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1 Detailed Description of Spike-train Level Post-synaptic Potential (S-PSP)
and Total PSP (T-PSP)

S-PSP captures the spike-train level interactions between a pair of pre/post-synaptic neurons and can
be defined for any neural models with an all-or-none spiking characteristics and any synaptic models
[2]. Without loss of generality, we describe S-PSP using the widely adopted leaky integrate-and-fire
(LIF) model of spiking neurons and a first-order synaptic model [1]:

τm
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dt
= −ui(t) +R αi(t), (1)
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t− t(f)j

)
, (2)

where ui(t) is the membrane potential of the neuron i, αi(t) the total synaptic current input based on
a first order synaptic model with time constant τs, and τm the time constant of membrane potential
with value τm = RC. R and C are the effective leaky resistance and effective membrane capacitance
and R is set to 1 since it can be absorbed into synaptic weights. wij is the weight of the synapse from
the pre-synaptic neuron j to the neuron i. t(f)j denotes a particular firing time of the neuron j. D(t)
is the Dirac delta function.

The integration of (1) and (2) leads to the spike response model (SRM) [1]:
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∑
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wij
∑
t
(f)
j

ε
(
t− t̂(f)i , t− t(f)j

)
, (3)

where t̂(f)i denotes the last firing time of the neuron i. ε(s, t) specifies the normalized time course of
the post-synaptic potential evoked by a single firing spike of the pre-synaptic neuron:

ε(s, t) =
1

C

∫ s

0
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(
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τm

)
αi (t− t′) dt′. (4)

Through integration, (4) can be re-written as:

ε(s, t) =
e(−max(t−s,0)/τs)

1− τs
τm

[
e(−
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) − e(−
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)
]
H(s)H(t), (5)

where H(t) is the Heaviside step function.
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Figure 1: The computation of the S-PSP.

Note that each neuron fires whenever its post-synaptic potential reaches the firing threshold. We now
sum up the contributions of the pre-synaptic neuron j’s spike train to the (normalized) post-synaptic
potential of the neuron i right before all the neuron i’s firing times as illustrated in Fig. 1:

eij =
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i

∑
t
(f)
j

ε(t
(f)
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(f)
i , t

(f)
i − t

(f)
j ), (6)

defining the (normalized) spike-train level post-synaptic potential (S-PSP) from the neuron j to
the neuron i.

The significance of S-PSPs lies on that it characterizes the aggregated effect of the spike train of
the pre-synaptic neuron j on the membrane potential of the post-synaptic neuron i and its firing
activities. Employing S-PSPs in the proposed ST-RSBP algorithm is beneficial; it allows efficient
consideration of the temporal dynamics and recurrent connections of an RSNN across all firing events
at the spike-train level without expensive unfolding in time and backpropagation time point by time
point, which are required by BPTT.

The sum of the weighted S-PSPs from all pre-synaptic neurons of the neuron i is defined as the total
post-synaptic potential (T-PSP) ai, relating to the neuron i’s firing count oi via the firing threshold
ν:

ai =
∑
j

wij eij , oi = g(ai) ≈
ai
ν
. (7)

ai and oi are analogous to the pre-activation and activation in the traditional ANNs, respectively, and
g(·) can be considered as an activation function converting the T-PSP to the output firing count.

2 Detailed Derivation of ST-RSBP Algorithm

The rate-coded loss is defined at the output layer as:

E =
1

2
||o− y||22 =

1

2
||a
ν
− y||22, (8)

where y, o and a are vectors of the desired output neuron firing counts (labels), actual firing counts,
and the T-PSPs of the output neurons, respectively. Differentiating (8) with respect to each trainable
weight wkij incident upon the layer k leads to:

∂E

∂wkij
=
∂E

∂aki

∂aki
∂wkij

= δki
∂aki
∂wkij

, with δki =
∂E

∂aki
, (9)

where δki and ∂aki
∂wkij

are referred to as the back propagated error and differentiation of activation,

respectively, for the neuron i. ST-RSBP updates wkij by ∆wkij = η ∂E
∂wkij

, where η is a learning rate.
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2.1 Back Propagated Errors

2.1.1 Output Layer

When the layer k is the output layer, the back propagated error at the ith neuron of the layer is given
by differentiating the loss defined in (8):

δki =
∂E

∂aki
=

(oki − yki )

νk
, (10)

where oki is the actual firing count, yki the desired firing count (label), and aki the corresponding
T-PSP.

