m∕2(m+2) vol()
.

Proof. For ease of explanation, we prove the result for the case of two clusters only, i. e. for k = 2. It
is straightforward to generalize the proof for larger values of k. Also, without loss of generality, we
prove the inequality in Proposition A1 for i = 1 only. The proof for i ∈ [k] follows along the same
lines.
We rewrite the surrogate function ĝt(D)) as

ĝt(D) =
1
2

⎛

⎜

⎜

⎝

‖

‖

‖

‖

‖

‖

vec(D) − 1
√

Im ⊗ At
vec

(

Bt
)

‖

‖

‖

‖

‖

‖

2

Im⊗At

−
‖

‖

‖

‖

‖

‖

1
√

Im ⊗ At
vec

(

Bt
)

‖

‖

‖

‖

‖

‖

2

Im⊗At

⎞

⎟

⎟

⎠

+ �t, (16)

where �t ≜ 1
2t
∑

n≤t

(

‖

‖

‖

xn
‖

‖

‖

2
+ 2�‖‖

‖

�n
‖

‖

‖

2
)

, At and Bt are matrices defined in Step 6 in Algorithm 2,
‖

‖

x‖
‖A ≜

√

xTAx, Im denotes the m × m identity matrix and⊗ denotes the Kronecker product.
Let ct,1 ≜ Bt[1]−At[1,2] Dt[2]

At[1,1]
and c⋆t,1 ≜ argmine1∈ ĝt([e1,Dt[2]]). Then, from Equation (16) we have

ĝt
([

d1,Dt[2]
])

=
At[1, 1]
2

‖

‖

‖

d1 − ct,1
‖

‖

‖

2
+ a(1)t , (17)

where a(1)t ≜ 1
2At[2, 2]‖Dt[2]‖

2 − ⟨Bt[2],Dt[2]⟩ −
At[1,1]
2

‖

‖

‖

ct,1
‖

‖

‖

2
+ �t. For Ut defined as

Ut ∶ Ut[l] ≜
{

xt l = it
Dt−1[l] l ≠ it,

(18)
we have based on Equation (17)

E
[

min
{

ĝt(Dt), ĝt(Dt+1)
}

|

|

|

t, it+1 = 1
]

≤E
[

min
{

ĝt(Dt), ĝt(Ut+1)
}

|

|

|

t, it+1 = 1
]

=a(1)t +
At[1, 1]
2

EX
[

min
{

‖

‖

‖

Dt[1] − ct,1
‖

‖

‖

2
, ‖‖
‖

X − ct,1
‖

‖

‖

2
}]

≤a(1)t +
At[1, 1]
2

EX
[

min
{

‖

‖

‖

Dt[1] − ct,1
‖

‖

‖

2
, ‖‖
‖

X − c⋆t,1
‖

‖

‖

2
+ ‖

‖

‖

c⋆t,1 − ct,1
‖

‖

‖

2
}]

=a(1)t +
At[1, 1]
2

‖

‖

‖

c⋆t,1 − ct,1
‖

‖

‖

2
+

At[1, 1]
2

EX
[

min
{

‖

‖

‖

Dt[1] − ct,1
‖

‖

‖

2
− ‖

‖

‖

c⋆t,1 − ct,1
‖

‖

‖

2
, ‖‖
‖

X − c⋆t,1
‖

‖

‖

2
}]

≤a(1)t +
At[1, 1]
2

‖

‖

‖

Dt[1] − ct,1
‖

‖

‖

2
−

At[1, 1]�vm
(m + 2) vol()

(

‖

‖

‖

Dt[1] − ct,1
‖

‖

‖

2
− ‖

‖

‖

ct,1 − c
⋆
1
‖

‖

‖

2
)m∕2+1

(19)

=ĝt(Dt) −
2m∕2+1�vm

At[1, 1]m∕2(m + 2) vol()

⎛

⎜

⎜

⎜

⎝

ĝt(Dt) − min
e1∈

ej=Dt[j],j≠1

ĝt([e1,… ek])

⎞

⎟

⎟

⎟

⎠

m∕2+1

, (20)
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where Equation (20) follows since a(1)t + 1
2At[1, 1]

‖

‖

‖

c⋆t,1 − ct,1
‖

‖

‖

2
= mine1∈ ĝ([e1,D[2]]). The proofof Equation (19) is given below.

