
A Missing Proofs in Section 2

A.1 Proof of Lemma 2.1

Proof. (I) Since rank(M∗H∪{i}) ≤ rank(M∗) = k, |RM∗(H ∪ {i})| ≤ k. Note that H is sampled

from
(

[m]
2k

)
uniformly at random, i is sampled from [m]\H uniformly at random, and |H ∪ {i}| =

2k + 1. By symmetry we have

Pr
H∼([m]

2k),i∼[m]\H
[i /∈ RM∗(H ∪ {i})] ≥ 1− k

2k + 1
≥ 1/2.

(II) Since i 6∈ RM∗(H ∪ {i}), by Cramer’s rule, there exist α1, α2, · · · , α|H| such that M∗i =∑|H|
j=1 αj · (M∗H)j and ∀j ∈ [|H|], |αj | ≤ 1. Then we have

min
x∈R|H|

‖MHx−Mi‖g ≤

∥∥∥∥∥∥

|H|∑

j=1

(MH)jαj −Mi

∥∥∥∥∥∥
g

=

∥∥∥∥∥∥

|H|∑

j=1

(M∗H)jαj −M∗i +

|H|∑

j=1

(NH)jαj −Ni

∥∥∥∥∥∥
g

=

∥∥∥∥∥∥

|H|∑

j=1

(NH)jαj −Ni

∥∥∥∥∥∥
g

≤ atig,|H|+1 ·

‖ −Ni‖g +

|H|∑

j=1

‖(NH)jαj‖g

≤ atig,|H|+1 ·

‖ −Ni‖g + mong ·

|H|∑

j=1

‖(NH)j‖g

≤ atig,|H|+1 ·

mong ·‖Ni‖g + mong ·

|H|∑

j=1

‖(NH)j‖g

≤ atig,|H|+1 ·mong ·

‖Ni‖g +

|H|∑

j=1

‖(NH)j‖g

 ,

where the second step follows from M = M∗ +N , the third step follows from
∑|H|
j=1(M∗H)jαj −

M∗i = 0, the fourth step follows from the approximate triangle inequality, the fifth step follows
from the fact that |αj | ≤ 1 and g is mong-monotone, and the sixth step follows from that g is
mong-monotone.

A.2 Proof of Lemma 2.2

Proof. Using Part (I) of Lemma 2.1, we have

Pr
H∼([m]

2k),i∼[m]\H
[i 6∈ RM∗(H ∪ {i})] ≥ 1/2.

For each set H , we define PH = Pri∼[m]\H [i 6∈ RM∗(H ∪ {i})]. We have

1 ≥ 1(
m
2k

)
∑

H∈([m]
2k)

PH ≥ 1/2. (2)

13

We can show
1(
m
2k

)
∣∣∣∣
{
H

∣∣∣∣ H ∈
(

[m]

2k

)
, PH ≥ 1/4

}∣∣∣∣

=
1(
m
2k

)
∑

H∈([m]
2k),PH≥1/4

1

≥ 1(
m
2k

)
∑

H∈([m]
2k),PH≥1/4

PH

≥ 1

2
− 1(

m
2k

)
∑

H∈([m]
2k),PH<1/4

PH

≥ 1

2
− 1(

m
2k

)
∑

H∈([m]
2k),PH<1/4

1

4

≥ 1

2
− 1(

m
2k

)
(
m

2k

)
1

4

=
1

4
,

where the second step follows since 1 ≥ PH , the third step follows since Eq. (2), the fourth step
follows since PH < 1/4.

Thus, we have ∣∣∣∣
{
H

∣∣∣∣ H ∈
(

[m]

2k

)
, PH ≥ 1/4

}∣∣∣∣ ≥
(
m

2k

)
/4.

Recall the definition of PH , we have∣∣∣∣
{
H

∣∣∣∣ H ∈
(

[m]

2k

)
, Pr
i∼[m]\H

[i /∈ RM∗(H ∪ {i})] ≥ 1/4

}∣∣∣∣ ≥
(
m

2k

)
/4,

which implies

Pr
H∼([m]

2k)

[∣∣∣∣
{
i

∣∣∣∣ i ∈ [m] \H, i 6∈ RM∗(H ∪ {i})
}∣∣∣∣ ≥ (m− 2k)/4

]
≥ 1/4.

A.3 Proof of Claim 2.3

Proof. For simplicity, we omit i in all the subscripts in this proof.

