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Abstract

Determinantal point processes (DPPs) provide an elegant and versatile way to
sample sets of items that balance the quality with the diversity of selected items. For
this reason, they have gained prominence in many machine learning applications
that rely on subset selection. However, sampling from a DPP over a ground set
of size N is a costly operation, requiring in general an O(N3) preprocessing cost
and an O(Nk3) sampling cost for subsets of size k. We approach this problem
by introducing DPPNETs: generative deep models that produce DPP-like samples
for arbitrary ground sets. We develop an inhibitive attention mechanism based
on transformer networks that captures a notion of dissimilarity between feature
vectors. We show theoretically that such an approximation is sensible as it maintains
the guarantees of inhibition or dissimilarity that makes DPPs so powerful and
unique. Empirically, we show across multiple datasets that DPPNET is orders of
magnitude faster than competing approaches for DPP sampling, while generating
high-likelihood samples and performing as well as DPPs on downstream tasks.

1 Introduction
Selecting a representative sample of data from a large pool of available candidates is an essential step
of a large class of machine learning problems: noteworthy examples include automatic summarization,
matrix approximation, and minibatch selection. Such problems require sampling schemes that
calibrate the tradeoff between the point-wise quality – e.g. the relevance of a sentence to a summary –
of selected elements and the set-wise diversity2 of the sampled set.

Submodular set functions and their log-submodular counterparts (functions f such that log f is
submodular) have arisen as a theoretically grounded model for such diversity modeling problems, with
applications to settings such as sensor placement [27], summarization [33], and optimal experimental
design [44]. Submodular functions over a ground set [N ] := {1, . . . , N} are functions f : 2[N ] → R
that satisfy the inequality

f(S) + f(T ) ≥ f(S ∩ T ) + f(S ∪ T ) for S, T ⊆ [N ].

Among log-submodular measures, determinantal point processes (DPPs) have proven to be of
particular interest to the machine learning community, due to their ability to elegantly model the
tradeoff between quality and diversity. Given a ground set of sizeN , DPPs allow forO(N3) sampling
over all 2N possible subsets of elements, assigning to any subset S of elements the probability

PL(S) = detLS/ det(I +L), (1)
∗Work done while at Google Brain.
2Here, we use diversity to mean useful coverage across dissimilar examples in a meaningful feature space,

rather than other definitions of diversity that may appear in the ML fairness literature.
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Figure 1: Geometric intuition for DPPs: let φi,φj be two feature vectors of Φ such that the kernel verifies
L = ΦΦT ; then PL({i, j}) ∝ Vol(φi,φj)

2. Increasing the norm of a vector (quality) or increasing the angle
between the vectors (diversity) increases the spanned volume [28].

where L ∈ RN×N is the DPP kernel and LS = [Lij ]i,j∈S denotes the principal submatrix of L
indexed by items in S (we adopt here the L-Ensemble construction [7] of a DPP). Intuitively, DPPs
measure the volume spanned by the feature embedding of the items in feature space (Figure 1).

First introduced by Macchi [35] to model the distribution of possible states of fermions obeying
the Pauli exclusion principle, the properties of DPPs have since then been studied in depth, e.g.,
[24, 6]. As DPPs capture repulsive forces between similar elements, they arise in many natural
processes, such as the distribution of non-intersecting random walks [25], spectra of random matrix
ensembles [41, 17], and zero-crossings of polynomials with Gaussian coefficients [23]. More recently,
DPPs have become a prominent tool in machine learning due to their elegance and tractability over
small datasets: recent applications include video recommendations [9], minibatch selection [51],
kernel approximation [31, 38], and neural network pruning [36]; continuous DPPs have also been
connected to active learning [22].

However,O(N3) sampling makes DPPs intractable for large datasets. This has led to the development
of alternate approaches such as subsampling from {1, . . . , N}, structured kernels [15, 37], tree-
based samplers [16] and approximate sampling [2, 30, 1]. While faster than the standard approach,
these methods require significant pre-processing time or cannot be parallelized, and still scale
poorly with the size of the dataset. Furthermore, when dealing with ground sets with variable
components, pre-processing costs cannot be amortized, impeding the application of DPPs in practice.
Recently, Dereziński et al. [12] showed that for exact sampling, the preprocessing cost can be reduced
to O(Npoly(k)), where k is the size of the sampled set.