For any real value r, a point p
1
∈ , and the norm ‖

‖

‖

X − p
1
‖

‖

‖

≜ U1, one has
EX

[

min
{

r2,U12
}]

=
(

1 − ℙ(U1 ≤ r)
)

r2 + ℙ(U1 ≤ r)∫

r2

0

(

1 − ℙ
(

U1 ≤
√

s ||
|

U1 ≤ r
))

ds

= r2 − ∫

r2

0
ℙ(U1 ≤

√

s) ds

≤ r2 −
�vm
vol() ∫

r2

0
sm∕2 ds (21)

= r2 −
2�vm

(m + 2) vol()
rm+2,

where vm = �
m
2

Γ(m2 +1)
and Equation (21) follows from assumption (A.1).

Proposition A2. Let  ≜ {D ∶ D[i] ∈ , ∀i}. Then,

(

ĝt(Dt) − minD∈
ĝt(D)

)

≤
(

4∕cĝ
)

k
∑

i=1

⎛

⎜

⎜

⎝

ĝt(Dt) − min
E∶ E[i]∈

E[j]=Dt[j],j≠i

ĝt(E)
⎞

⎟

⎟

⎠

where cĝ denotes an upper bound on the condition numbers of the matrices At, ∀t.

Proof. Let bl and bu denote upper and lower bounds (respectively) on the eigenvalues of At, ∀t. Let
D(i)∗t = argmin

D s.t. D[i]∈
D[j]=Dt[j],j≠i

ĝt(D)

and
D⋆t = argmin

D∈
ĝt(D)

and
ℎt(D) ≜ ĝt(D⋆t ) +

bu
2
‖

‖

D − D⋆t ‖‖
2.

Note that ℎt(D) is a strongly convex function, and that ℎt(D⋆t ) = ĝt(D⋆t ), ∇ℎt(D) = bu
(

D − D⋆t
).

Thus, from the definition of ĝt(D) in Equation (16), we have

ĝt(Dt) − ĝt(D⋆t ) =
1
2

⎛

⎜

⎜

⎝

‖

‖

‖

‖

‖

‖

vec
(

Dt
)

− 1
√

Im ⊗ At
vec

(

Bt
)

‖

‖

‖

‖

‖

‖

2

Im⊗At

−
‖

‖

‖

‖

‖

‖

vec
(

D⋆t
)

− 1
√

Im ⊗ At
vec

(

Bt
)

‖

‖

‖

‖

‖

‖

2

Im⊗At

⎞

⎟

⎟

⎠

≤ 1
2
‖

‖

‖

vec
(

Dt
)

− vec
(

D⋆t
)

‖

‖

‖

2

Im⊗At
≤
bu
2
‖

‖

Dt − D⋆t ‖‖
2

= 1
2bu

‖∇ℎt(Dt)‖2. (22)

Next, define a sequence {Dt,j}∞j=0 ⊂  such Dt,0 = Dt and Dt,j+1 = Π(Dt,j −
1
bl
∇ĝt(Dt,j)), where

Dt,0 = Dt and Π(X) denotes the projection of X onto (i.e., the sequence is the result of successive
iterations of the projected gradient descent algorithm (PGD) for solving argminD∈ ĝt(D)).
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From the convergence guarantees for PGD, we know that we can asymptotically reach the optimal
Dt, i.e., Dt,∞ = D⋆t . Let ∇̃ĝt(D) ≜ bl

(

D − Π

(

D − 1
bl
∇ĝt(D)

))

. Then, the update rule for the
previously introduced sequence may be rewritten as

Dt,j+1 = Dt,j −
1
bl
∇̃ĝt

(

Dt,j
)

.

Therefore,
‖Dt,j+1 − D⋆t ‖

2 = ‖Dt,j −
1
bl
∇̃ĝt

(

Dt,j
)

− D⋆‖2

= ‖Dt,j − D⋆‖2 + 1
b2l
‖∇̃ĝt

(

Dt,j
)

‖

2 − 2
bl

⟨

∇̃ĝt
(

Dt,j
)

,Dt,j − D⋆
⟩

≤ ‖Dt,j − D⋆‖2 + 1
b2l
‖∇̃ĝt

(

Dt,j
)

‖

2 − 1
bl

(

bu‖Dt,j − D⋆‖2 + 1
bl
‖∇̃ĝt

(

Dt,j
)

‖

2
)

(23)
=
(

1 −
bu
bl

)