Pr
H∼(T2k)

∑

j∈H
‖∆j‖g ≤ 400

k

m

m∑

j= m
100k

‖∆tj‖g

= Pr
H∼(T2k)

∑

j∈H
‖∆j‖g ≤ 400

k

m

m∑

j= m
100k

‖∆tj‖g
∣∣∣∣ ∃j ≤

m

100k
, tj ∈ H

 · Pr

H∼(T2k)

[
∃j ≤ m

100k
, tj ∈ H

]

+ Pr
H∼(T2k)

∑

j∈H
‖∆j‖g ≤ 400

k

m

m∑

j= m
100k

‖∆tj‖g
∣∣∣∣ ∀j ≤

m

100k
, tj /∈ H

 · Pr

H∼(T2k)

[
∀j ≤ m

100k
, tj /∈ H

]

≤ Pr
H∼(T2k)

[
∃j ≤ m

100k
, tj ∈ H

]

︸ ︷︷ ︸
C1

+ Pr
H∼(T2k)

∑

j∈H
‖∆j‖g ≤ 400

k

m

m∑

j= m
100k

‖∆tj‖g
∣∣∣∣ ∀j ≤

m

100k
, tj /∈ H

︸ ︷︷ ︸
C2

14

It remains to upper bound the terms C1 and C2. We can upper bound C1:

C1 = 1− (1− m/100k

m
) · (1− m/100k

m− 1
) · · · · · (1− m/100k

m− 2k + 1
)

≤ 1− (1− m/100k

m/2
)2k

≤ 1− (1− 1

25
)

=
1

25
,

where the second step follows since m ≥ 1000k.

Using Markov’s inequality,

C2 ≤
E

H∼(T2k)

[
∑
j∈H ‖∆j‖g ≤ 400 k

m

m∑
j= m

100k

‖∆tj‖g
∣∣∣∣ ∀j ≤ m

100k , tj /∈ H
]

400 k
m

m∑
j= m

100k

‖∆tj‖g
≤ 1/100,

where the second step follows since

E
H∼(T2k)

∑

j∈H
‖∆j‖g ≤ 400

k

m

m∑

j= m
100k

‖∆tj‖g
∣∣∣∣ ∀j ≤

m

100k
, tj /∈ H

≤ 2k

m−m/100k

m∑

j= m
100k

‖∆tj‖g

≤ 4
k

m

m∑

j= m
100k

‖∆tj‖g

A.4 Proof of Claim 2.4

Proof. For simplicity, we omit i in all the subscripts in this proof.
∣∣∣∣∣∣

tj

∣∣∣∣ tj ∈ T, ‖∆tj‖g ≥
20

m

m∑

j′= m
100k

‖∆tj′‖g

∣∣∣∣∣∣

≤
∣∣∣∣
{
tj

∣∣∣∣ tj ∈ T, j ≤
m

100k

}∣∣∣∣+

∣∣∣∣∣∣

tj

∣∣∣∣ tj ∈ T, j >
m

100k
, ‖∆tj‖g ≥

20

m

m∑

j′= m
100k

‖∆tj′‖g

∣∣∣∣∣∣

≤
∣∣∣∣
{
tj

∣∣∣∣ tj ∈ T, j ≤
m

100k

}∣∣∣∣+

∣∣∣∣∣∣

tj

∣∣∣∣ tj ∈ T, j >
m

100k
, ‖∆tj‖g ≥

10

m− m
100k

m∑

j′= m
100k

‖∆tj′‖g

∣∣∣∣∣∣

≤ m

100k
+

1

10
(m− m

100k
)

≤ 1

5
m,

where the second step follows since 20
m ≥ 10

m−m/100k

A.5 Proof of Lemma 2.5

Proof. For simplicity, we omit i in all the subscirptis in this proof.

15

Let M = AT , M∗ = A∗T and N = ∆T . Then we can apply Lemma 2.2 and part (II) of Lemma 2.1:

Pr
H∼(T2k)

∣∣∣∣∣∣

j ∈ T

∣∣∣∣ min
x∈R|H|

‖AHx−Aj‖g ≤ atig,|H|+1 ·mong ·

‖∆j‖g +

|H|∑

j′=1

‖(∆H)j′‖g

∣∣∣∣∣∣
≥ m

4

 ≥ 1

4

(3)

By Claim 2.3, we have

Pr
H∼(T2k)

|H|∑

j=1

‖(∆H)j‖g ≤ 400
k

m

m∑

j= m
100k

‖∆tj‖g

 ≥ 19

20
(4)

Due to Claim 2.4,
∣∣∣∣∣∣

tj

∣∣∣∣ tj ∈ T, ‖∆tj‖g ≥
20

m

m∑

j′= m
100k

‖∆tj′‖g

∣∣∣∣∣∣
≤ 1

5
m

Combining the above equation with the pigeonhole principle, for any I ⊆ T with |I| ≥ m/4, we
have

∣∣∣∣∣∣

tj

∣∣∣∣ tj ∈ I, ‖∆tj‖g <
20

m

m∑

j′= m
100k

‖∆tj′‖g

∣∣∣∣∣∣
≥ 1

4
m− 1

5
m =

1

20
m (5)

Consider the quantity ‖∆j‖g +
∑|H|
j=1 ‖(∆H)j′‖g in Eq. (3). We use Eq. (4) and Eq. (5) to provide

an upper bound,

‖∆j‖g +

|H|∑

j′=1

‖(∆H)j′‖g ≤
(

20

m
+

400k

m

) m∑

j′= m
100k

‖∆tj′‖g.

