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Abstract

A continual learning agent should be able to build on top of existing knowledge to
learn on new data quickly while minimizing forgetting. Current intelligent systems
based on neural network function approximators arguably do the opposite—they
are highly prone to forgetting and rarely trained to facilitate future learning. One
reason for this poor behavior is that they learn from a representation that is not
explicitly trained for these two goals. In this paper, we propose OML, an objective
that directly minimizes catastrophic interference by learning representations that
accelerate future learning and are robust to forgetting under online updates in con-
tinual learning. We show that it is possible to learn naturally sparse representations
that are more effective for online updating. Moreover, our algorithm is comple-
mentary to existing continual learning strategies, such as MER and GEM. Finally,
we demonstrate that a basic online updating strategy on representations learned by
OML is competitive with rehearsal based methods for continual learning. !

1 Introduction

Continual learning—also called cumulative learning and lifelong learning—is the problem setting
where an agent faces a continual stream of data, and must continually make and learn new predictions.
The two main goals of continual learning are (1) to exploit existing knowledge of the world to quickly
learn predictions on new samples (accelerate future learning) and (2) reduce interference in updates,
particularly avoiding overwriting older knowledge. Humans, as intelligence agents, are capable
of doing both. For instance, an experienced programmer can learn a new programming language
significantly faster than someone who has never programmed before and does not need to forget
the old language to learn the new one. Current state-of-the-art learning systems, on the other hand,
struggle with both (French, 1999; Kirkpatrick et al., 2017).

Several methods have been proposed to address catastrophic interference. These can generally be
categorized into methods that (1) modify the online update to retain knowledge, (2) replay or generate
samples for more updates and (3) use semi-distributed representations. Knowledge retention methods
prevent important weights from changing too much, by introducing a regularization term for each
parameter weighted by its importance (Kirkpatrick et al., 2017; Aljundi et al., 2018; Zenke et al.,
2017; Lee et al., 2017; Liu et al., 2018). Rehearsal methods interleave online updates with updates
on samples from a model. Samples from a model can be obtained by replaying samples from older
data (Lin, 1992; Mnih et al., 2015; Chaudhry et al., 2019; Riemer et al., 2019; Rebuffi et al., 2017;
Lopez-Paz and Ranzato, 2017; Aljundi et al., 2019), by using a generative model learned on previous
data (Sutton, 1990; Shin et al., 2017), or using knowledge distillation which generates targets using

!Code accompanying paper available at https://github. com/khurramjaved96/mrcl

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.
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Figure 1: An example of our proposed architecture for learning representations for continual learning.
During the inner gradient steps for computing the meta-objective, we only update the parameters
in the prediction learning network (PLN). We then update both the representation learning network
(RLN) and the prediction learning network (PLN) by taking a gradient step with respect to our
meta-objective. The online updates for continual learning also only modify the PLN. Both RLN and
PLN can be arbitrary models.

predictions from an older predictor (Li and Hoiem, 2018). These ideas are all complementary to that
of learning representations that are suitable for online updating.

Early work on catastrophic interference focused on learning semi-distributed (also called sparse)
representations (French, 1991, 1999). Recent work has revisited the utility of sparse representations
for mitigating interference (Liu et al., 2019) and for using model capacity more conservatively to
leave room for future learning (Aljundi et al., 2019). These methods, however, use sparsity as a proxy,
which alone does not guarantee robustness to interference. A recently proposed online update for
neural networks implicitly learns representations to obtain non-interfering updates (Riemer et al.,
2019). Their objective maximizes the dot product between gradients computed for different samples.
The idea is to encourage the network to reach an area in the parameter space where updates to the
entire network have minimal interference and positive generalization. This idea is powerful: to specify
an objective to explicitly mitigate interference—rather than implicitly with sparse representations.