2.1.2 Hidden Layers

At each hidden layer k, by applying the chain rule, the back propagated error δki for the neuron i can
be expressed as:

δki =
∂E

∂aki
=

Nk+1∑
l=1

∂E

∂ak+1
l

∂ak+1
l

∂aki
=

Nk+1∑
l=1

δk+1
l

∂ak+1
l

∂aki
. (11)

Nk+1 is the number of neurons in the layer k + 1. Define two error vectors δk+1 and δk for the two
layers: δk+1 = [δk+1

1 , · · · , δk+1
Nk+1

], and δk = [δk1 , · · · , δkNk ], respectively for the layers k + 1 and k,
where Nk is the number of the neurons in the layer k. Assuming δk+1 is given, which is the case for
the output layer based on (10), the goal is to back propagate from δk+1 to δk. Clearly, this entails to

compute ∂ak+1
l

∂aki
in (11).

[Backpropagation from a Hidden Recurrent Layer] Now consider that case that the errors are
back propagated from a recurrent layer k + 1 to its preceding layer k. Note that the S-PSP elj from
any pre-synaptic neuron j to a post-synpatic neuron l is a function of both the rate and temporal
information of the pre/post spike trains, which can be made explicitly via some function f :

elj = f(oj , ol, t
(f)
j , t

(f)
l ), (12)

where oj , ol, t
(f)
j , t(f)l are the pre-synaptic/post-synaptic firing counts and firing times, respectively.

Now based on (2) of the main manuscript, ∂a
k+1
l

∂aki
is split also into two summations:

∂ak+1
l

∂aki
=

Nk∑
j

wk+1
lj

dek+1
lj

daki
+

Nk+1∑
p

wk+1
lp

dek+1
lp

daki
, (13)

where the first summation sums over all pre-synaptic neurons in the previous layer k while the second
sums over the pre-synaptic neurons in the current recurrent layer as illustrated in Fig. 2.

On the right side of (13),
dek+1
lj

daki
is given by:

dek+1
lj

daki
=


1
νk

∂ek+1
li

∂oki
+ 1

νk+1

∂ek+1
lj

∂ok+1
l

∂ak+1
l

∂aki
j = i

1
νk+1

∂ek+1
lj

∂ok+1
l

∂ak+1
l

∂aki
j 6= i,

(14)

where νk and νk+1 are the firing threshold voltages for the layers k and k + 1, respectively, and we
have used that oki ≈ aki /νk and ok+1

l ≈ ak+1
l /νk+1 from (7). Importantly, the last term on the right

side of (14) exists due to ek+1
lj ’s dependency on the post-synaptic firing rate ok+1

l per (12) and ok+1
l ’s

further dependency on the pre-synaptic activation oki (hence pre-activation aki ), as shown in Fig. 2.

On the right side of (13),
dek+1
lp

daki
is due to the recurrent connections within the layer k+ 1 and is given

by:
dek+1
lp

daki
=

1

νk+1

∂ek+1
lp

∂ok+1
l

∂ak+1
l

∂aki
+

1

νk+1

∂ek+1
lp

∂ok+1
p

∂ak+1
p

∂aki
. (15)
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Figure 2: Connections for a recurrent layer neuron and the dependencies among its S-PSPs.

The first term on the right side of (15) is due to ek+1
lp ’s dependency on the post-synaptic firing rate

ok+1
l per (12) and ok+1

l ’s further dependence on the pre-synaptic activation oki (hence pre-activation
aki ). Per (12), it is important to note that the second term exists because ek+1

lp ’s dependency on the
pre-synaptic firing rate ok+1

p , which further depends on oki (hence pre-activation aki ), as shown in
Fig. 2.

Putting (13), (14), and (15) together leads to:

∂ak+1
l

∂aki
=wk+1

li

1

νk
∂ek+1
li

∂oki
+

1

νk+1

∂ak+1
l

∂aki

Nk∑
j

wk+1
lj

∂ek+1
lj

∂ok+1
l

+

Nk+1∑
p

wk+1
lp

∂ek+1
lp

∂ok+1
l


+

Nk+1∑
p

wk+1
lp

1

νk+1

∂ek+1
lp

∂ok+1
p

∂ak+1
p

∂aki
.

(16)

Now, (16) is rearranged to:1− 1

νk+1

Nk∑
j

wk+1
lj

∂ek+1
lj

∂ok+1
l

+

Nk+1∑
p

wk+1
lp

∂ek+1
lp

∂ok+1
l

 ∂ak+1
l

∂aki
=

wk+1
li

1

νk
∂ek+1
li

∂oki
+

Nk+1∑
p

wk+1
lp

1

νk+1

∂ek+1
lp

∂ok+1
p

∂ak+1
p

∂aki
.