These setbacks motivate us to investigate more scalable and flexible models to generate high-quality,
diverse samples from datasets. We introduce generative deep models to approximate the DPP
distribution over a ground set of items with both fixed and variable feature representations. We
show that a carefully constructed neural network, DPPNET, can generate DPP-like samples with
little overhead, orders of magnitude faster than all competing approaches. We further motivate our
approach by proving that neural networks are theoretically able to inherit the log-submodularity
properties of their target functions. Finally, we show that DPPNETs can trivially approximate
conditional DPP samples and greedy mode finding.

2 Related work

Although the greedy maximization of submodular and log-submodular set functions is possible with
provable guarantees under a variety of constraints [27], sampling and evaluating submodular functions
is not necessarily computationally feasible. Indeed, approximating submodular functions has been
studied in discrete optimization and game theory [4, 13]; approximate sampling for log-submodular
functions has also been considered by Gotovos et al. [19] via MCMC sampling schemes.

In the general case, sampling exactly from a DPP over a discrete set of N items requires an ini-
tial eigendecomposition of the kernel matrix L, incurring a O(N3) cost. In order to avoid this
time-consuming step, several approximate sampling methods have been derived; Affandi et al. [1]
approximate the DPP kernel during sampling; more recently, results by Anari et al. [2] followed by Li
et al. [30] showed that DPPs are amenable to efficient MCMC-based sampling methods.

Exact methods that significantly speed up sampling by leveraging specific structure in the DPP
kernel have also been developed [37, 15, 43, 39]. Of particular interest is the dual sampling method
introduced in Kulesza and Taskar [28]: if the DPP kernel can be composed as an inner product over
a finite basis, i.e. there exists a feature matrix Φ ∈ RN×D such that the DPP kernel is given by
L = ΦΦ>, exact sampling can be done in O(ND2 +NDk2 +D2k3).
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However, MCMC sampling requires variable amounts of sampling rounds, which is unfavorable for
parallelization; dual DPP sampling requires an explicit feature matrix Φ. Motivated by recent work on
modeling set functions with neural networks [50, 10], we propose to generate approximate samples
via a generative network; this allows for simple parallelization while simultaneously benefiting from
recent improvements in specialized architectures for neural network models (e.g. parallelized matrix
multiplications). We furthermore show that, extending the abilities of dual DPP sampling, neural
networks may take as input variable feature matrices Φ and sample from non-linear kernels L.

3 Generating DPP samples with deep models
In this section, we describe our approach to generating approximate DPP samples using a generative
neural network; by doing so, we avoid the O(N3) computational cost of DPP sampling, generating
samples orders of magnitude faster than competing approaches.

Our goal is to generate samples from a ground set {1, . . . , N} where each item i is represented by
a feature φi ∈ Rd. Although in select cases we may know the related feature matrix Φ a priori, in
many situations Φ will evolve over time. For example, this is the case when Φ represents a pool
of products that are available for sale at a given time, or social media posts whose relevance varies
based on context. For this reason, Φ is considered to be an input to our model. Figure 2 presents the
architecture of our model.

k times

Q ∈ Rk×d

�(1− softmax(QΦ>/
√
d))

probabilities

(a> ⊗ 1N )Φ

a ∈ RN

Feed-forward
connections

Φ ∈ RN×d

S ⊆ Y

[:]

sample

Figure 2: DPPNET takes as input a set S (one-hot encoding) and a representation Φ ∈ RN×d of the ground set,
and outputs a probability vector of length N representing the respective probabilities of adding any item i to
S. When initialized with the empty set and repeated k times, this process generates a sample of size k. When
the feature representation Φ does not evolve over time, DPPNET consists only of the block of feed-forward
connections and ignores Φ as an input.

3.1 Motivating the model choice

In addition to elegantly capturing the quality/diversity tradeoffs that arise in subset sampling tasks
within machine learning, DPPs also enjoy a variety of properties which make them particularly
amenable to modeling via neural networks. Conversely, we may want to preserve some of the
properties of the standard DPP sampling algorithm. In this section, we show how such properties of
DPPs are either preserved by DPPNET or can be efficiently incorporated into it.