In this work, we propose to explicitly learn a representation for continual learning that avoids
interference and promotes future learning. We propose to train the representation with OML — a
meta-objective that uses catastrophic interference as a training signal by directly optimizing through
an online update. The goal is to learn a representation such that the stochastic online updates the
agent will use at meta-test time improve the accuracy of its predictions in general. We show that
using our objective, it is possible to learn representations that are more effective for online updating
in sequential regression and classification problems. Moreover, these representations are naturally
highly sparse. Finally, we show that existing continual learning strategies, like Meta Experience
Replay (Riemer et al., 2019), can learn more effectively from these representations.

2 Problem Formulation

A Continual Learning Prediction (CLP) problem consists of an unending stream of samples
T = (Xla Yl)v (X27 }/2)7 ceey (Xt7 m)a s

for inputs X, and prediction targets Y;, from sets X" and ) respectively.” The random vector Y; is sam-
pled according to an unknown distribution p(Y'| X;). We assume the process X1, Xs,..., X, ... has
a marginal distribution p : X — [0, 00), that reflects how often each input is observed. This assump-
tion allows for a variety of correlated sequences. For example, X, could be sampled from a distribution

2This definition encompasses the continual learning problem where the tuples also include task descriptors
T; (Lopez-Paz and Ranzato, 2017). T in the tuple (X, T3, Y;) can simply be considered as part of the inputs.
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Figure 2: Effect of the representation on continual learning, for a problem where targets are generated
from three different distributions p1 (Y|z), p2(Y|z) and ps(Y|z). The representation results in
different solution manifolds for the three distributions; we depict two different possibilities here. We
show the learning trajectory when training incrementally from data generates first by p;, then po
and ps3. On the left, the online updates interfere, jumping between distant points on the manifolds.
On the right, the online updates either generalize appropriately—for parallel manifolds—or avoid
interference because manifolds are orthogonal.

potentially dependent on past variables X;_1 and X;_o. The targets Y;, however, are dependent only
on X, and not on past X;. We define S, = (X;41Yj41), (Xj42Yj42) - .., (Xj4#, Yj4x), a random
trajectory of length k sampled from the CLP problem 7. Finally, p(Sk|7 ) gives a distribution over
all trajectories of length k that can be sampled from problem 7.

For a given CLP problem, our goal is to learn a function fyy ¢ that can predict Y; given X;. More
concretely, let £ : ) x ) — R be the function that defines loss between a prediction §j € ) and target
y as £(,y). If we assume that inputs X are seen proportionally to some density p : X — [0, 00),
then we want to minimize the following objective for a CLP problem:

Lour(W,0) 2 Bt fwa(), V)] = | [ [ ooty wierae.

where W and 6 represent the set of parameters that are updated to minimize the objective. To
minimize Lo p, we limit ourselves to learning by online updates on a single & length trajectory
sampled from p(Sk|T). This changes the learning problem from the standard iid setting — the agent
sees a single trajectory of correlated samples of length k, rather than getting to directly sample from
p(z,y) = p(y|z)p(x). This modification can cause significant issues when simply applying standard
algorithms for the iid setting. Instead, we need to design algorithms that take this correlation into
account.

A variety of continual problems can be represented by this formulation. One example is an online
regression problem, such as predicting the next spatial location for a robot given the current location;
another is the existing incremental classification benchmarks. The CLP formulation also allows for
targets Y; that are dependent on a history of the most recent m observations. This can be obtained by
defining each X; to be the last m observations. The overlap between X; and X;_; does not violate
the assumptions on the correlated sequence of inputs. Finally, the prediction problem in reinforcement
learning—predicting the value of a policy from a state—can be represented by considering the inputs
X, to be states and the targets to be sampled returns or bootstrapped targets.

3 Meta-learning Representations for Continual Learning

Neural networks, trained end-to-end, are not effective at minimizing the CLP loss using a single
trajectory sampled from p(Sk|7") for two reasons. First, they are extremely sample-inefficient,
requiring multiple epochs of training to converge to reasonable solutions. Second, they suffer from
catastrophic interference when learning online from a correlated stream of data (French, 1991). Meta-
learning is effective at making neural networks more sample efficient (Finn et al., 2017). Recently,
Nagabandi et al. (2019); Al-Shedivat et al. (2018) showed that it can also be used for quick adaptation
from a stream of data. However, they do not look at the catastrophic interference problem. Moreover,



their work meta-learns a model initialization, an inductive bias we found insufficient for solving the
catastrophic interference problem (See Appendix B.1).

