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Abstract

Current algorithms for deep learning probably cannot run in the brain because
they rely on weight transport, where forward-path neurons transmit their synaptic
weights to a feedback path, in a way that is likely impossible biologically. An algo-
rithm called feedback alignment achieves deep learning without weight transport by
using random feedback weights, but it performs poorly on hard visual-recognition
tasks. Here we describe two mechanisms — a neural circuit called a weight mirror
and a modification of an algorithm proposed by Kolen and Pollack in 1994 — both
of which let the feedback path learn appropriate synaptic weights quickly and accu-
rately even in large networks, without weight transport or complex wiring. Tested
on the ImageNet visual-recognition task, these mechanisms learn almost as well as
backprop (the standard algorithm of deep learning, which uses weight transport)
and they outperform feedback alignment and another, more-recent transport-free
algorithm, the sign-symmetry method.

1 Introduction

The algorithms of deep learning were devised to run on computers, yet in many ways they seem
suitable for brains as well; for instance, they use multilayer networks of processing units, each with
many inputs and a single output, like networks of neurons. But current algorithms can’t quite work
in the brain because they rely on the error-backpropagation algorithm, or backprop, which uses
weight transport: each unit multiplies its incoming signals by numbers called weights, and some
units transmit their weights to other units. In the brain, it is the synapses that perform this weighting,
but there is no known pathway by which they can transmit their weights to other neurons or to other
synapses in the same neuron [1, 2].

Lillicrap et al. [3] offered a solution in the form of feedback alignment, a mechanism that lets
deep networks learn without weight transport, and they reported good results on several tasks. But
Bartunov et al. [4] and Moskovitz et al. [5] have found that feedback alignment does not scale to
hard visual recognition problems such as ImageNet [6].

Xiao et al. [7] achieved good performance on ImageNet using a sign-symmetry algorithm in which
only the signs of the forward and feedback weights, not necessarily their values, must correspond, and
they suggested a mechanism by which that correspondence might be set up during brain development.
Krotov and Hopfield [8] and Guerguiev et al. [9] have explored other approaches to deep learning
without weight transport, but so far only in smaller networks and tasks.

Here we propose two different approaches that learn ImageNet about as well as backprop does, with
no need to initialize forward and feedback matrices so their signs agree. We describe a circuit called
a weight mirror and a version of an algorithm proposed by Kolen and Pollack in 1994 [10], both of
which let initially random feedback weights learn appropriate values without weight transport.
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There are of course other questions about the biological implications of deep-learning algorithms,
some of which we touch on in Appendix C, but in this paper our main concern is with weight
transport.

2 The weight-transport problem

In a typical deep-learning network, some signals flow along a forward path through multiple layers of
processing units from the input layer to the output, while other signals flow back from the output layer
along a feedback path. Forward-path signals perform inference (e.g. they try to infer what objects are
depicted in a visual input) while the feedback path conveys error signals that guide learning. In the
forward path, signals flow according to the equation

yl+1 = φ(Wl+1 yl + bl+1) (1)

Here yl is the output signal of layer l, i.e. a vector whose i-th element is the activity of unit i in layer
l. Equation 1 shows how the next layer l + 1 processes its input yl: it multiplies yl by the forward
weight matrix Wl+1, adds a bias vector bl+1, and puts the sum through an activation function φ.
Interpreted as parts of a real neuronal network in the brain, the y’s might be vectors of neuronal firing
rates, or some function of those rates, Wl+1 might be arrays of synaptic weights, and bl+1 and φ
bias currents and nonlinearities in the neurons.

In the feedback path, error signals δ flow through the network from its output layer according to the
error-backpropagation [11] or backprop equation:

δl = φ′(yl) W
T
l+1 δl+1 (2)

Here φ′ is the derivative of the activation function φ from equation (1), which can be computed from
yl. So feedback signals pass layer by layer through weights WT

l . Interpreted as a structure in the
brain, the feedback path might be another set of neurons, distinct from those in the forward path, or
the same set of neurons might carry inference signals in one direction and errors in the other [12, 13].

Either way, we have the problem that the same weight matrix Wl appears in the forward equation (1)
and then again, transposed, in the feedback equation (2), whereas in the brain, the synapses in the
forward and feedback paths are physically distinct, with no known way to coordinate themselves so
one set is always the transpose of the other [1, 2].

3 Feedback alignment

In feedback alignment, the problem is avoided by replacing the transposed Wl’s in the feedback path
by random, fixed (non-learning) weight matrices Bl,

δl = φ′(yl) Bl+1 δl+1 (3)

These feedback signals δ drive learning in the forward weights W by the rule

∆Wl+1 = −ηW δl+1 yT
l (4)

where ηW is a learning-rate factor. As shown in [3], equations (1), (3), and (4) together drive the
forward matrices Wl to become roughly proportional to transposes of the feedback matrices Bl.
That rough transposition makes equation (3) similar enough to the backprop equation (2) that the
network can learn simple tasks as well as backprop does.