Simple computation of marginal probabilities. Given a set Y sampled by a DPP with kernel L
and S ⊆ Y , the probability Pr({i} ∪ S ⊆ Y | S ⊆ Y ) of also sampling i 6∈ S has the closed form

Pr({i} ∪ S ⊆ Y | S ⊆ Y ) = 1− [(L+ I[N ]\S)
−1]ii. (2)
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Although Eq. 2 requires an expensive matrix inversion to compute, such costs can be offset during
off-line training. These probabilities act as the vector of probabilities that DPPNET seeks to output.
This signal has the advantage of providing information during every step of training, compared to
other downstream possibilities (e.g., the negative log-likelihood of generated sets). In practice, we
found the the L1 loss led to the best performance; hence, DPPNET is trained to minimize the L1
distance from its output vector to the corresponding normalized probabilities of adding an item.

Sequential sampling. The standard DPP sampling algorithm [28] generates samples sequentially,
adding items one after the other until reaching a pre-determined size3. We take advantage of this by
recording all intermediary subsets generated by the DPP when sampling training data.

Algorithm 1 Sampling and greedy mode for DPPNET

Input: Initial set S, target size k, feature matrix Φ
while |S| < k do

v ← DPPNET (S,Φ)
if sampling then

i ∼Multinomial(v/‖v‖)
else if greedy mode then

i← argmax v

S ← S ∪ {i}
return S

In practice, instead of training on n subsets
of size k, we train on kn subsets of size
0, . . . , k − 1.

The sequential form of exact sampling is
also amenable to simple modifications that
yield greedy sampling algorithms [8]. For
this reason, our architecture also imple-
ments sequential sampling (Alg. 1), yield-
ing a straightforward greedy estimation
without further overhead.

Closure under conditioning. DPPs are closed under conditioning: given A ⊆ Y , the conditional
distribution over Y \ A given by PL(S = A ∪ B | A ⊆ S) for B ∩ A = ∅ is a DPP with kernel
LA = ([(L + IĀ)

−1]Ā)
−1 − I (see [7]). This property make DPPs well-suited to applications

requiring diversity in conditioned sets, e.g. basket completion tasks.4

Standard deep generative models such as (Variational) Auto-Encoders [26] (VAEs) and Generative
Adversarial Networks [18] would not enable conditioning operations during sampling, as such
operations would have to take place over the model’s latent space. With the DPPNET architecture, we
can sample a set via Alg. 1, which allows for trivial basket-completion type conditioning operations.

3.2 The inhibitive attention mechanism: sampling over variable feature matrices

In simple settings, we wish to draw samples over a ground set with fixed features Φ. In this case,
DPPNET’s knowledge of Φ can be obtained during training, and so DPPNET is a feed-forward
network taking a partially sampled set S as input. However, often the feature representation Φ will
vary across time or contexts. In such cases, DPPNET also takes as input the feature matrix Φ.

We confirmed that naively adding Φ as input to a stack of feed-forward connections requires deeper
networks and larger layers, increasing learning and sampling time. Instead, we draw inspiration
from the dot-product attention of [47]. Intuitively, attention is a vector computed by the network that
indicates relevant parts of the inputs. For DPPNET, this attention reweights Φ based on items in S.

In [47], the attention mechanism takes three matrices as input, which can be viewed as a (1) the
keys K, (2) the values V , and (3) a the query Q. The attention matrix A := softmax(QK>/

√
d)

reweights the values V , with d is the dimension of each query/key and the softmax being computed
across each row. The inner product5 acts as a proxy to the similarity between queries and keys.

For DPPNET, the submatrix of Φ given by ΦS,: ∈ R|S|×d and corresponding to the items in the
input set S acts as the query; the representation Φ ∈ RN×d of the ground set is both the keys and the
values. In order for the attention mechanism to make sense in the framework of DPP modeling, we
make two modifications to the attention in [47]:

• DPPNET should attend to items that are dissimilar to those in input subset S: for i ∈ S, we
compute its pairwise dissimilarity to all items in Y as the vector di = 1− softmax(Φi,:Φ

>/
√
d).

3The expected sampled set size under a DPP depends on the eigenspectrum of the kernel L.
4Such tasks require the model to output a set of likely items given a pre-selected choice of items, for example

when recommending items to customers that have already chosen certain items to purchase.
5This inner product could be replaced by the kernel function that defines the true DPP for DPPNET.
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• Instead of returning the k × N matrix of dissimilarities, we return a vector a ∈ RN in the
probability simplex such that aj ∝

∏
i∈S dij . This yields a fixed-size input to the network; this

forces the similarity of any item j to a single pre-sampled item i to disqualify j from being sampled.