To apply neural network to the CLP problem, we propose meta-learning a function ¢¢(X) — a deep
Representation Learning Network (RLN) parametrized by § — from X — R?. We then learn another
function gy from R? — ), called a Prediction Learning Network (PLN). By composing the two
functions we get fiy9(X) = gw (¢o(X)), which constitute our model for the CLP tasks as shown in
Figure 1. We treat f as meta-parameters that are learned by minimizing a meta-objective and then
later fixed at meta-test time. After learning 6, we learn gy from R? — Y for a CLP problem from a
single trajectory S using fully online SGD updates in a single pass. A similar idea has been proposed
by Bengio et al. (2019) for learning causal structures.

For meta-training, we assume a distribution over CLP problems given by p(7). We consider two
meta-objectives for updating the meta-parameters 6. (1) MAML-Rep, a MAML (Finn et al., 2017)
like few-shot-learning objective that learns an RLN instead of model initialization, and OML (Online
aware Meta-learning) — an objective that also minimizes interference in addition to maximizing fast
adaptation for learning the RLN. Our OML objective is defined as:

. def j
min > OMLV.OE 37 3 [Lown (U(W.0.8)) @
Tirp(T) Tirp(T) Sf~p(Sk|T:)
where S = (XY ), (X oY), (X5 Y ). UW, 6, S7) = (Wyyk, 0) represents an
update function where Wy, is the weight vector after £ steps of stochastic gradient descent. The jth
update step in U is taken using parameters (W ;—1,6) on sample (X; ;, Y} ;) to give (Wi, 0).

MAML-Rep and OML objectives can be implemented as Algorithm 1 and 2 respectively, with the
primary difference between the two highlighted in blue. Note that MAML-Rep uses the complete
batch of data Sy, to do [ inner updates — where [ is a hyper-parameter — whereas OML uses one data
point from Sy, for one update. This allows OML to take the effects of online continual learning —
such as catastrophic forgetting — into account.

The goal of the OML ob- Algorithm 1: Meta-Training : MAML-Rep

Jective is to learn represen- Require: p(7): distribution over CLP problems

tations suitable for online Require: «, /3: step size hyperparameters

continual learnings. Foran Require: I: No of inner gradient steps

illustration of what would 1: randomly initialize 6

constitute an effective rep- 2. while not done do

resentation for continual  3:  randomly initialize T

learning, suppose that we Sample CLP problem 7; ~ p(T)

have three clusters of inputs, Sample Syyqip from p(Sk|T;)

which have significantly dif- Wo =W

ferent p(Y'|z), correspond- forjin1,2,...,ldo

il’lg o p1, p2 and D3- For Wj = ijl - QVW'J,lgi(fO.WI (Strain[:a 0})7 Strain[:a ”)
a fixed 2-dimensional repre- 9. end for ’

sentation ¢ : X — R?, we |0, Sample Stest from p(Si|T7)

can consider the manifold 11.  Update § + 6 — BVoli( fo.w, (Stest [, 0]), Stest[:> 1])

of solutions W € R? given 12 end while

by a linear model that pro-
vide equivalently accurate solutions for each p;. These three manifolds are depicted as three different
colored lines in the W € R? parameter space in Figure 2. The goal is to find one parameter vector
W that is effective for all three distributions by learning online on samples from three distributions
sequentially. For two different representations, these manifolds, and their intersections can look very
different. The intuition is that online updates from a W are more effective when the manifolds are
either parallel—allowing for positive generalization—or orthogonal—avoiding interference. It is
unlikely that a representation producing such manifolds would emerge naturally. Instead, we will
have to explicitly find it. By taking into account the effects of online continual learning, the OML
objective optimizes for such a representation.

