
A Supplementary material

A.1 Video results

We have provided video comparisons of the baseline and largest model for the best two models
(LSTM and SVG’) in this website: https://cutt.ly/QGuCex.

A.2 Per-frame evaluation comparison as model capacity increases

In this section, we present a per-frame evaluation for capacities in each of the models we experiment
in our paper.

A.2.1 Robot arm.

The plots show a slight improvement as the number of parameters increase for the CNN architecture.
However, for the LSTM and SVG’ architectures the improvement is more noticeable. We hypothesize
that this is due to the model being able to better handle the robot arm interaction with the objects by
having a large capacity.

Figure 8: Towel pick per-frame evaluation (higher is better). As capacity increases, the per frame
evaluation metrics become better. The increase is due to better modeling of interactions. The objects
become sharper, and robot arm dynamics become better as the model capacity increases.
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A.2.2 Human activities.

The Human 3.6M dataset is mostly made of static background and the moving human occupies a
relatively very small area of the frame. Therefore, models that are not capable of perfectly predicting
the background become affected by this. To show our point, we include a baseline where we simply
copy the last observed frame through time. This baseline significantly outperforms all models.
Therefore, from these results we can conclude that per-frame evaluations are not reliable when a large
portion of a video does not move.

Figure 9: Human 3.6M per-frame evaluation (higher is better). In this dataset, there is a large amount
of non-moving background that causes a per-frame evaluation to become not reliable. This is shown
by the baseline based on simply copying the last observed frame through time which significantly
outperforms all methods.
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A.2.3 Car driving.

In this dataset, as observed by the FVD measure in the main text, we see that the CNN model fails
to make improvement in the per-frame evaluation metrics. However, the LSTM and SVG’ models
performance improves as the capacity of the models increases. The metric in which this is the most
obvious is the VGG Cosine Similarity. This may be due to the partial observability of the dataset
which makes it very difficult to predict exact pixels into the future, and so, PSNR and SSIM do
not result in a large gap between the larger and baseline models. However, VGG Cosine Similarity
compares high-level features of the predicted frames. Therefore, even if the predicted pixels are not
exact, the predicted structures in the frames may be similar to those the ground-truth future. For this
dataset, we do not present a copy last frame baseline because most pixels move (in contrast to the
robot arm and Human 3.6M dataset, where many pixels stay fixed).

Figure 10: KITTI driving per-frame evaluation (higher is better). As capacity increases, the per frame
evaluation metrics become better. The increase is due to better modeling the driving dynamics and
partial observability. Due to the difficulty of predicting the exact not-observed parts of the image, the
performance converges toward the largest models.
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A.3 Effects of using skip connections in video prediction

In this section, we present a study on the effects of using skip connections from encoder to decoder.
Similar to Denton and Fergus [2018], the method presented in the main text has skip connections
going from the encoder of the last observed frame directly to the decoder for all frame predictions.
This allows the video prediction method to choose to transfer pixels that did not move from the
input frame directly into the output frame, and generate the pixels that move. Below, we show the
performance for each of the datasets presented in this work.

A.3.1 Robot Arm.

In Figure 11, we can see that skip connections do play an important role in terms of FVD evaluation
for the robot arm action conditioned experiments. This implies that having skip connections eases the
difficulty of video prediction in that it is only required to model the dynamics of the moving parts
and everything else can simply be transferred to the output frames.

Figure 11: Towel pick video dynamics evaluation (lower is better). Solid lines define method with
skip connections and dotted lines without skip connections.

In addition, having skip connections also help to make more accurate frame-wise predictions. In
Figure 12, the advantage of having skip connections is clear in all prediction steps. This indicates
that skip connections are not just essential for predicting dynamics that look like the ground-truth
videos, but also, the accuracy of the predicted pixels becomes better.

Figure 12: Towel pick per-frame evaluation (higher is better). Solid lines define method with skip
connections and dotted lines without skip connections.

A.3.2 Human activities.

In Figure 13, having skip connections results in a large performance improvement in FVD for the
CNN based video prediction architecture. However, for the LSTM and SVG’ based architectures, we
can that there is not clear improvement as the model size increases. We hypothesize that, since there
are no interactions, the background is static, and the background between training and testing data is
similar, the dataset dynamics become easier to model. Therefore, there is no need for the model to
separate moving and non-moving parts to achieve good predictions.
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Figure 13: Human 3.6M video dynamics evaluation (lower is better). Solid lines define method with
skip connections and dotted lines without skip connections.

In contrast to FVD evaluation, having skip connections greatly improves the performance in the
per-frame evaluation metrics for all models (Figure 14). This is mainly due to the fact that the moving
humans take up a very small portion of the image. Thus, having a way to transfer non-moving pixels
directly into the output frames results in more accurate per-frame performance.