(17)

It is evident that allNk+1×Nk partial derivatives involving the recurrent layer k+1 and its preceding

layer k, i.e. ∂a
k+1
l

∂aki
, l = [1, Nk+1], i = [1, Nk], form a coupled linear system via (17), which is written

in a matrix form as:

Ωk+1,k · P k+1,k = Φk+1,k + Θk+1,k · P k+1,k, (18)
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where P k+1,k ∈ RNk+1×Nk contains all the desired partial derivatives, Ωk+1,k ∈ RNk+1×Nk+1 is
diagonal, Θk+1,k ∈ RNk+1×Nk+1 , Φk+1,k ∈ RNk+1×Nk , and

Ωk+1,k
ij =

1− 1
νk+1

(∑Nk
m wk+1

lm
∂ek+1
lm

∂ok+1
l

+
∑Nk+1

p wk+1
lp

∂ek+1
lp

∂ok+1
l

)
i = j

0 i 6= j

P k+1,k
ij =

∂ak+1
i

∂akj
Φk+1,k
ij = wk+1

ij

1

νk
∂ek+1
ij

∂okj
Θk+1,k
ij = wk+1

ij

1

νk+1

∂ek+1
ij

∂ok+1
j

.

(19)

The partial derivatives of the S-PSP with respect to the pre-synaptic and post-synaptic firing counts,

i.e.
∂ek+1
ij

∂okj
and

∂ek+1
ij

∂ok+1
i

as needed in (19) will be determined in Section 2.3. Solving the linear system

in (18) gives all ∂a
k+1
i

∂akj
:

P k+1,k = (Ωk+1,k −Θk+1,k)−1 ·Φk+1,k. (20)

Note that since Ω is a diagonal matrix, the cost in factoring the above linear system can be reduced
by approximating the matrix inversion using a first-order Taylor’s expansion without performing any
matrix factorization.

All Nk errors at the layer k back propagated from the layer k + 1 per (11) is put into a vector form:
δk = [δk1 , · · · , δkNk ], and is given by:

δk = (P k+1,k)T · δk+1, (21)

where δk+1 is the error vector at the layer k + 1.

[Backpropagation from a Hidden Feedforward Layer] Consider the much simpler case of back-
propagating errors from a feedforward layer k + 1 to its preceding layer k. Due to non-existence of
recurrent connections in the layer k + 1, (20) is simplified to:

P k+1,k = (Ωk+1,k)−1 ·Φk+1,k. (22)

Since Ωk+1,k is diagonal, each ∂ak+1
l

∂aki
can be directly computed:

∂ak+1
l

∂aki
=

1
νk
wk+1
li

∂ek+1
li

∂oki

1− 1
νk+1

∑Nk
p=1 w

k+1
lp

∂ek+1
lp

∂ok+1
l

. (23)

2.2 Differentiation of Activation

Per (9), we derive the differentiation of activation ∂aki
∂wij

under two cases.

2.2.1 Feedforward Layers

For a feedforward layer k and based on (2) of the main paper, differentiation of each activation is
given by:

∂aki
∂wkij

=
∂

∂wkij

Nk−1∑
l

wkil e
k
il

 = ekij +
1

νk
∂aki
∂wkij

Nk−1∑
l

wkil
∂ekil
∂oki

. (24)

The first term on the right side of (24) reflects the direct dependency of aki on wkij while the second
term captures the dependency of each S-PSP ekil on the post-synaptic firing count oki , which further

depends on wij according to (12). The derivative ∂aki
∂wkij

on the right side of (24) is precisely considered

in ST-RSBP. However, HM2-BP [2] does not consider the hidden dependency of ekij on wkij when

deriving (24). As a result, the ∂aki
∂wkij

term on the right side of (24) is approximated to ekij .
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(24) gives the desired differentiation of activation as:

∂aki
∂wkij

=
ekij

1− 1
νk

∑Nk−1

l wkil
∂ekil
∂oki

. (25)

2.2.2 Recurrent Layers

For the activation aki of the neuron i at the recurrent layer k, we further consider the recurrent
connections and get

∂aki
∂wkij

=
∂

∂wkij

Nk−1∑
l

wkil e
k
il +

Nk∑
p

wkip e
k
ip

 = ekij +
∂aki
∂wkij

1

νk

Nk−1∑
l

wkil
∂ekil
∂oki

+

Nk∑
p

wkip
∂ekip
∂oki

 ,

leading to:
∂aki
∂wij

=
ekij

1− 1
νk

(∑Nk−1

l wkil
∂ekil
∂oki

+
∑Nk
p wkip

∂ekip
∂oki

) . (26)

2.3 Differentiation of S-PSP w.r.t Pre/Post-Synaptic Firing Counts

Before presenting the final ST-RSBP algorithm, we shall determine the partial derivatives ∂eij
∂oj

and
∂eij
∂oi

of an S-PSP eij with respect to the firing counts of the pre-synaptic neuron j and post-synaptic
neuron i, respectively, as needed in (19), (23), (25), and (26). As discussed in Section 1, S-PSPs
serve as a bridge between neuron-level firing timings and spike-train level firing count and allow
backpropagating errors defined for a rate-coded loss at the spike-train level.