Eq. (4) will decrease the final probability by (1 − 19/20) (from 1/4 to 1/4 − 1/20). Eq. (5) will
decrease the size of this set of j by 1

5m (from 1
4m to 1

4m− 1
5m).

Putting it all together, we can update Eq. (3) in the following sense,

Pr
H∼(T2k)

∣∣∣∣∣∣

j

∣∣∣∣ j ∈ T, min
x∈R|H|

‖AHx−Aj‖g ≤ C ·
1

m
·

m∑

j′= m
100k

‖∆tj′‖g

∣∣∣∣∣∣
≥ (

1

4
− 1

5
)m

 ≥ 1

4
− 1

20
.

where

C = (400 + 20) · k · atig,|H|+1 ·mong .

A.6 Proof of Theorem 1.2

Proof. The running time is discussed at the beginning of Section 2. In the remaining of the proof, we
will focus on the correctness of Algorithm 1.

Firstly, let us consider the size of the output S. For i ∈ {0} ∪ [r], let mi = |Ti|. We set number
of rounds r to be the smallest value such that mr < 1000k. By the algorithm, we have mi =
mi−1 − 2k− (mi−1 − 2k)/20 ≤ 19/20 ·mi−1. Thus, r = O(log n). In each round i, the size of Si
is 2k. Then |S| = |Tr|+

∑r
i=1 |Si| ≤ 1000k + r · 2k ≤ O(k log n).

Next, let us consider the quality of S. Since each regression call has 1 − 1/ poly(n) success
probability, all the regression calls succeed with probability at least 1− 1/poly(n). In the remaining
of the proof, we condition on that all the regression calls succeed.

16

Let us fix i ∈ [r], j ∈ [log n]. Recall that Ti = {ti,1, ti,2, · · · , ti,mi} and ‖∆ti,1‖g ≥ ‖∆ti,2‖g ≥
· · · ≥ ‖∆ti,mi

‖g . By regression property and Lemma 2.5, with probability at least 1/4,
∑

q∈R(j)
i

min
x∈R2k

‖A
S

(j)
i
x−Aq‖g

≤
∑

q∈R(j)
i

v
(j)
i,q

≤ regg,2k ·(mi − 2k) · 500 · k · atig,2k+1 ·mong /mi ·
mi∑

j′=
mi

100k

‖∆ti,j′‖g

≤ regg,2k+1 · atig,2k+1 ·mong ·O(k) ·
mi∑

j′=
mi

100k

‖∆ti,j′‖g.

For each i ∈ [r], since we repeat log(n) times, the success probability can be boosted to at least
1− 1/ poly(r), i.e., with probability at least 1− 1/ poly(r), we have

∑

q∈Ri

min
x∈R2k

‖ASix−Aq‖g ≤ regg,2k+1 · atig,2k+1 ·mong ·O(k) ·
mi∑

j′=
mi

100k

‖∆ti,j′‖g. (6)

In the remaining of the proof, we condition on above inequality for every i ∈ [r]. Without loss of
generality, we suppose ‖∆1‖g ≥ ‖∆2‖g ≥ · · · ≥ ‖∆n‖g . We have

n∑

q=1

min
x∈R|S|

‖ASx−Aq‖g

≤

∑

q∈Tr

min
x∈R|Tr|

‖ATrx−Aq‖g

+

r∑

i=1

∑

q∈Ti−1\Ti

min
x∈R2k

‖ASix−Aq‖g

=

r∑

i=1

∑

q∈Ti−1\Ti

min
x∈R2k

‖ASix−Aq‖g

≤
r∑

i=1

regg,2k+1 · atig,2k+1 ·mong ·O(k) ·
mi∑

j′=
mi

100k

‖∆ti,j′‖g

≤
r∑

i=1

regg,2k+1 · atig,2k+1 ·mong ·O(k) ·
mi∑

j′=
mi

100k

‖∆j′‖g

= regg,2k+1 · atig,2k+1 ·mong ·O(k) ·
n∑

j′=1

‖∆j′‖g
(

argmin
i∈[r]

{mi < j′} − argmin
i∈[r]

{ mi

100k
< j′

}
+O(1)

)

≤ regg,2k+1 · atig,2k+1 ·mong ·O(k log k) · ‖∆‖g,
where the third step follows from Ti−1 \ Ti = Si ∪ Ri and Equation (6), the
forth step follows from ‖∆j′‖g ≥ ‖∆ti,j′‖g, and the last step follows from(

argmini∈[r] {mi < j′} − argmini∈[r]

{
mi

100k < j′
}

+O(1)
)
≤ O(log k).