AN

We can optimize this objective similarly to other gradient-based meta-learning objectives. Early work
on learning-to-learn considered optimizing parameters through learning updates themselves, though
typically considering approaches using genetic algorithms (Schmidhuber, 1987). Improvements



in automatic differentiation have made it more feasible to compute gradient-based meta-learning
updates (Finn, 2018). Some meta-learning algorithms have similarly considered optimizations
through multiple steps of updating for the few-shot learning setting (Finn et al., 2017; Li et al., 2017,
Al-Shedivat et al., 2018; Nagabandi et al., 2019) for learning model initializations. The successes
in these previous works in optimizing similar objectives motivate OML as a feasible objective for
Meta-learning Representations for Continual Learning.

4 Evaluation

. . . . Algorithm 2: Meta-Training : OML
In this section, we investigate the

question: can we learn a representa- Require: p(T): distribution over CLP problems
tion for continual learning that pro- Require: «, 3 step size hyperparameters
motes future learning and reduces ' ranfiomly initialize ¢

interference? We investigate this ~ 2* While not done do.

question by meta-learning the repre- 3¢ randomly initialize W

sentations offline on a meta-training Sample CLP problem 7; ~ p(T')

dataset. At meta-test time, we ini- Sample Sy;qin from p(Sk|T;)

tialize the continual learner with this Wo =W

representation and measure predic- forj=1,2,...,kdo

tion error as the agent learns the (X5,Y)) = Strainj] ,

PLN online on a new set of CLP Wi =W —aVw,  Li(fow, . (X;), )

problems (See Figure 1). 10:  end for
11:  Sample Sies: from p(Sk|7T;)

12:  Update 0 < 0 — Vy¥; Stest] 0]), Stest[:, 1
4.1 CLP Benchmarks 13 end while BVoti(fow(Stestl:, 0]), Stestl:, 1)

SV UN AW

We evaluate on a simulated regres-
sion problem and a sequential clas-
sification problem using real data.

Incremental Sine Waves: An Incremental Sine Wave CLP problem is defined by ten (randomly
generated) sine functions, with © = (z,n) for z € [—5,5] as input to the sine function and n a
one-hot vector for {1, ..., 10} indicating which function to use. The targets are deterministic, where
(z,y) corresponds to y = sin,, (z). Each sine function is generated once by randomly selecting an
amplitude in the range [0.1, 5] and phase in [0, 7. A trajectory Sygo from the CLP problem consists
of 40 mini-batches from the first sine function in the sequence (Each mini-batch has eight elements),
and then 40 from the second and so on. Such a trajectory has sufficient information to minimize loss
for the complete CLP problem. We use a single regression head to predict all ten functions, where
the input id n makes it possible to differentiate outputs for the different functions. Though learnable,
this input results in significant interference across different functions.

Split-Omniglot: Omniglot is a dataset of over 1623 characters from 50 different alphabets (Lake et al.,
2015). Each character has 20 hand-written images. The dataset is divided into two parts. The first 963
classes constitute the meta-training dataset whereas the remaining 660 the meta-testing dataset. To
define a CLP problem on this dataset, we sample an ordered set of 200 classes (C7, Cs, Cs, . .., Cano).
X and ), then, constitute of all images of these classes. A trajectory S1ggo from such a problem is a
trajectory of images — five images per class — where we see all five images of C; followed by five
images of C5 and so on. This makes & = 5 x 200 = 1000. Note that the sampling operation defines
a distribution p(7") over problems that we use for meta-training.

4.2 Meta-Training Details

Incremental Sine Waves: We sample 400 functions to create our meta-training set and 500 for
benchmarking the learned representation. We meta-train by sampling multiple CLP problems. During
each meta-training step, we sample ten functions from our meta-training set and assign them task
ids from one to ten. We concatenate 40 mini-batches — each with 32 x,y pairs — generated from
function one, then function two and so on, to create our training trajectory Sygg. For evaluation, we
similarly randomly sample ten functions from the test set and create a single trajectory. We use SGD
on the MSE loss with a mini-batch size of 8 for online updates, and Adam (Kingma and Ba, 2014) for
optimizing the OML objective. Note that the OML objective involves computing gradients through
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Figure 3: Mean squared error across all 10 regression tasks. The x-axis in (a) corresponds to seeing
all data points of samples for class 1, then class 2 and so on. These learning curves are averaged over
50 runs, with error bars representing 95% confidence interval drawn by 1,000 bootstraps. We can see
that the representation trained on iid data—Pre-training—is not effective for online updating. Notice
that in the final prediction accuracy in (b), Pre-training and SR-NN representations have accurate
predictions for task 10, but high error for earlier tasks. OML, on the other hand, has a slight skew
in error towards later tasks in learning but is largely robust. Oracle uses iid sampling and multiple
epochs and serves as a best case bound.