With these modifications, our attention vector a is computed via the inhibitive attention mechanism

a′ = �
i∈S

(
1− softmax(Φi,:Φ

>/
√
d)
)
, a = a′/‖a′‖1, (3)

where � represents the row-wise multiplication; a can be computed in O(kDN) time. The attention
a is finally multiplied element-wise with each row of Φ; the resulting reweighted feature matrix is
the input to the feed-forward component of DPPNET.
Remark 1. An efficient (“dual”) DPP sampling algorithm for kernels of the form L = ΦΦ> was
introduced in [28]. However, this algorithm requires knowledge of such low-rank decomposition.
For non-linear kernels, a low-rank decomposition of L(Φ) must first be obtained, requiring O(N3)
time. In comparison, the dynamic DPPNET models DPPs with kernels that depend arbitrarly on Φ,
including kernels with kernel functions too costly to be computed on-demand.

3.3 Sampling over ground sets of varying size
When the ground set size N is expected to vary little over time (e.g., recommender systems where
available items are added/removed over time in small numbers), we can modify the architecture of
Fig. 2 by slightly overshooting the number of rows N ′ of the feature matrix Φ so as to guarantee
N ≤ N ′. By setting the additional N ′ −N rows of Φ to 0, as well as the N ′ −N coefficients of the
output probability vector, we maintain DPPNET properties and allow variations in ground set size.

When N has high variance, the inhibitive attention mechanism can be modified to accomodate
subsampling: a subset T ⊆ [N ] of pre-defined size is selected by sampling |T | items independently
from the distribution parametrized by the attention vector a. The corresponding fixed-size feature
matrix is reweighted by the attention, then fed to the learnable feed-forward network. Note that this
approach can be combined or replaced by other subsampling schemes for DPPs, e.g., [11].

3.4 Preserving log-submodularity
A fundamental property of DPPs is their log-submodularity. Indeed, log-submodularity is one of the
few key properties responsible for DPPs’s preference for diverse subsets [5].This section presents
a surprising result: under certain conditions, the (log) submodularity of a distribution P can be
inherited by a generative model trained to approximate P . In particular, DPPNET may under the right
conditions generate samples from a log-submodular distribution. The proof of Theorem 1 can be
found in Appendix A.
Theorem 1. Let f : 2Y → R be a strictly submodular function over subsets of a ground set Y , and
let g be a function over the same space such that

‖f − g‖∞ ≤ min
S 6=T,

S,T 6∈{∅,Y}

1
4 [f(S) + f(T )− f(S ∪ T )− f(S ∩ T ))] .

Then g is also submodular.
Remark 2. Thm. 1 can also be stated for supermodular functions.

Cor. 1 for DPPNET follows directly from the equivalence of norms in finite dimensional spaces.
Corollary 1. LetPL be a strictly log-submodular DPP over Y; let DPPNET be a network trained with
loss function ‖p− q‖, where ‖ · ‖ is a norm and p ∈ R2N

(resp. q) is the probability vector assigned
by the DPP (resp. the DPPNET) to each subset of Y . Let α = max

‖x‖∞=1
1/‖x‖. The distribution

modeled by DPPNET is log-submodular if its loss satisfies
‖p− q‖ ≤ min

S 6=T
S,T 6∈{∅,Y}

1
4α [PL(S) + PL(T )− PL(S ∪ T )− PL(S ∩ T ))] .

Remark 3. Cor. 1 is generalizable to the KL divergence loss DKL(P‖Q) via Pinsker’s inequality.

Checking numerically whether the conditions for Corollary 1 apply during training is NP-hard:
the results of this section are purely theoretical. However, Theorem 1 and Corollary 1 provide an
additional justification for the use of probabilities in the objective function of DPPNET, compared to
other possible choices for the loss (such as the NLL of generated subsets).

5



4 Experimental results
To evaluate DPPNET, we evaluate its performance (a) as a proxy for a static DPP (with fixed kernelL)
and (b) a generator of diverse subsets of varying ground sets. Our models are trained with TensorFlow
using the Adam optimizer. Hyperparameters are tuned to maximize the normalized log-likelihood of
generated subsets. We compare DPPNET to standard DPPs and to the following baselines:

• UNIF: Uniform sampling over the ground set,
• HCP: Matérn hard core point processes. Points are sampled from a Poisson distribution then

thinned out to remove points within distance r < 0.2 (chosen by cross-validation) from each other,
• k-MEDOIDS: The clustering algorithm from [21], which uses datapoints as cluster centers. The

distance between points is computed using the same metric used by the DPP.