B Necessity of the Properties of g

We note that an approximate triangle inequality is necessary to obtain a column subset selection
algorithm. An example function not satisfying this is the “jumping function”: gτ (x) = |x| if |x| ≥ τ ,
and gτ (x) = 0 otherwise. For the identity matrix I and any k = Ω(log n), the Johnson-Lindenstrauss
lemma implies one can find a rank-k matrix B for which ‖I − B‖∞ < 1/2, that is, all entries of

17

I − B are at most 1/2. If we set τ = 1/2, then ‖I − B‖gτ = 0, but for any subset IS of columns
of the identity matrix we choose, necessarily ‖I − ISX‖∞ ≥ 1, so ‖I −B‖gτ > 0. Consequently,
there is no subset of a small number of columns which obtains a poly(k log n)-approximation with
the jumping function loss measure.

While the jumping function does not satisfy the Approximate triangle inequality, it does satisfy our
only other required structural property, the Monotone property.

There are interesting examples of functions g which are only approximately monotone in the above
sense, such as the quantile function ρτ (x), studied in [39] in the context of regression, where for a
given parameter τ , ρτ (x) = τx if x ≥ 0, and ρτ (x) = (τ − 1)x if x < 0. Only when τ = 1/2 is
this a monotone function with mong = 1 in the above definition, in which case it coincides with the
absolute value function up to a factor of 1/2. For other constant τ ∈ (0, 1), mong is a constant. The
loss function ρτ (x) is also sometimes called the scalene loss, and studied in the context of low rank
approximation in [13].

When τ = 1 this is the so-called Rectified Linear Unit (ReLU) function in machine learning, i.e.,
ρ1(x) = x if x ≥ 0 and ρ1(x) = 0 if x < 0. In this case mong = ∞. and the optimal rank-k
approximation for any matrix A is 0, since ‖A − λ11>‖ρ1

= 0 if one sets λ to be a large enough
positive number, thereby making all entries of A− λ11> negative and their corresponding cost equal
to 0. Notice though, that there are no good column subset selection algorithms for some matrices A,
such as the n × n identity matrix. Indeed, for the identity, if we choose any subset AS of at most
n − 1 columns of A, then for any matrix X there will be an entry of A − ASX which is positive,
causing the cost to be positive. Since we will restrict ourselves to column subset selection, being
approximately monotone with a small value of mong in the above definition is in fact necessary to
obtain a good approximation with a small number of columns, as the ReLU function illustrates (see
also related functions such as the leaky ReLU and squared ReLU [40, 41, 42]).

Note that the ReLU function is an example which satisfies the triangle inequality, showing that our
additional assumption of approximate monotonicity is required.

Thus, if either property fails to hold, there need not be a small subset of columns spanning a relative
error approximation. These examples are stated in more detail below.

B.1 Functions without Approximate Triangle Inequality

In this section, we show how to construct a function f such that it is not possible to obtain a good
entrywise-f low rank approximation by selecting a small subset of columns. Furthermore, f is
monotone but does not have the approximate triangle inequality. Theorem B.4 shows this result.

First, we show that a small subset of columns cannot give a good low rank approximation in `∞
norm. Then we reduce the `∞ column subset selection problem to the entrywise-f column subset
selection problem.

The following is the Johnson-Lindenstrauss lemma.
Lemma B.1 (JL Lemma). For any n ≥ 1, ε ∈ (1/

√
n, 1/2), there exists U ∈ Rn×k with k =

O(ε−2 log(n)) such that ‖UU> − In‖∞ ≤ O(ε), where In ∈ Rn×n is an identity matrix.
Theorem B.2. For n ≥ 1, there is a matrix A ∈ Rn×n with the following properties. Let k =
Θ(ε−2 log(n)) for an arbitrary ε ∈ (1/

√
n, 1/2). Let D ∈ Rn×n denote a diagonal matrix with

n− 1 nonzeros on the diagonal. We have
min

X∈Rn×n
‖XDA−A‖∞ ≥ 1

and
min

rank−k A′
‖A′ −A‖∞ < O(ε).

Proof. We choose A to be the identity matrix. By Lemma B.1, we can find a rank-k matrix B for
which

‖A−B‖∞ ≤ O(ε).

Since A is an n× n identity matrix, even if we can use n− 1 columns to fit the other columns, the
cost is still at least 1.

18

In the following, we state the construction of our function f .
Definition B.3. We define function f(x) to be f(x) = c if |x| > τ and f(x) = 0 if |x| ≤ τ . Given
matrix A, we define ‖A‖f =

∑n
i=1

∑n
j=1 f(Ai,j).