Can feedback alignment be augmented to handle harder tasks? One approach is to adjust the feedback
weights Bl as well as the forward weights Wl, to improve their agreement. Here we show two
mechanisms by which that adjustment can be achieved quickly and accurately in large networks
without weight transport.

4 Weight mirrors

4.1 Learning the transpose

The aim here is to adjust an initially random matrix B so it becomes proportional to the transpose
of another matrix W without weight transport, i.e. given only the input and output vectors x and
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y = Wx (for this explanation, we neglect the activation function φ). We observe that E
[
xyT

]
=

E
[
xxTWT

]
= E

[
xxT

]
WT . In the simplest case, if the elements of x are independent and

zero-mean with equal variance, σ2 , it follows that E
[
xyT

]
= σ2WT . Therefore we can push B

steadily in the direction σ2W using this transposing rule,

∆B = ηB xyT (5)

So B integrates a signal that is proportional to WT on average. Over time, this integration may
cause the matrix norm ‖B‖ to increase, but if we add a mechanism to keep the norm small — such as
weight decay or synaptic scaling [14–16] — then the initial, random values in B shrink away, and B
converges to a scalar multiple of WT (see Appendix A for an account of this learning rule in terms
of gradient descent).

4.2 A circuit for transposition

Figure 1 shows one way the learning rule (5) might be implemented in a neural network. This network
alternates between two modes: an engaged mode, where it receives sensory inputs and adjusts its
forward weights to improve its inference, and a mirror mode, where its neurons discharge noisily
and adjust the feedback weights so they mimic the forward ones. Biologically, these two modes may
correspond to wakefulness and sleep, or simply to practicing a task and then setting it aside for a
moment.
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Figure 1: Network modes for weight mirroring. Both panels show the same two-layer section of
a network. In both modes, the three neurons in layer l of the forward path ( ) send their output
signal yl through the weight array Wl+1 (and other processing shown in equation (1)) to yield the
next-layer signal yl+1. And in the feedback path ( ), the two neurons in layer l+ 1 send their signal
δl+1 through weight array Bl+1 to yield δl, as in (3). The figure omits the biases b, nonlinearities φ,
and, in the top panel, the projections that convey yl to the δl cells, allowing them to compute the
factor φ′(yl) in equation (3). a) In engaged mode, cross-projections ( ) convey the feedback signals
δ to the forward-path cells, so they can adjust the forward weights W using learning rule (4). b) In
mirror mode, one layer of forward cells, say layer l, fires noisily. Its signal yl still passes through
Wl+1 to yield yl+1, but now the blue cross-projections ( ) control firing in the feedback path, so
δl = yl and δl+1 = yl+1, and the δl neurons adjust the feedback weights Bl+1 using learning
rule (7). We call the circuit yl, yl+1, δl+1, δl a weight mirror because it makes the weight array
Bl+1 resemble WT

l+1.

In mirror mode, the forward-path neurons in each layer l, carrying the signal yl, project strongly to
layer l of the feedback path — strongly enough that each signal δl of the feedback path faithfully
mimics yl, i.e.

δl = yl (6)

Also in mirror mode, those forward-path signals yl are noisy. Multiple layers may fire at once, but the
process is simpler to explain in the case where they take turns, with just one layer l driving forward-
path activity at any one time. In that case, all the cells of layer l fire randomly and independently,
so their output signal yl has zero-mean and equal variance σ2. That signal passes through forward
weight matrix Wl+1 and activation function φ to yield yl+1 = φ(Wl+1 yl + bl). By equation (6),
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signals yl and yl+1 are transmitted to the feedback path. Then the layer-l feedback cells adjust their
weights Bl+1 by Hebbian learning,

∆Bl+1 = ηB δl δ
T
l+1 (7)

This circuitry and learning rule together constitute the weight mirror.