In sections 4.1 and 4.2 we evaluate the quality of training and ability of DPPNET to emulate DPP
samples. For this reason, we evaluate subset quality using the subset’s negative log-likelihood (NLL)
under the DPP we seek to approximate, as – to the extent of our knowledge – there is no other standard
method to benchmark the diversity of a selected subset that depends on specific dataset encodings.

In section 4.3, we evaluate DPPNET sampling as a proxy for DPP samples on a downstream task
(kernel reconstruction); there, the evaluation metric evaluates the quality of the reconstructed kernel.

4.1 Sampling over the unit square

We begin by analyzing the performance of a DPPNET trained on a DPP with fixed kernel over the
unit square. This is motivated by the need for diverse sampling methods on the unit hypercube, e.g.
quasi-Monte Carlo methods, latin hypercube sampling [40] and low discrepancy sequences.

The ground set consists of the 100 points lying on the 10× 10 grid on the unit square. The DPP is
defined by its kernel L such that Lij = exp(−‖xi − xj‖22/2). As the target distribution has a fixed
ground set representation (by way of L), DPPNET has no inhibitive attention mechanism. We report
the performance of the different sampling methods in Figure 3. Visually (Figure 3a) and quantitively
(Figure 3b), DPPNET improves significantly over all other baselines. Furthermore, greedily sampling
the mode from the DPPNET achieves a better NLL than DPP samples themselves (Table 1).

Unif
NLL = 168.57

Dpp
NLL = 156.71

DppNet
NLL = 151.01

DppNet mode
NLL = 146.54

(a) Sampled subsets of size 20 and cor-
responding NLLs for several baselines.

DppNet mode
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(b) Normalized log-likelihood of samples drawn from all meth-
ods as a function of the sampled set size.

Figure 3: Sampling on the unit square with a DPPNET (1 hidden layer, 841 neurons) trained on a single DPP
kernel. Visually, DPPNET gives similar results to the full DPP (left). As evaluated by DPP NLL, the DPPNET’s
mode achieves superior performance to the full DPP, and DPPNET sampling overlaps with DPP sampling (right).

Table 1: Negative log likelihood (NLL) under PL for sets of size k = 20 sampled over the unit square. DPPNET
achieves comparable performance to the DPP, outperforming the other baselines. DPP GREEDY is deterministic
greedy DPP sampling and achieves the lowest NLL; however, DPPNET MODE is able to reach it (Fig. 3a).

DPP DPP GREEDY UNIFORM HCP k-MEDOIDS DPPNET

154.95± 2.93 147.76 180.53± 9.56 163.40± 5.87 169.37± 6.41 153.44± 2.07
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4.2 Sampling over variable ground sets
We evaluate the performance of DPPNETs on varying ground set sizes through the MNIST [29],
CelebA [34], and MovieLens [20] datasets. For MNIST and CelebA, we generate feature represen-
tations of length 32 by training a VAE on the dataset (see App. B for details); for MovieLens, we
obtain a feature vector for each movie by applying nonnegative matrix factorization the rating matrix,
obtaining features of length 10. We train DPPNET with the embeddings corresponding to randomly
subsampled ground sets of size N = 100 of the training sets of each dataset; during testing (i.e., in
the results below), the trained models are fed feature representations from the corresponding test sets.

The DPPNET is trained based on samples from DPPs with a linear kernel for MovieLens and with
an exponentiated quadratic kernel for the image datasets. Bandwidths were set to β = 0.0025 for
MNIST and β = 0.1 for CelebA, chosen in order to obtain a DPP sample size ≈ 20: for a DPP with
kernel L, the expected sample size is given by ES∼PL

[|S|] = Tr[L(L+ I)−1].

Unif
NLL=32.80

DppNet
NLL=30.20

DppNet mode
NLL=28.55

Dpp
NLL=30.88

Figure 4: Digits sampled from a DPPNET
(3 layers of 365 neurons) trained on MNIST.

For MNIST, Figure 4 shows images selected by the base-
lines and the DPPNET, chosen among 100 digits with all
identical labels; visually, DPPNET and DPP samples pro-
vide a wider coverage of writing styles. However, the NLL
of samples from DPPNET decay significantly, whereas the
DPPNET mode maintains competitive performance with
DPP samples. For this reason, all further experiments focus
on greedy mode samples drawn from the DPPNET.