Theorem B.4 (No good subset of columns). For any n ≥ 1, there is a matrix A ∈ Rn×n with the
following property. Let k ≥ c log n for a sufficiently large constant c > 0. Let D ∈ Rn×n denote an
arbitrary diagonal matrix with n− 1 nonzeros on the diagonal. For f with parameter τ = 1/4, we
have

min
X∈Rn×n

‖XDA−A‖f > 0

and
min

rank−k A′
‖A′ −A‖f = 0.

Proof. We can set A to be the identity matrix. Due to Theorem B.2, there exists A′ for which
minrank−k A′ ‖A′ − A‖∞ < 1/4, which implies that minrank−k A′ ‖A′ − A‖f = 0. Also due to
Theorem B.2, we have minX∈Rn×n ‖XDA−A‖∞ = 1, and thus, minX∈Rn×n ‖XDA−A‖f > 0.

B.2 ReLU Function Low Rank Approximation

In this section, we discuss a function which has the approximate triangle inequality but is not
monotone. The specific function we discuss in this section is ReLU . The definition of ReLU is
defined in Definition B.5. First, we show that ReLU low rank approximation has a trivial best rank-k
approximation. Second, we show that for some matrices, there is no small subset of columns which
can give a good low rank approximation.
Definition B.5. We define function ReLU(x) to be ReLU(x) = max(0, x). Given matrix A, we
define ‖A‖ReLU =

∑n
i=1

∑n
j=1 ReLU(Ai,j).

In the rank-k approximation problem, given an input matrixA, the goal is to find a rank-k matrixB for
which ‖A−B‖ReLU is minimized. A simple observation is that if we set B to be a matrix with each
entry of value ‖A‖∞, then the value of each entry of A−B is at most 0. Thus, ‖A−B‖ReLU = 0.
Furthermore, the rank of B is 1.

Now, consider the column subset selection problem, let input matrix A ∈ Rn×n be an identity matrix.
Then even if we can choose n− 1 columns, they can never fit the remaining column. Thus, the cost is
at least 1. But as discussed, the best rank-k cost is always 0. This implies that any subset of columns
cannot give a good rank-k approximation.

C Regression Solvers

In this section, we discuss several regression solvers.

C.1 Regression for Convex g

Notice that when the function g is convex, the regression problem minX∈Rd×m ‖AX −B‖g for any
given matrices A ∈ Rn×d, B ∈ Rn×m is a convex optimization problem. Thus, it can be solved
exactly by convex optimization algorithms.
Fact C.1. Let g be a convex function. Given A ∈ Rn×d, B ∈ Rn×m, the regression problem
minX∈Rd×m ‖AX −B‖g can be solved exactly by convex optimization in poly(n, d,m) time.

If a function g has additional properties, i.e. g is symmetric, monotone and grows subquadratically,
then there is a better running time constant approximation algorithm shown in [43]. Here “grows
quadratically” means that there is an α ∈ [1, 2] and cg > 0 so that for a, a′ with |a| > |a′| > 0,

∣∣∣ a
a′

∣∣∣
α

≥ g(a)

g(a′)
≥ cg

∣∣∣ a
a′

∣∣∣ .

This kind of function g is also called a “sketchable” function. Notice that the Huber function satisfies
the above properties.

19

Theorem C.2 (Modified version of Theorem 3.1 of [43]). Function g is symmetric, monotone and
grows subquadratically (g is a G-function defined by [43]). Given a matrix A ∈ Rn×d and a
matrix B ∈ Rn×m, there is an algorithm which can output a matrix X̂ ∈ Rd×m and a fitting cost
vector y ∈ Rm such that with probability at least 1 − 1/ poly(nm), ∀i ∈ [m], ‖AX̂i − Bi‖g ≤
O(1) ·minx∈Rd ‖Ax−Bi‖g, and yi = Θ(‖AX̂i −Bi‖g). Furthermore, the running time is at most
Õ(nnz(A) + nnz(B) +m · poly(d log n)).

Proof. We run O(log(nm)) repetitions of the single column regression algorithm shown in Theorem
3.1 of [43] for all columns Bi for i ∈ [m]. For each regression problem ‖Ax− Bi‖g, we take the
solution whose estimated cost is the median among these O(log(nm) repetitions as X̂i. Then by the
Chernoff bound, we can boost the success probability of each column to 1− 1/ poly(nm). By taking
a union bound over all columns, we complete the proof.

C.2 `p Regression

One of the most important cases in regression and low rank approximation problems is when the error
measure is `p. For `p regression, though it can be solved by convex optimization/linear programming
exactly, we can get a much faster running time if we allow some approximation ratios. In the
following theorem, we show that there is an algorithm which can be used to solve `p regression for
any p ≥ 1.