4.3 Why it works

To see that (7) approximates the transposing rule (5), notice first that

δl δ
T
l+1 = yl y

T
l+1 = yl φ(Wl+1 yl + bl+1)T (8)

We will assume, for now, that the variance σ2 of yl is small enough that Wl+1 yl + bl+1 stays in a
roughly affine range of φ, and that the diagonal elements of the derivative matrix φ′(bl+1) are all
roughly similar to each other, so the matrix is approximately of the form φ′sI, where φ′s is a positive
scalar and I is the identity. Then

φ(Wl+1 yl + bl+1) ≈ φ′(bl+1) Wl+1 yl + φ(bl+1)

≈ φ′s Wl+1 yl + φ(bl+1)
(9)

Therefore
δl δ

T
l+1 ≈ yl

[
yT
l WT

l+1 φ
′
s + φ(bl+1)T

]
(10)

and so

E
[
∆Bl+1

]
≈ ηB

(
E
[
yly

T
l

]
WT

l+1φ
′
s + E

[
yl

]
φ(bl+1)T

)
= ηB E

[
yly

T
l

]
WT

l+1φ
′
s

= ηB σ
2φ′sW

T
l+1

(11)

Hence the weight matrix Bl+1 integrates a teaching signal (7) which approximates, on average, a
positive scalar multiple of WT

l+1. As in (5), this integration may drive up the matrix norm ‖Bl+1‖,
but if we add a mechanism such as weight decay to keep the norm small [15, 16] then Bl+1 evolves
toward a reasonable-sized positive multiple of WT

l+1.

We get a stronger result if we suppose that neurons are capable of bias-blocking — of closing off
their bias currents when in mirror mode, or preventing their influence on the axon hillock. Then

E
[
∆Bl+1

]
≈ ηB σ2φ′(0)WT

l+1 (12)

So again, Bl+1 comes to approximate a positive scalar multiple of WT
l+1, so long as φ has a positive

derivative around 0, but we no longer need to assume that φ′(bl+1) ≈ φ′sI.
In one respect the weight mirror resembles difference target propagation [4], because both mechanisms
shape the feedback path layer by layer, but target propagation learns layer-wise autoencoders (though
see [17]), and uses feedback weights to propagate targets rather than gradients.

5 The Kolen-Pollack algorithm

5.1 Convergence through weight decay

Kolen and Pollack [10] observed that we don’t have to transport weights if we can transport changes
in weights. Consider two synapses, W in the forward path and B in the feedback path (written
without boldface because for now we are considering individual synapses, not matrices). Suppose W
and B are initially unequal, but at each time step t they undergo identical adjustments A(t) and apply
identical weight-decay factors λ, so

∆W (t) = A(t)− λW (t) (13)

and
∆B(t) = A(t)− λB(t) (14)

ThenW (t+1)−B(t+1) = W (t)+∆W (t)−B(t)−∆B(t) = W (t)−B(t)−λ[W (t)−B(t)] =
(1− λ)[W (t)−B(t)] = (1− λ)t+1[W (0)−B(0)], and so with time, if 0 < λ < 1, W and B will
converge.
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But biologically, it is no more feasible to transport weight changes than weights, and Kolen and
Pollack do not say how their algorithm might run in the brain. Their flow diagram (Figure 2 in their
paper) is not at all biological: it shows weight changes being calculated at one locus and then traveling
to distinct synapses in the forward and feedback paths. In the brain, changes to different synapses are
almost certainly calculated separately, within the synapses themselves. But it is possible to implement
Kolen and Pollack’s method in a network without transporting weights or weight changes.

5.2 A circuit for Kolen-Pollack learning

The standard, forward-path learning rule (4) says that the matrix Wl+1 adjusts itself based on a
product of its input vector yl and a teaching vector δl+1. More specifically, each synapse Wl+1,ij

adjusts itself based on its own scalar input yl,j and the scalar teaching signal δl+1,i sent to its neuron
from the feedback path.

We propose a reciprocal arrangement, where synapses in the feedback path adjust themselves based
on their own inputs and cell-specific, scalar teaching signals from the forward path,

∆Bl+1 = −η yl δ
T
l+1 (15)

If learning rates and weight decay agree in the forward and feedback paths, we get

∆Wl+1 = −ηW δl+1 y
T
l − λWl+1 (16)

and
∆Bl+1 = −ηW yl δ

T
l+1 − λBl+1 (17)

i.e.
∆BT

l+1 = −ηW δl+1 y
T
l − λBT

l+1 (18)

In this network (drawn in Figure 2), the only variables transmitted between cells are the activity
vectors yl and δl+1, and each synapse computes its own adjustment locally, but (16) and (18) have
the form of the Kolen-Pollack equations (13) and (14), and therefore the forward and feedback weight
matrices converge to transposes of each other.
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δ  l

yl

yl +1
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Wl+2

Wl+1

Bl

Bl+1 

Bl+2 

Figure 2: Reciprocal network for Kolen-Pollack learning. There is a single mode of operation.
Gold-colored cross-projections ( ) convey feedback signals δ to forward-path cells, so they can
adjust the forward weights W using learning rule (16). Blue cross-projections ( ) convey the signals
y to the feedback cells, so they can adjust the feedback weights B using (17).