a network unrolled for 400 steps. At evaluation time, we use the same learning rate as used during
the inner updates in the meta-training phase for OML. For our baselines, we do a grid search over
learning rates and report the results for the best performing parameter.

We found that having a deeper representation learning network (RLN) improved performance. We use
six layers for the RLN and two layers for the PLN. Each hidden layer has a width of 300. The RLN
is only updated with the meta-update and acts as a fixed feature extractor during the inner updates in
the meta-learning objective and at evaluation time.

Split-Omniglot: We learn an encoder — a deep CNN with 6 convolution and two FC layers — using
the MAML-Rep and the OML objective. We treat the convolution parameters as # and FC layer
parameters as 1. Because optimizing the OML objective is computationally expensive for H = 1000
(It involves unrolling the computation graph for 1,000 steps), we approximate the two objectives.
For MAML-Rep we learn the ¢y by maximizing fast adaptation for a 5 shot 5-way classifier. For
OML, instead of doing |Strqin| no of inner-gradient steps as described in Algorithm 2, we go over
Sirain five steps at a time. For kth five steps in the inner loop, we accumulate our meta-loss on
Stest[0 : 5 x k], and update our meta-parameters using these accumulated gradients at the end as
explained in Algorithm 3 in the Appendix. This allows us to never unroll our computation graphs for
more than five steps (Similar to truncated back-propagation through time) and still take into account
the effects of interference at meta-training.

Finally, both MAML-Rep and OML use 5 inner gradient steps and similar network architectures for a
fair comparison. Moreover, for both methods, we try multiple values for the inner learning rate o and
report the results for the best parameter. For more details about hyper-parameters see the Appendix.
For more details on implementation, see Appendix A.

4.3 Baselines

We compare MAML-Rep and OML - the two Meta-learneing based Representations Leanring
methods to three baselines.

Scratch simply learns online from a random network initialization, with no meta-training.

Pre-training uses standard gradient descent to minimize prediction error on the meta-training set.
We then fix the first few layers in online training. Rather than restricting to the same 6-2 architecture
for the RLN and PLN, we pick the best split using a validation set.

SR-NN use the Set-KL method to learn a sparse representation (Liu et al., 2019) on the meta-training
set. We use multiple values of the hyper-parameter S for SR-NN and report results for one that
performs the best. We include this baseline to compare to a method that learns a sparse representation.
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Figure 4: Comparison of representations learned by the MAML-Rep, OML objective and the baselines
on Split-Omniglot. All curves are averaged over 50 CLP runs with 95% confidence intervals drawn
using 1,000 bootstraps. At every point on the x-axis, we only report accuracy on the classes seen
so far. Even though both MAML-Rep and OML learn representations that result in comparable
performance of classifiers trained under the IID setting (c and d), OML out-performs MAML-Rep
when learning online on a highly correlated stream of data showing it learns representations more
robust to interference. SR-NN, which does not do meta-learning, performs worse even under the IID
setting showing it learns worse representations.

4.4 Meta-Testing

We report results of Lo, p(Wontine, Ometa) for fully online updates on a single Sy, for each CLP
problem. For each of the methods, we separately tune the learning rate on a five validation trajectories
and report results for the best performing parameter.

Incremental Sine Waves: We plot the average mean squared error over 50 runs on the full testing
set, when learning online on unseen sequences of functions, in Figure 3 (left). OML can learn new
functions with a negligible increase in average MSE. The Pre-training baseline, on the other hand,
clearly suffers from interference, with increasing error as it tries to learn more and more functions.
SR-NN, with its sparse representation, also suffers from noticeably more interference than OML.
From the distribution of errors for each method on the ten functions, shown in Figure 3 (right), we
can see that both Pre-training and SR-NN have high errors for functions learned in the beginning
whereas OML performs only slightly worse on those.