Theorem C.3 (Modified version of [44]). Let p ≥ 1, ε ∈ (0, 1). Given a matrix A ∈ Rn×d and a
matrix B ∈ Rn×m, there is an algorithm which can output a matrix X̂ ∈ Rd×m and a fitting cost
vector y ∈ Rm such that with probability at least 1 − 1/ poly(nm), ∀i ∈ [m], ‖AX̂i − Bi‖pp ≤
(1 + ε) ·minx∈Rd ‖Ax − Bi‖pp, and yi = Θ(‖AX̂i − Bi‖pp). Furthermore, the running time is at
most Õ(nnz(A) + nnz(B) +mnmax(1−2/p,0) · poly(d)).

Proof. As in the proof of Theorem C.2, we only need to run O(log(nm)) repetitions of the single
column regression algorithm shown in [44].

C.3 `0 Regression

Definition C.4 (Regular partition). Given a matrix A ∈ Rn×k, we say {S1, S2, · · · , Sh} is a regular
partition for [n] with respect to the matrix A if, for each i ∈ [h],

rank(ASi) = |Si|, and rowspan(ASi) = rowspan
(
A∪

h
j=iSj

)
,

where ASi ∈ R|Si|×k denotes the matrix that selects a subset Si of rows of the matrix A.

Algorithm 2 `0 regression [28]

procedure L0REGRESSION(A, b, n, k, c) . Theorem C.5
x′ ← 0k

{S1, S2, · · · , Sh} ← GENERATEREGULARPARTITION(A,n, k)
x′ ← 0k

for i = 1→ h do
Find a x̃ such that ASi x̃ = bSi
if ‖Ax̃− b‖0 < ‖Ax′ − b‖0 then

x′ ← x̃
end if

end for
return x′

end procedure

[28] studied the Nearest Codeword problem over finite fields F2. Their proof can be extended to
the real field and generalized to Theorem C.5. For completeness, we still provide the proof of the
following result.

20

Theorem C.5 (Generalization of [28]). Given matrix A ∈ Rn×k and vector Rn, for any c ∈ [1, k],
there is an algorithm (Algorithm 2) that runs in nO(1) time and outputs a vector x′ ∈ Rk such that

‖Ax′ − b‖0 ≤ k min
x∈Rk

‖Ax− b‖0.

Proof. Let x∗ ∈ Rk denote the optimal solution to minx∈Rk ‖Ax− b‖0. We define set E as follows

E = {i ∈ [n] | (Ax∗)i 6= bi}.
We create a regular partition {S1, S2, · · · , Sh} for [n] with respect to A.

Let i denote the smallest index such that |Si ∩ E| = 0, i.e.,

i = min{j | |Sj ∩ E| = 0}.
The linear equation we want to solve is ASix = bSi . Let x̃ ∈ Rk denote a solution to ASi x̃ = ASix∗

(Note that, by our choice of i, bSi = ASix∗). Then we can rewrite ‖Ax̃− b‖0 in the following sense,

‖Ax̃− b‖0 =

i−1∑

j=1

∥∥ASj x̃− bSj
∥∥

0
+

h∑

j=i

∥∥ASj x̃− bSj
∥∥

0
. (7)

For each j ∈ {1, 2, · · · , i− 1}, we have

‖ASj x̃− bSj‖0 ≤ k
≤ ‖ASjx∗ − bSj‖0 · dke, (8)

where the first step follows from |S0| ≤ k, and the last step follows from ‖ASjx∗ − bSj‖0 ≥ 1,
∀j ∈ [i− 1].

Note that, by our choice of i, we have ASi x̃ = ASix∗. Then for each j ∈ {i, i+ 1, · · · , n}, using the
regular partition property, there always exists a matrix P(j) such that ASj = P(j)A

Si . Then we have

ASj x̃ = P(j)A
Si x̃ = P(j)A

Six∗ = ASjx∗. (9)

Plugging Eq. (8) and (9) into Eq. (7), we have

‖Ax̃− b‖0 =

i−1∑

j=1

∥∥ASj x̃− bSj
∥∥

0
+

h∑

j=i

∥∥ASj x̃− bSj
∥∥

0

≤ k
i−1∑

j=1

∥∥ASjx∗ − bSj
∥∥

0
+

h∑

j=i

∥∥ASjx∗ − bSj
∥∥

0

≤ k‖Ax∗ − b‖0.
This completes the proof.

D Hardness

D.1 Column Subset Selection for the Huber Function

The rough idea here is to define k = Ω(
√

log n) groups of columns, where we carefully choose the
i-th group to have n1−2iε columns, ε = .2/(1.5k), and in the i-th group each column has the form

n1.5iε · 1n + [±n−.2+iε, . . . ,±n−.2+iε,±n.5+2iε, . . . ,±n.5+2iε],

where there are n−n.1 coordinates where the perturbation is randomly either +n−.2+iε or−n−.2+iε,
and the remaining n.1 coordinates are randomly either +n.5+2iε or −n.5+2iε. We call the former
type of coordinates “small noise”, and the latter “large noise”. All remaining columns in the matrix
are set to 0. Because of the random signs, it is very hard to fit the noise in one column to that of
another column. One can show, that to approximate a column in the j-th group by a column in the
i-th group, i < j, one needs to scale by roughly n1.5(j−i)ε, just to cancel out the “mean” n1.5jε · 1n.