Numerical results for MNIST are reported in Table 2. Al-
though DPPNET was trained on feature matrices represent-
ing random subsets of the training set, we see that when
selecting subsets restricted by label at test time, DPPNET
remains competitive, suggesting that DPPNET sampling
may be leveraged to focus on sub-areas of datasets identi-
fied as areas of interest. Numerical results for CelebA and
MovieLens are reported in Table 3.

To analyze the contribution of the attention mechanism, we
furthermore performed an ablation test, training a neural
network without the attention block; architecture tuning

revealed that the model that achieved the best performance required 6 layers of 585 neurons on
MNIST: significantly more parameters than with the attention mechanism (3 layers of 365 neurons).

Table 2: NLL (mean ± standard error) under the true DPP of samples drawn uniformly, according to the mode
of the DPPNET, and from the DPP itself. We sample subsets of size 20; for each class of digits we build 25
feature matrices Φ from encodings of those digits, and for each feature matrix we draw 25 different samples.
For the last column, DPPNET was trained on all digits.

DIGIT 0 1 2 3 4

DPP BASELINE 52.2 ± 0.1 60.5 ± 0.1 49.8 ± 0.0 50.7 ± 0.1 51.0 ± 0.1

UNIF 54.9 ± 0.1 65.1 ± 0.1 51.5 ± 0.1 52.9 ± 0.1 53.3 ± 0.1
MEDOIDS 55.1 ± 0.1 65.0 ± 0.1 51.5 ± 0.0 52.9 ± 0.1 53.1 ± 0.1

DPPNET MODE 53.6 ± 0.3 63.6 ± 0.4 50.8 ± 0.2 51.4 ± 0.3 51.6 ± 0.4

DIGIT 5 6 7 8 9 All

DPP BASELINE 50.4 ± 0.1 51.6 ± 0.1 51.5 ± 0.1 50.9 ± 0.1 52.7 ± 0.1 49.2 ± 0.1

UNIF 52.4 ± 0.1 54.6 ± 0.1 55.1 ± 0.1 53.3 ± 0.1 56.2 ± 0.1 51.6 ± 0.1
MEDOIDS 52.4 ± 0.0 54.4 ± 0.1 55.1 ± 0.1 53.2 ± 0.1 56.1 ± 0.1 51.0 ± 0.1

DPPNET MODE 51.8 ± 0.3 52.8 ± 0.3 52.7 ± 0.4 50.9 ± 0.3 55.0 ± 0.4 48.6 ± 0.2

Table 3: NLLs on CelebA and MovieLens (mean ± standard error); 20 samples of size 20 were drawn for 20
different feature matrices each, with 100 samples per method; DPPNET achieves the best NLLs.

DATASET KERNEL DPP BASELINE UNIFORM k-MEDOIDS DPPNET Mode

CelebA RBF 49.04 ± 2.03 50.84 ± 1.53 51.18 ± 1.34 49.28 ± 1.57
MovieLens Linear 84.29 ± 0.20 92.04 ± 0.17 88.90 ± 0.16 80.21 ± 0.33
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4.3 DPPNET for kernel reconstruction
As a final experiment, we evaluate DPPNET’s performance on a downstream task for which DPPs have
been shown to be useful: kernel reconstruction using the Nyström method [42, 48]. Given a positive
semidefinite matrix K ∈ RN×N , the Nyström method approximates K by K̂ = K·,SK†S,SKS,·

where K† denotes the pseudoinverse of K and K·,S (resp. KS,·) is the submatrix of K formed by
its rows (resp. columns) indexed by S. The Nyström method is a popular choice to scale up kernel
methods, e.g., [3, 45, 14, 46]. Reconstruction quality depends directly on the selected set of columns
S; choosing the columns by sampling from the DPP with kernelK is a standard approach [31, 38].

Following the approach of Li et al. [31], we evaluate the quality of the kernel reconstruction via
the following process: given a RBF ridge regression kernel K built from 1000 training points
in the Ailerons regression dataset, and with regularization and bandwidth chosen using 10-fold
cross validation, we report the test prediction error obtained by the Nyström reconstruction K̂. The
columns for the reconstruction are chosen with different DPP sampling algorithms: full DPP sampling,
DPPNET and approximate DPP sampling using MCMC with quadrature acceleration [31, 32].