Figure 14: Human 3.6M per-frame evaluation (higher is better). Solid lines define method with skip
connections and dotted lines without skip connections.

A.3.3 KITTI driving.

In Figure 15, we can see that for the recurrent models (LSTM and SVG’) having skip connections
results in improved FVD performance. However, when using a CNN based architecture, is clear for
most models, but not all of them as the two curves become close to each other when M and K are
make the model twice and three times bigger than the original model (second and third parameter
value in the x-axis). We hypothesize that this happens because almost all pixels move in these
videos, and so, simple skip connections without recurrent steps to remember what pixels are moving
throughout the prediction makes skip connections not as critical for the intermediate size models.

Figure 15: KITTI driving video dynamics evaluation (lower is better). Solid lines define method with
skip connections and dotted lines without skip connections.
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In terms of per-frame evaluation, we see an interesting behavior as prediction move forward in time
(Figure 16). The predicted frames become less accurate as time moves forward; effectively reducing
the performance gap between the architectures with and without skip connections. This happens
because predicting videos in this dataset requires predicting unseen pixels moving into view (e.g.,
partial observability). Therefore, having skip connections can only help for predicting nearby frames
and eventually requires generating fully unseen objects in the frames. The probability that the exact
pixels are generated reduces as time moves forward, even if the overall predicted dynamics are within
what is realistic in the dataset.

Figure 16: KITTI driving per-frame evaluation (higher is better). Solid lines define method with skip
connections and dotted lines without skip connections.
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A.4 Effects of the number of context frames

In this section, we present a study over number of context frames given to each of the considered
networks. We consider models that observe 2, 5 and 10 frames to predict 20 frames into the future
for our action-free experiments (Human 3.6M and KITTI), and models observe 2, 4 and 8 frames
to predict 12 frames into the future for our action-conditioned experiments (Towel pick). We test
on a slightly different test set from the one in the main paper to make sure the future frames during
evaluation are all the same for all the models in this section. We present the per-frame metrics used
in the main paper but averaged over time, and also, the Fréchet Video Distance (FVD) dynamics
evaluation metric.

A.4.1 Per-frame evaluation

Firstly, we perform per-frame evaluation of the predicted frames. We want to observe how context
affects the accuracy of the predicted future with respect to the ground-truth future.

In Table 3 (action-free evaluation), we can see that increasing the number of context frames improves
the performance in most of the recurrent models or converges at context of 5 frames. In contrast, we
cannot conclude the same for the CNN models. In fact, most of our experiments perform better with
less number of context frames. We hypothesize that this may be due to the lack of recurrence in the
CNN model which has to infer dynamics from all context frames in one shot at every prediction step
while not keeping a history. The recurrent models have the advantage of keeping a history while
deciding what information to keep or discard.

Dataset Metric Network Context = 2 Context = 5 Context = 10

Human 3.6M

Cosine Sim.

PSNR

SSIM

SVG
LSTM
CNN

SVG
LSTM
CNN

SVG
LSTM
CNN

0.916
0.912
0.890

23.420
22.956
22.804

0.880
0.876
0.862

0.925
0.918
0.869

23.778
23.391
21.740

0.889
0.883
0.857

0.925
0.921
0.875

23.948
23.734
21.845

0.892
0.886
0.863

KITTI

Cosine Sim.

PSNR

SSIM

SVG
LSTM
CNN

SVG
LSTM
CNN

SVG
LSTM
CNN

0.689
0.639
0.594

14.549
13.623
13.522

0.403
0.349
0.316

0.702
0.672
0.493

14.953
14.476
11.883

0.419
0.387
0.264

0.700
0.688
0.508

14.960
14.694
11.989

0.417
0.403
0.275

Table 3: Average per-frame evaluation of the effects of the number of context frames in the action-free
datasets (Human 3.6M and KITTI). We compare models with different number of context frames and
prediction of 20 frames.

In Table 4 (action-conditioned evaluation), we see a similar pattern as in Table 3 for the recurrent
models. Having more context frames enables recurrent models to make more accurate predictions
of the future with respect to the ground-truth future. In addition, the CNN based architecture
performance does not degrade as more context frames are given as input. Having actions as input
makes the prediction easier, and the CNN does not have to infer all future frame dynamics from
pixels alone.
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Dataset Metric Network Context = 2 Context = 4 Context = 8

Towel pick

Cosine Sim.

PSNR

SSIM

SVG
LSTM
CNN

SVG
LSTM
CNN

SVG
LSTM
CNN

0.906
0.904
0.835

26.125
25.328
21.425

0.834
0.827
0.725

0.926
0.922
0.819

27.814
27.304
20.913

0.868
0.862
0.708

0.932
0.931
0.837

28.703
28.706
21.767

0.875
0.878
0.729

Table 4: Average per-frame evaluation of the effects of the number of context frames in the action-
conditioned datasets (Towel pick). We compare models with different number of context frames and
prediction of 12 frames.