Split-Omniglot:

We report classification accuracy on the train- Meta-testing: Train Accuracy Meta-testing: Test Accuracy
1.0

ing trajectory (Sirqin) as well as the test set in
Figure 4. Note that training accuracy is a mean-
ingful metric in continual learning as it measures
forgetting. The test set accuracy reflects both
forgetting and generalization error. Our method
can learn the training trajectory almost perfectly 02
with minimal forgetting. The baselines, on the 6 8 10 12 14 16 18 20 6 8 10 12 14 16 18 20
other hand, suffer from forgetting as they learn No of classes leamed incrementally

more classes sequentially. The higher training

accuracy of our method also translates into bet- Figure 5: OML scales to more complex datasets
ter generalization on the test set. The difference such a Mini-imagenet. We use the existing meta-
in the train and test performance is mainly due training/meta-testing split of mini-imagenet. At
to how few samples are given per class: only 15 Meta-testing, we learn a 20 way classifier using 30
for training and 5 for testing. samples per class.

Accuracy

Pretraining

As a sanity check, we also trained classifiers by sampling data IID for 5 epochs and report the results
in Fig. 4 (c) and (d). The fact that OML and MAML-Rep do equally well with IID sampling indicates
that the quality of representations (¢y = R?) learned by both objectives are comparable and the
higher performance of OML is indeed because the representations are more suitable for incremental
learning.

Moreover, to test if OML can learn representations on more complex datasets, we run the same
experiments on mini-imagenet and report the results in Figure 5.
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Figure 6: We reshape the 2304 length representation vectors into 32x72, normalize them to have a
maximum value of one and visualize them; here random instance means representation for a randomly
chosen input from the training set, whereas average activation is the mean representation for the
complete dataset. For SR-NN, we re-train the network with a different value of parameter 3 to have
the same instance sparsity as OML. Note that SR-NN achieves this sparsity by never using a big part
of representation space. OML, on the other hand, uses the full representation space. In-fact, OML
has no dead neurons whereas even pre-training results in some part of the representation never being
used.

4.5 What kind of representations does OML learn?

As discussed earlier, French (1991) proposed that sparse representations could mitigate forgetting.
Ideally, such a representation is instance sparse—using a small percentage of activations to represent
an input— while also utilizing the representation to its fullest. This means that while most neurons
would be inactive for a given input, every neuron would participate in representing some input. Dead
neurons, which are inactive for all inputs, are undesirable and may as well be discarded. An instance
sparse representation with no dead neurons reduces forgetting because each update changes only a
small number of weights which in turn should only affect a small number of inputs. We hypothesize
that the representation learned by OML will be sparse, even though the objective does not explicitly
encourage this property.

We compute the average instance sparsity on the Omniglot training set, for OML, SR-NN, and
Pre-training. OML produces the most sparse network, without any dead neurons. The network
learned by Pre-training, in comparison, uses over 10 times more neurons on average to represent an
input. The best performing SR-NN used in Figure 4 uses 4 times more neurons. We also re-trained
SR-NN with a parameter to achieve a similar level of sparsity as OML, to compare representations of
similar sparsity rather than representations chosen based on accuracy. We use 3 = 0.05 which results
in an instance sparsity similar to OML.

We visualize all the solutions in Figure Table 1: Instance sparisty and dead neuron percentage
6. The plots highlight that OML learns for different methods. OML learns highly sparse repre-
a highly sparse and well-distributed rep- sentations without any dead neurons. Even Pre-training,
resentation, taking the most advantage of which does not optimize for sparsity, ends up with some
the large capacity of the representation. dead neurons, on the other hand.