‖Dt,j − D⋆‖2

⟹ ‖Dt,j+1 − D⋆t ‖ ≤
(

1 −
bu
2bl

)

‖Dt,j − D⋆t ‖

⟹ ‖Dt,j − D⋆t ‖ ≤
2bl
bu

(

‖Dt,j − D⋆t ‖ − ‖Dt,j+1 − D⋆t ‖
)

≤
2bl
bu

‖Dt,j − Dt,j+1‖,

where Equation (23) follows from [4, Section 2.2]. Hence, we have
‖

‖

‖

∇ℎt(Dt,j)
‖

‖

‖

2
= bu2

‖

‖

‖

Dt,j − D⋆t
‖

‖

‖

2
≤ 4b2l

‖

‖

‖

Dt,j − Dt,j+1
‖

‖

‖

2
= 4‖‖

‖

∇̃ĝt
(

Dt,j
)

‖

‖

‖

2
. (24)

Next, we define coordinate PGD sequences {D(i)t,j}j=∞j=0 for all clusters i ∈ [k] similarly as was done
in the preceding discussion, with D(i)t,0 = Dt and D(i)t,∞ = D(i)∗t . Let ∇̃ĝt(D) and ∇ĝt(D) stand for the
lth columns of the gradients ∇̃ĝt(D) and ∇ĝt(D), respectively. Then, the update rule for each cluster
reads as

D(i)t,j+1 = D(i)t,j −
1
bl
∇̃(i)ĝt

(

D(i)t,j
)

,

where ∇̃(i)l ĝt(D) denotes the lth column of the gradient ∇̃(i)ĝt(D), defined as

∇̃(i)l ĝt(D) ≜
{

bl
(

D[i] − Π(i)
(

D[i] − 1
bl
∇iĝt(D)

))

l = i,
0 l ≠ i.

Thus,∇̃(i)i ĝt(D) = ∇̃iĝt(D). Hence,
‖

‖

‖

∇̃ĝt
(

Dt,j
)

‖

‖

‖

2
=

k
∑

i=1

‖

‖

‖

∇̃iĝt
(

Dt,j
)

‖

‖

‖

2

⟹
‖

‖

‖

∇̃ĝt
(

Dt,0
)

‖

‖

‖

2
=

k
∑

i=1

‖

‖

‖

∇̃iĝt
(

Dt,0
)

‖

‖

‖

2
=

k
∑

i=1

‖

‖

‖

‖

∇̃(i)i ĝt
(

D(i)t,0
)

‖

‖

‖

‖

2

≤
k
∑

i=1
2bl

(

ĝt(D
(i)
t,0) − ĝt(D

(i)
t,1)

)

(25)

≤ 2bl
k
∑

i=1

(

ĝt(Dt) − ĝt(D
(i)∗
t )

)

, (26)
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where Equation (25) follows from the property of the PGD algorithm given in [4, Section 2.2] with
respect to {D(i)t,j}j , since the function ĝt([Dt[1],… ,Dt[i − 1], ei,Dt[i + 1],… ,Dt[k]]) is bl-smooth
in ei, ∀ i.
Next, combining Equations (22), (24) and (26), we obtain

ĝt(Dt) − ĝt(D⋆t ) ≤
4bl
bu

k
∑

i=1

(

ĝt(Dt) − ĝt(D
(i)∗
t )

)

.

The next result, Proposition A3, establishes that the deterministic recursion in Lemma 2 generates a
fast-converging sequence.
Proposition A3. For any A1 ≥ 0, the recursion 0 ≤ An+1 ≤ An − �1(An)

m + �2
n implies that

An = O
(

1
n1∕m

)

, for all possible m ∈ (1,∞).

Proof. Let
F (n) ≜

(

�2 + �
�1 n

)1∕m
,

where � is the smallest positive value such that
�
n
≥
(

�2 + �
�1

)1∕m(
(1
n

)1∕m
−
(1
n

)1∕m)

, ∀n ≥ 1.

Then, we use inductive arguments to establish that for some constant integersN0 < n0, one has
An ∈ [0, F (n −N0)], ∀n ≥ n0. (27)

To do so, we first prove that An
n
→ 0. For large enough n we have
An+1 ≤ An − �1

(

An
)m +

�2
n

≤ max
a
a − �1am +

�2
n

=
(

1
�1m

)1∕m
(

1 − 1
m

)

+
�2
n

≤
(

1
�1m

)1∕m
.