A.4.2 Fréchet Video Distance evaluation

In this section, we evaluate the dynamics of the generated videos using the Fréchet Video Distance
(FVD). In Table 5, we see a similar pattern in the Human 3.6M and KITTI driving experiments. For
the SVG architecture, 5 context frames are the most optimal number of frames in terms to predict
the best full video dynamics. In the LSTM architecture, 10 context frames are the most optimal.
Finally, for the CNN architecture, 2 context frames are the most optimal. From these results, we
see that for both datasets the SVG model the improvement stops at 5 context frames. This could
be due to the more conditioning frames impacting the predictions in terms of the distribution of
future dynamics. However, we need to investigate further to determine why this is happening. For
the LSTM model, more context frames keep improving the predicted dynamics quality. Finally, for
the CNN architecture, we see a similar behavior as in the per-frame evaluations where less context
frames are better for inferring future dynamics.

Dataset Metric Network Context = 2 Context = 5 Context = 10

Human 3.6M FVD
SVG

LSTM
CNN

440.511
484.011
470.751

428.792
490.375
1006.216

434.743
463.984
908.939

KITTI FVD
SVG

LSTM
CNN

1183.945
1309.101
1408.143

1125.285
1228.919
2673.012

1391.642
1224.859
2494.317

Table 5: Fréchet Video Distance (FVD) evaluation of the effects of the number of context frames in
the action-free datasets (Human 3.6M and KITTI). We compare models with different number of
context frames and prediction of 20 frames.

In Table 6, we see a slightly different result in comparison to Table 5. For both SVG and LSTM
architectures, 8 context frames (the most we tried) are the most optimal number of frames in terms to
predict the best video dynamics. The difference in these experiments is that we have action inputs that
determine the robot arm motion (albeit the objects with which the arm interacts still have a stochastic
behavior). For the CNN architecture, 2 context frames are the most optimal. This is the same finding
we have in table 5 for both action-free datasets regarding the predicted video dynamics.
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Dataset Metric Network Context = 2 Context = 4 Context = 8

Towel Pick FVD
SVG

LSTM
CNN

93.977
96.138
127.281

71.415
73.494

143.394

69.038
67.015

131.376

Table 6: Fréchet Video Distance (FVD) evaluation of the effects of the number of context frames in
the action-conditioned dataset (Towel Pick). We compare models with different number of context
frames and prediction of 12 frames.

A.5 All-vs-all Amazon Mechanical Turk comparison

In this section, we compare the largest models we trained for the different inductive bias considered in
our study. Similar to the experiments presented in the may text, we use 10 unique workers per video
and choose the selection with the most votes as the final answer. The videos used in the comparison
are determined by the highest VGG Cosine Similarity score amongst all samples for the stochastic
model, and we use the single trajectory produced by LSTM and CNN.

Dataset Method 1 Method 2 Method 1 Method 2 About the same

Towel Pick
SVG
SVG
CNN

LSTM
CNN

LSTM

43.8%
38.7%
32.7%

53.5%
58.2 %
66.0%

2.7%
3.1%
2.0%

Human 3.6M
SVG
SVG
CNN

LSTM
CNN

LSTM

34.5%
96.6%
2.5%

63.0%
2.9%

97.5%

2.5%
0.4%
0.0%

KITTI
SVG
SVG
CNN

LSTM
CNN

LSTM

55.4%
97.3%
0.7%

44.6%
2.7%

99.3%

0.0%
0.0%
0.0%

Table 7: Amazon Mechanical Turk human worker preference. We compared the biggest and
baseline models from LSTM and SVG’. The bigger models are more frequently preferred by humans.
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A.6 Device and network details

To scale up the capacity of the model, we use 32 Google TPUv3 Pods [Google, 2018] for each
experiment and a batch size of 32. We distribute the training batch such that there is a single batch
element in each 16GB TPU. This way we can use each device to the maximum capacity. We first
increase K and M together while keeping K to be equals to M . By simply doubling the number of
neurons in each layer, we see an improvement. We then continue to increase K and M up to three
times the number of neurons in each layer. At this, point we are not able to increase M anymore
without running out of memory, and so, we only continue increasing K.

A.7 Architecture and hyper-parameters

For the encoder network we use VGG-net [Simonyan and Zisserman, 2015] up to layer conv3_3 after
pooling and a single convolutional layer with output of 128 channels. A mirrored architecture of the
encoder is used for the decoder network. For the Convolutional LSTMs used throughout we use a
single layer network with 512 units for LSTM and LSTM�, and a two layer network with 512 units
for LSTM✓. Other than that, we follow a similar architecture as Denton and Fergus [2018] including
the skip connections from encoder to decoder. We use � = 0.0001 for all of our experiments. The
number of hidden units in z are 64 for the robot arm dataset and 128 for all other datasets.
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