In [2], the HM2-BP computes the two partial derivatives by assuming that each S-PSP eij is ap-
proximately linear in both oj and oi. To examine this assumption, we evaluate the S-PSP from the
neuron j to neuron i via a synapse. The LIF neuron model of (1) and the synaptic model of (2) with
τm = 64ms, τs = 8ms are adopted in this analysis. The simulation duration is set to 600ms and the
first-order Euler method with a fixed stepsize of 1ms is used for simulation. To cover a wide range of
interactions between the two neurons, we consider all combinations of the firing rates of two neurons
oi and oj when they are swept widely from 1 to 50. For each combination of oi and oj values, we
generate the spike trains of the two neurons by randomly choosing oi and oj numbers of random
spiking times, respectively, and compute the S-PSP eij according to (6). We repeat this process 500
times and take the average value of eij .

We plot the relation between the pre/post-synaptic firing counts oj and oi and the average eij in
Fig. 3A. Fig. 3B shows that with oi fixed eij increases rather linearly in oj , consistent with [2], and
hence we have:

∂eij
∂oj

≈ eij
oj
. (27)

However, Fig. 3C shows that with oj fixed, eij is not linear in a wide range of oi, suggesting that
the assumption made in [2] can lead to errors when the postsynaptic firing rates vary a lot. Based
on the data collected for Fig. 3A, for each fixed oj , we instead fit eij as a third-order polynomial
in oi to obtain the corresponding values for the derivative ∂eij

∂oi
. The characterization of ∂eij∂oi

occurs
offline prior to the training process. In this approach, ST-RSBP can more precisely measure the
differentiation of S-PSP w.r.t firing counts than HM2-BP [2]. Therefore, ST-RSBP may achieve better
results even on feedforward networks like spiking CNNs.

2.4 The Final Proposed ST-RSBP Algorithm

For each layer k, denote the error vector by δk ∈ RNk , the matrix of differentiation of activation by
F k,k−1 ∈ RNk×Nk−1 , and the weight matrix from the layer k−1 to layer k byW k,k−1 ∈ RNk×Nk−1 ,

respectively. P k+1,k ∈ RNk+1×Nk contains all derivatives of ∂a
k+1
l

∂aki
obtained from (20) or (23). If

the layer k is recurrent layer, we additionally use F k,k ∈ RNk×Nk andW k,k ∈ RNk×Nk to denote
the matrix of differentiation of activation and the weight matrix of recurrent connections within the

6



oioj
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oj oi

oi = 10 oj = 10A B C

Figure 3: (A) The average S-PSP value vs. pre and post-synaptic firing counts; (B) The average eij
vs. oj when the post-synaptic firing count is fixed (oi = 10); (C) The average eij vs. oi when the
pre-synaptic firing count is fixed (oj = 10).

layer k. Putting everything together, the complete ST-RSBP algorithm with a learning rate η is as
follows:{

∆W k,k−1 = η ∇E
∇W k,k−1 = η · diag(δk) · F k,k−1 for feedforward connections

∆W k,k = η ∇E
∇W k,k = η · diag(δk) · F k,k for recurrent connections

F k,k−1ij =
ekij

1− 1
νk

∑Nk−1

l wkil
∂ekil
∂oki

F k,kij =
ekij

1− 1
νk

(∑Nk−1

l wkil
∂ekil
∂oki

+
∑Nk
p wkip

∂ekip
∂oki

)

δki =

oki−y
k
i

νk
if layer k is the output

δk = (P k+1,k)T · δk+1 if layer k+1 is feedforward
δk = ((Ωk+1,k −Θk+1,k)−1 ·Φk+1,k)T · δk+1 if layer k+1 is recurrent

Ωk+1,k
ij =

1− 1
νk+1

(∑Nk
m wk+1

lm
∂ek+1
lm

∂ok+1
l

+
∑Nk+1

p wk+1
lp

∂ek+1
lp

∂ok+1
l

)
i = j

0 i 6= j

Φk+1,k
ij = wk+1

ij

1

νk
∂ek+1
ij

∂okj
Θk+1,k
ij = wk+1

ij

1

νk+1

∂ek+1
ij

∂ok+1
j

P k+1,k
ij =

1
νk
wk+1
ij

∂ek+1
ij

∂okj

1− 1
νk+1

∑Nk
p=1 w

k+1
ip

∂ek+1
ip

∂ok+1
i

.

(28)

The application of ST-RSBP follows the typical backpropagation steps. First, the SNN is simulated
layer-by-layer based on chosen synaptic/neural models such as the LIF model (1). Second, the firing
counts of the output layer are compared with the desirable firing labels to compute the output error
δk. After that, the error vector in the output layer is propagated backwards to determine the gradient,
based on which both the recurrent synapses weights and the weights between layers are trained.
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