Therefore, since x − �1xm is monotonic for x ≤
(

1
�1m

)1∕m
, it is easy to see that An

n
→ 0. Thus,

there must exist integers N0 ≤ n0, and An0 ≤ F (n0 − N0) ≤
(

1
�1m

)1∕m. Let us assume that
At ∈ [0, F (t−N0)], ∀t ≤ n for some n > n0. Then, we need to show that An+1 ∈ [0, F (n+1−N0)].
We have

An+1 ≤ An − �1
(

An
)m +

�2
n

≤ max
a∈[0,F (n−N0)]

a − �1am +
�2
n

= F (n −N0) − �1
(

F (n −N0)
)m +

�2
n
.

Thus, proving F (n −N0) − �1
(

F (n −N0)
)m + �2

n ≤ F (n + 1 −N0) will complete the induction.
We observe that

F (n −N0) − �1
(

F (n −N0)
)m +

�2
n

≤ F (n + 1 −N0)
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⟺ F (n −N0) − F (n + 1 −N0) ≤ �1
(

F (n −N0)
)m −

�2
n
. (28)

The left hand side of Equation (28) satisfies

F (n −N0) − F (n + 1 −N0) =
(

�2 + �
�1

)1∕m
(

(

1
n −N0

)1∕m
−
(

1
n + 1 −N0

)1∕m
)

≤ �
n −N0

,

due to the choice of �. The right hand side of Equation (28) satisfies
�1
(

F (n −N0)
)m −

�2
n
= −

�2
n
+
�2 + �
n −N0

≥ �
n −N0

.

This completes the proof.
Proposition A4 establishes a result similar to one proved in [1].
Proposition A4. We have

‖D⋆t+1 − D⋆t ‖ = O
(1
t

)

. (29)
Furthermore, for any D ∈  and t ≥ 1

ĝt(D) − ĝt−1(D) = O
(1
t

)

. (30)

Proof. The proof follows along the same lines as that of Lemma 1 in [1] and is hence omitted.

S.3 Collection of results used in the main proofs

Lemma A5. [Positive Converging Sums].
Let an, bn be two real sequences such that for all n, an ≥ 0, bn ≥ 0,

∑∞
n=1 an = ∞,

∑∞
n=1 anbn < ∞,

∃K > 0 s.t. |bn+1 − bn| < Kan. Then, limn→+∞ bn = 0.

Proof. Suppose that bn ≥ " for all n > N ∈ ℕ and any " > 0. Then, ∑n anbn converges to ∞.
Therefore, for any " > 0, ∃ indices mj , nj such that

bn > ", ∀n ∈ [mj , nj)
bn ≤ ", ∀n ∈ [nj , mj+1).

Since,∑n≥1 anbn <∞ there exists an index mJ such that∑n≥mj anbn ≤
"2

K . Let n ∈ [mj , nj) for any
j ≥ J . Then,

|bn − bnj | ≤
nj−1
∑

m=n
|bn+1 − bn|

≤
nj−1
∑

m=n
Kan

≤ K
"

nj−1
∑

m=n
anbn

≤ K
"
∑

m≥n
anbn

≤ K
"
"2

K
= ".

Therefore, bn ≤ bnj +" ≤ 2" for all n ∈ [mj , nj) and for any j ≥ J . Thus, bn ≤ 2" for all n ≥ mJ .
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Theorem A6. Donsker’s theorem [3, Ch 19.2, lemma 19.36]
Let F = {f� ∶ � → ℝ, � ∈ Θ} be a set of measurable functions indexed by elements of a bounded
subset Θ of ℝd . Suppose that there exists a constant K such that

|f�1 (x) − f�2 (x)| ≤ K‖�1 − �2‖2,

for all �1, �2 ∈ Θ and x ∈ � .
Then, for i.i.d random variables X1, X2,… and for any f in F , define ℙnf , ℙf and Gnf as

ℙnf =
1
n

n
∑

i=1
f (Xi),

ℙf = EX[f (X)],

Gnf =
√

n(ℙnf − ℙf ).

Assume further that for all f , ℙf 2 < �2 and ‖f‖∞ < M . Then,

EP [‖Gn‖F ] = O(1),

where ‖Gn‖F = supf∈F |Gnf |.