We have released a Python version of the proprietary TensorFlow/TPU code for
the weight mirror and the KP reciprocal network that we used in our tests; see
github.com/makrout/Deep-Learning-without-Weight-Transport.

6 Experiments

We compared our weight-mirror and Kolen-Pollack networks to backprop, plain feedback alignment,
and the sign-symmetry method [5, 7]. For easier comparison with recent papers on biologically-
motivated algorithms [4, 5, 7], we used the same types of networks they did, with convolution [18],
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batch normalization (BatchNorm) [19], and rectified linear units (ReLUs) without bias-blocking. In
most experiments, we used a ResNet block variant where signals were normalized by BatchNorm
after the ReLU nonlinearity, rather than before (see Appendix D.3). More brain-like implementations
would have to replace BatchNorm with some kind of synaptic scaling [15, 16], ReLU with a bounded
function such as rectified tanh, and convolution with non-weight-sharing local connections.
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Figure 3: ImageNet results. a) With ResNet-18 architecture, the weight-mirror network (— WM)
and Kolen-Pollack (— KP) outperformed plain feedback alignment (— FA) and the sign-symmetry
algorithm (— SS), and nearly matched backprop (— BP). b) With the larger ResNet-50 architecture,
results were similar.

Run on the ImageNet visual-recognition task [6] with the ResNet-18 network (Figure 3a), weight
mirrors managed a final top-1 test error of 30.2(7)%, and Kolen-Pollack reached 29.2(4)%, versus
97.4(2)% for plain feedback alignment, 39.2(4)% for sign-symmetry, and 30.1(4)% for backprop.
With ResNet-50 (Figure 3b), the scores were: weight mirrors 23.4(5)%, Kolen-Pollack 23.9(7)%,
feedback alignment 98.9(1)%, sign-symmetry 33.8(3)%, and backprop 22.9(4)%. (Digits in paren-
theses are standard errors).

Sign-symmetry did better in other experiments where batch normalization was applied before the
ReLU nonlinearity. In those runs, it achieved top-1 test errors of 37.8(4)% with ResNet-18 (close to
the 37.91% reported in [7] for the same network) and 32.6(6)% with ResNet-50 (see Appendix D.1
for details of our hyperparameter selection, and Appendix D.3 for a figure of the best result attained
by sign-symmetry on our tests). The same change in BatchNorm made little difference to the other
four methods — backprop, feedback alignment, Kolen-Pollack, and the weight mirror.

Weight mirroring kept the forward and feedback matrices in agreement throughout training, as shown
in Figure 4. One way to measure this agreement is by matrix angles: in each layer of the networks,
we took the feedback matrix Bl and the transpose of the forward matrix, WT

l , and reshaped them
into vectors. With backprop, the angle between those vectors was of course always 0. With weight
mirrors (Figure 4a), the angle stayed < 12° in all layers, and < 6° later in the run for all layers except
the final one. That final layer was fully connected, and therefore its Wl received more inputs than
those of the other, convolutional layers, making its WT

l harder to deduce. For closer alignment, we
would have needed longer mirroring with more examples.

The matrix angles grew between epochs 2 and 10 and then held steady at relatively high levels till
epoch 32 because during this period the learning rate ηW was large (see Appendix D.1), and mirroring
didn’t keep the Bl’s matched to the fast-changing WT

l ’s. That problem could also have been solved
with more mirroring, but it did no harm because at epoch 32, ηW shrank by 90%, and from then on,
the Bl’s and WT

l ’s stayed better aligned.

We also computed the δ angles between the feedback vectors δl computed by the weight-mirror
network (using Bl’s) and those that would have been computed by backprop (using WT

l ’s). Weight
mirrors kept these angles < 25° in all layers (Figure 4b), with worse alignment farther upstream,
because δ angles depend on the accumulated small discrepancies between all the Bl’s and WT

l ’s in
all downstream layers.
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Figure 4: Agreement of forward and feedback matrices in the ResNet-50 from Figure 3b. a) Weight
mirrors kept the angles between the matrices Bl and WT

l small in all layers, from the input layer (—)
to the output (—). b) Feedback vectors δl computed by the weight-mirror network were also well
aligned with those that would have been computed by backprop. c, d) The Kolen-Pollack network
kept the matrix and δ angles even smaller. e, f) The sign-symmetry method was less accurate.

The Kolen-Pollack network was even more accurate, bringing the matrix and δ angles to near zero
within 20 epochs and holding them there, as shown in Figures 4c and 4d.

The sign-symmetry method aligned matrices and δ’s less accurately (Figures 4e and 4f), while with
feedback alignment (not shown), both angles stayed > 80° for most layers in both the ResNet-18 and
ResNet-50 architectures.

7