21

But when doing so, since the Huber function is quadratic for small values, the scaled small noise
is now magnified more than linearly compared to what it was before, and this causes a column in
the i-th group not to be a good approximation of a column in the j-th group. On the other hand, if
you want to approximate a column in the j-th group by a column in the i-th group, i > j, one again
needs to scale by roughly n1.5(j−i)ε just to cancel out the “mean”, but now one can show the large
noise from the column in the i-th group is too large and remains in the linear regime, causing a poor
approximation. The details of this construction are given in the following theorem.
Theorem D.1. Let H(x) denote the modified Huber function with τ = 1, i.e.,

H(x) =

{
x2/τ, if |x| < τ ;

|x|, if |x| ≥ τ.
For any n ≥ 1, there is a matrix A ∈ Rn×n such that, if we select o(

√
log n) columns to fit the entire

matrix, there is no O(1)-approximation, i.e., for any subset S ⊆ [n] with |S| = o(
√

log n),

min
X∈R|S|×n

‖ASX −A‖H ≥ ω(1) · min
rank−1 A′

‖A′ −A‖H .

Proof. Suppose there is an algorithm which only finds a subset with size k/2 = o(
√

log n). We want
to prove a lower bound on its approximation ratio.

Let ε = 0.2/(1.5k). Let A denote a matrix with k + 1 groups of columns.

For each group i ∈ [k], Ii has n1−2iε columns which are

n1.5iε

n1.5iε

n1.5iε

...
n1.5iε

n1.5iε

n1.5iε

n1.5iε

+

±n−0.2+iε

±n−0.2+iε

...
±n−0.2+iε

±n0.5+2iε

±n0.5+2iε

...
±n0.5+2iε

∈ Rn,

where ± indicates i.i.d. random signs. For the error column, the first n− n0.1 rows are n−0.2+iε, and
the last n0.1 rows are n0.5+2iε.

The last group of n−∑k
i=1 n

1−2iε columns are

0
0
...
0
0

∈ Rn.

The optimal cost is at most
k∑

i=1

n1−2iε · ((n− n0.1)H(n−0.2+iε) + n0.1H(n0.5+2iε)) ≤
k∑

i=1

n1−2iε(n · n−0.4+2iε + n0.6+2iε) ≤ O(kn1.6).

where the second step follows since n−0.2+iε < 1 and n0.5+2iε ≥ 1. Thus, it implies
min

rank−1 A′
‖A′ −A‖H ≤ O(kn1.6).

Now let us consider the lower bound for using a subset of columns to fit the matrix. First, we fix a
set S = {j1, j2, · · · , jk/2} of k/2 columns. Since there are k groups, and |S| ≤ k/2, the number
of groups Ii for i ∈ [k] with S ∩ Ii = ∅ is at least k/2. It means that there are at least k/2 groups
for which S does not have any column from them. Notice that the optimal cost is at most O(kn1.6),
so it suffices to prove that ∀i ∈ [k] with Ii ∩ S = ∅, each column j ∈ Ii will contribute a cost of
ω(n0.6+2iε).

For notation, we use group(j) to denote the index of the group which contains the column j. For
each column j, we use ∆j to denote the noise part, and use A∗j to denote the rank-1 “ground truth”
part. Notice that Aj = A∗j + ∆j .

22

Claim D.2 (Noise cannot be used to fit other vectors). Let x1, x2, · · · , xs ∈ Rm be s random
sign vectors. Then with probability at least 1 − 2s · 2−Θ(m/2s), ∀α1, α2, · · · , αs ∈ R, the size of
Zα1,α2,··· ,αs = {i ∈ [m] | sign((α1x1)i) = sign((α2x2)i) = · · · = sign((αsxs)i) = sign(+1)} is
at least Ω(m/2s).

Proof. For a set of fixed α1, α2, · · · , αs, the claim follows from the Chernoff bound. Since there
are 2s different possibilities of signs of α1, · · · , αs, taking a union bound over them completes the
proof.