Lemma A7. Let fD(x) ≜ l(x,D). Then, for all D, fD(x) satisfies the necessary conditions for
Donsker’s theorem (Theorem A6)

1. |fD1 (x) − fD2 (x)| ≤ K‖D1 − D2‖2, ∀D1,D2 ∈ ;

2. ℙf 2 < �2, ∀f ∈ {fD ∶ D ∈ };

3. ‖f‖∞ < M , ∀f ∈ {fD ∶ D ∈ };

The proof follows from the definition of l(x,D) and Propositions 2 and 3 in [1].
Theorem A8. Quasi-Martingale Convergence Theorem [2].
Let (Ω, ,P ) be a measurable probability space, let t, t ≥ 0 be a stochastic sequence and t its
induced filtration. Let

�t =
{

1 if E
[

t+1 − t || t
]

> 0,
0 otherwise.

If for all t, t ≥ 0 and
∑∞
t=1 E[�t(t+1 − t)] < ∞, then t is a quasi-martingale and converges almost

surely. Moreover,
∞
∑

t=1
|E
[

t+1 − t || t
]

| < +∞ a.s.

S.4 Experimental results of real world dataset

All experiments presented in this work were performed using software written in Python and executed
on a Linux machine with an Intel Xeon Gold CPU @ 3.20GHz and with 376GBs of memory.
The scRNA dataset comprise 10 cell types and 94, 655 samples. The cell types and their numbers are
listed below:

• B cells: 10, 085;
• Cd14 monocytes: 2, 612 (the smallest cluster size);
• Cd34 cells: 9, 232;
• Cd4 t helper cells: 11, 213;
• Cd56 natural killer cells: 8, 385;
• Cytotoxic T cells: 10, 209;
• Memory T cells: 10, 224;
• Naive cytotoxic cells: 11, 953 (the largest cluster size);
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Table 1: Description of the data sets, their average clustering accuracy and average running times.
synthetic iris wine iono-

sphere 20news MNIST
# samples 2500 150 178 351 2034 10000
# clusters 5 3 3 2 20 10
n̂ 15 15 15 15 20 25

average accuracy over 10 experiments
MF 0.926 0.6667 0.6180 0.6410 0.5349 0.566
cvxMF 0.848 0.7667 0.6910 0.7179 0.5831 0.620
online MF 0.898 0.7040 0.6742 0.6803 0.5782 0.503
online cvxMF 0.899 0.6793 0.6573 0.6963 0.5683 0.543

running time (second) on each dataset
cvxMF 25 0.14 0.21 0.46 22.2 667
online cvxMF 38 6.4 7.2 6.4 58.4 120

• Naive T cells: 10, 479;
• Regulatory T cells: 10, 263.

Besides the synthetic datasets and MNIST dataset mentioned in the paper, we also tested our method
on the Iris, Wine, Ionosphere and 20news datasets from the UCI Machine Learning repository [5].
A detailed description of these dataset can be found in the following Table 1. Since in this case
all data samples have known labels, the performance of the algorithms may be evaluated through
clustering accuracy. Clustering accuracy is calculated by first sorting the columns/rows of the
confusion matrix of dimensions k × k, capturing the label assignments, so as to maximize the trace.
Subsequently, the trace is normalized by the number of samples to produce the desired accuracy values.
The computational complexity is measured in terms of average running time for each algorithm to
converge. All experiments were performed with � = 0.1 and 1, 200 iterations. The accuracy reported
is the average over 10 experiments.
From the tabulated results, one can see that when compared to its non-online counterpart, online
cvxMF does not incur a significant loss in accuracy (the loss is upper bounded by 6.7%). When the
size of the dataset increases, the complexity of cvxMF increase dramatically (up to 6000 times). The
online cvxMF algorithm is less affected by the increasing size of n, and the increase in complexity is
due to increasing n̂, the number of clusters k and dimension m of the data.

References
[1] Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. Online learning for matrix

factorization and sparse coding. Journal of Machine Learning Research, 11(Jan):19–60, 2010.
[2] Donald L Fisk. Quasi-martingales. Transactions of the American Mathematical Society,

120(3):369–389, 1965.
[3] A.W. Van Der Vaart. Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic

Mathematics, 3. Cambridge University Press, 1998.
[4] Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer

Science & Business Media, 2013.
[5] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

12


	Proofs of the Main Results
	Auxiliary Proofs
	Collection of results used in the main proofs
	Experimental results of real world dataset