Fig. 5 reports our results, and confirms that DPPNET-based mode sampling performs comparably to
other DPP sampling methods (Fig. 5a), while running orders of magnitude faster. Furthermore, while
all methods were run on CPU, DPPNET is amenable to further acceleration using GPUs.
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(c) Error vs. time

Figure 5: Results for the Nyström approximation experiments, comparing DPPNET to the fast MCMC sampling
method [32]. Subset selection by DPPNET achieves comparable or lower RMSE than other methods and is
significantly faster. In (c), the relative size of the marker represents the size of the sampled subset.

5 Conclusion and discussion

We introduced DPPNET: a generative network that approximates DPP sampling over fixed and
varying ground sets. We showed across several datasets and applications that DPPNETs are orders of
magnitude faster than standard DPP sampling algorithms, without decreasing sample quality.

We derived an inhibitive attention mechanism based on the repulsion process modeled by DPPs;
added to DPPNET while learning a class of DPPs over ground sets that vary over time, this mechanism
significantly reduces the number of trainable parameters required to learn a DPPNET.

Using DPPNET, several applications of DPPs that remained purely theoretical in practice due to high
sampling costs (e.g., minibatch sampling for SGD as suggested in [51]) are now within reach of
modern computing abilities; as such, replacing DPPs with DPPNET in cases where approximate, fast
sampling is required in downstream applications is a key area for future work.

Our choice of architecture for DPPNET leaves certain questions open. DPPNETs samples are not
exchangeable: two sequences i1, . . . , ik and σ(i1), . . . , σ(ik) where σ is a permutation of [k] will not
have the same probability under a DPPNET. Although exchangeability can be enforced by leveraging
previous work [50], non-exchangeability can be an asset when sampling a ranking of items.

Finally, our theoretical results (Thm. 1) suggests a new area of research in terms of using generative
networks for combinatorial optimization. Two questions of particular interest are the following.
Which properties of set functions, other than submodularity, can be inherited by a generative model?
Can generative neural networks be leveraged to learn other combinatorial functions for which marginal
probabilities (used to train the network) can be easily obtained?
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A Maintaining log-submodularity in the generative model

Theorem 1. Let f be a strictly submodular function over subsets of a ground set Y , and g be a
function over the same space such that

‖f − g‖∞ ≤ min
S 6=T

S,T 6∈{∅,Y}

1

4
[f(S) + f(T )− f(S ∪ T )− f(S ∩ T ))] . (4)

Then g is also submodular.

Proof. In all the following, we assume that S, T are subsets of a ground set Y such that S 6= T and
S, T 6∈ {∅,Y} (the inequalities being immediate in these corner cases). Let

ε := min
S,T

f(S) + f(T )− f(S ∪ T )− f(S ∩ T ))

By the strict submodularity hypothesis, we know ε > 0.

Let S, T ⊆ Y such that S 6= T and S, T 6= ∅,Y . To show the log-submodularity of g, it suffices to
show that

g(S) + g(T ) ≥ g(S ∪ T ) + g(S ∩ T ).

By definition of ε,
f(S) + f(T )− f(S ∪ T )− f(S ∩ T )) ≥ ε

From equation 4, we know that

max
S⊆Y
|f(S)− g(S)| ≤ ε/4.

It follows that

g(S) + g(T )− g(S ∪ T ) + g(S ∩ T )
≥f(S) + f(T )− f(S ∪ T )− f(S ∩ T )− ε
≥0

which proves the submodularity of g.

B Encoder details

For the MNIST encodings, the VAE encoder consists of a 2d-convolutional layer with 64 filters of
height and width 4 and strides of 2, followed by a 2d convolution layer with 128 filters (same height,
width and strides), then by a dense layer of 1024 neurons. The encodings are of length 32.

Figure 6: Digits and VAE reconstructions from the MNIST training set

CelebA encodings were generated by a VAE using a Wide Residual Network [49] encoder with 10
layers and filter-multiplier k = 4, a latent space of 32 full-covariance Gaussians, and a deconvolutional
decoder trained end-to-end using an ELBO loss. In detail, the decoder architecture consists of a 16K
dense layer followed by a sequence of 4× 4 convolutions with [512, 256, 128, 64] filters interleaved
with 2× upsampling layers and a final 6 × 6 convolution with 3 output channels for each of 5
components in a mixture of quantized logistic distributions representing the decoded image.
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