Surprisingly, OML has no dead neurons, Method Instance Sparsity Dead Neurons

which is a well-known problem when learn-

ing sparse representations (Liu et al., 2019). OML 3.8% 0%

Even Pre-training, which does not have SR-NN (Best) 15% 0.7%

an explicit penalty to enforce sparsity, has ~ SR-NN (Sparse) 4.9% 14%
Pre-Training 38% 3%

some dead neurons. Instance sparsity and

dead neurons percentage for each method
are reported in Table 1.

5 Improvements by Combining with Knowledge Retention Approaches

We have shown that OML learns effective representations for continual learning. In this section, we
answer a different question: how does OML behave when it is combined with existing continual



Table 2: OML combined with existing continual learning methods. All memory-based methods
use a buffer of 200. Error margins represent one std over 10 runs. Performance of all methods is
considerably improved when they learn from representations learned by OML moreover, even online
updates are competitive with rehearsal based methods with OML. Finally, online updates on OML
outperform all methods when they learn from other representations. Note that MER does better than
approx IID in some cases because it does multiple rehearsal-based updates for every sample.

Split-Omniglot

One class per task, 50 tasks Five classes per task, 20 tasks
Method Standard OML Pre-training  Standard OML Pre-training
Online 04.64 261 64.72 £257  21.16 +2711 01.40 £043 55.32 +225 11.80 +192

Approx IID 5395 550 7512 +324 5429 4345  48.02 £567 67.03 210 46.02 +283
ER-Reservoir  52.56 +212 68.16 +312  36.72 +3.06 2432 +537 6092 £241 37.44 1167
MER 54.88 +412 76.00 £207 62.76 +2.16 29.02 +401  62.05 £219 42.05 +371
EWC 05.08 +247 64.44 +313  18.72 +397 02.04 £035 56.03 £320 10.03 +£153

learning methods? We test the performance of EWC (Kirkpatrick et al., 2017), MER (Riemer et al.,
2019) and ER-Reservoir (Chaudhry et al., 2019), in their standard form—Ilearning the whole network
online—as well as with pre-trained fixed representations. We use pre-trained representations from
OML and Pre-training, obtained in the same way as described in earlier sections. For the Standard
online form of these algorithms, to avoid the unfair advantage of meta-training, we initialize the
networks by learning iid on the meta-training set.

As baselines, we also report results for (a) fully online SGD updates that update one point at a time in
order on the trajectory and (b) approximate IID training where SGD updates are used on a random
shuffling of the trajectory, removing the correlation.

We report the test set results for learning 50 tasks with one class per task and learning 20 tasks with 5
tasks per class in Split-Omniglot in Table 2. For each of the methods, we do a 15/5 train/test split
for each Omniglot class and test multiple values for all the hyperparameters and report results for
the best setting. The conclusions are surprisingly clear. (1) OML improves all the algorithms; (2)
simply providing a fixed representation, as in Pre-training, does not provide nearly the same gains as
OML and (3) OML with a basic Online updating strategy is already competitive, outperforming all
the continual learning methods without OML. There are a few additional outcomes of note. OML
outperforms even approximate IID sampling, suggesting it is not only mitigating interference but also
making learning faster on new data. Finally, the difference in online and experience replay based
algorithms for OML is not as pronounced as it is for other representations.

6 Conclusion

In this paper, we proposed a meta-learning objective to learn representations that are robust to inter-
ference under online updates and promote future learning. We showed that using our representations,
it is possible to learn from highly correlated data streams with significantly improved robustness to
forgetting. We found sparsity emerges as a property of our learned representations, without explicitly
training for sparsity. We finally showed that our method is complementary to the existing state of the
art continual learning methods, and can be combined with them to achieve significant improvements
over each approach alone.

An important next step for this work is to demonstrate how to learn these representations online
without a separate meta-training phase. Initial experiments suggest it is effective to periodically
optimize the representation on a recent buffer of data, and then continue online update with this
updated fixed representation. This matches common paradigms in continual learning—based on the
ideas of a sleep phase and background planning—and is a plausible strategy for continually adapting
the representation network for a continual stream of data. Another interesting extension to the work
would be to use the OML objective to meta-learn some other aspect of the learning process — such as
a local learning rule (Metz et al., 2019) or an attention mechanism — by minimizing interference.
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