Now we consider a specific column j ∈ Ii for some i ∈ [k], where Ii ∩ S = ∅. Suppose the fitting
coefficients are α1, α2, · · · , αk/2. Consider the following term

(α1Aj1 + α2Aj2 + · · ·+ αk/2Ak/2)−Aj
= (α1A

∗
j1 + α2A

∗
j2 + · · ·+ αk/2A

∗
k/2 −A∗j) + (α1∆j1 + α2∆j2 + · · ·+ αk/2∆k/2 −∆j)

Let u∗ = (α1A
∗
j1

+ α2A
∗
j2

+ · · · + αk/2A
∗
k/2 − A∗j). By Claim D.2, with probability at least

1− (k/2) · 2−Θ(n/2k/2),

|{t ∈ [n] | sign(u∗t) = sign(α1∆j1,t) = · · · = sign(αk/2∆jk/2,t) = sign(−∆j,t)}| = Ω(n/2k/2).

Observe that all the coordinates of u∗ are the same, and the absolute value of each entry of u∗ should
be at most O(n1.5iε). Otherwise the column already has ω(n/2k/2 ·n1.5iε) = ω(n0.6+2iε) cost. Thus,
the magnitude of each entry of α1A

∗
j1

+ α2A
∗
j2

+ · · · + αk/2A
∗
k/2 is Θ(n1.5iε). Thus, there exists

t ∈ [k/2], such that the absolute value of each entry of αtA∗jt is at least Ω(n1.5iε/k). Then there are
two cases.

The first case is group(t) < group(j). Let group(t) = i′. Then |αt| = Ω(n1.5(i−i′)ε/k). By
Claim D.2 again, with probability at least 1− (k/2) · 2−Θ(n/2k/2), the size of

{z ∈ [n− n0.1] | sign(u∗z) = sign(α1∆j1,z) = · · · = sign(αk/2∆jk/2,z) = sign(−∆j,z)}

is at least Ω(n/2k/2). Thus, the cost to fit is at least Ω(n/2k/2) · (n−0.2+i′εn1.5(i−i′)ε/k)2 =
ω(n0.6+2iε).

The second case is group(t) > group(j). Let group(t) = i′. Then |αt| = Ω(n1.5(i−i′)ε/k). By
Claim D.2 again, with probability at least 1− (k/2) · 2−Θ(n0.1/2k/2), the size of

{z ∈ {n− n0.1 + 1, · · · , n} | sign(u∗z) = sign(α1∆j1,z) = · · · = sign(αk/2∆jk/2,z) = sign(−∆j,z)}

is at least Ω(n0.1/2k/2). Thus, the fitting cost is at least Ω(n0.1/2k/2) · (n0.5+2i′εn1.5(i−i′)ε/k) =
ω(n0.6+2iε).

By taking a union bound over all columns j, we have with probability at least 1− 2n
Θ(1)

, the total
cost to fit by a column subset S is at least ω(kn1.6).

Then, by taking a union bound over all the
(
n
k

)
number of sets S, we complete the proof.

D.2 Column Subset Selection for the Reverse Huber Function

In this section, we consider a “reverse Huber function”: g(x) = x2 if x ≥ 1 and g(x) = |x| for
x ≤ 1.
Theorem D.3. Let g(x) denote the “reverse Huber function” with τ = 1, i.e.,

H(x) =

{
x2/τ, if |x| > τ ;

|x|, if |x| ≤ τ.
For any n ≥ 1, there is a matrix A ∈ Rn×n such that, if we select only 1 column to fit the entire
matrix, there is no no(1)-approximation to the best rank-1 approximation, i.e., for any subset S ⊆ [n]
with |S| = 1,

min
X∈R|S|×n

‖ASX −A‖g ≥ nΩ(1) · min
rank−1 A′

‖A′ −A‖g.

23

τ = 0.8 τ = 1 τ = 2

H(x) =

{
x2/2τ if |x| ≤ τ ;
|x| − τ/2 otherwise.

H̃(x) =

{
|x|/2 if |x| ≤ τ ;
x2/4τ + τ/4 otherwise.

Figure 3: The blue curve is the Huber function which combines an `2-like measure for small x with
an `1-like measure for large x. The red curve is the “reverse” Huber function which combines an
`1-like measure for small x with an `2-like measure for large x.

Proof. Let A ∈ Rn×n have one column that is a = (n1/2, 0, . . . , 0)> and n − 1 columns that are
each equal to b = (0, 1/n, 1/n, . . . , 1/n)>. If we choose one column which has the form as a to fit
the other columns, the cost is at least (n− 1)2/n = Θ(n). If we choose one column which has the
form as b to fit the other columns, the cost is at least (n1/2)2 = Θ(n).

Now we consider using a vector c = (1/n1/4, 1/n, 1/n, . . . , 1/n)> to fit all the columns. One can
use c to approximate a with cost at most (n−1) ·n3/4/n = Θ(n3/4) by matching the first coordinate,
while one can use c to approximate b with cost at most 1/n1/4 by matching the last n− 1 coordinates,
and since there are n− 1 columns equal to b, the overall total cost of using c to approximate matrix
A is Θ(n3/4).

24

