
Appendix A: Proof of Theorem 1

Proof. By definition of the posterior density p(x|y) in (2) and the projected posterior density pr(x|y)
in (14), we have

DKL(p(x|y) | pr(x|y)) =

∫
Rd

log

(
py(x)

pry(x)

Zr
Z

)
1

Z
py(x)dx

=

∫
Rd

(ηy(xr)− ηy(x))
1

Z
py(x)dx+ log

(
Zr
Z

)
,

(32)

where we used the definitions of py(x) and pry(x) in (2) and (14) in the second equality. By definition
of ηy in (3), we have

ηy(xr)− ηy(x) =
1

2
||y − f(xr)||2Γ −

1

2
||y − f(x)||2Γ

= yTΓ−1(f(x)− f(xr))− 1

2
(f(x) + f(xr))TΓ−1(f(x)− f(xr))

≤ ||yT ||Γ||f(x)− f(xr)||Γ +
1

2
||f(x) + f(xr)||Γ||f(x)− f(xr)||Γ

≤ Cb
2

(2||yT ||Γ + ||f(x)||Γ + ||f(xr)||Γ)||x− xr||X

(33)

where we used Assumption 1 in the second inequality for max{||x||X , ||xr||X} < b. Therefore, the
first integral in (32), denoted as (I) can be bounded by (note that exp(−ηy(·)) ≤ 1)

(I) ≤ Cb
2Z

∫
Rd

(
2||yT ||Γ + ||f(x)||Γ + ||f(xr)||Γ

)
p0(x)dx ||x− xr||X , (34)

By Assumption 1, we have
(I) ≤ CI ||x− xr||X , (35)

for a constant CI = Cb(||yT ||Γ + Cf)/Z.

For the second term log(Zr/Z) in (32), we have for∣∣∣1− Zr
Z

∣∣∣ =
1

Z
|Z − Zr|

≤ 1

Z

∫
Rd

| exp(−ηy)− exp(−ηry)|p0(x)dx

≤ 1

Z

∫
Rd

|ηy − ηry|p0(x)dx

≤ CI ||x− xr||X ,

(36)

where in the second inequality we used that |e−τ1 − e−τ2 | < |τ1 − τ2| for τ1, τ2 > 0, for the last
inequality we used the bound of the first integral of (32). Then by log(1 + τ) ≤ τ for τ ≥ 0, we have

log

(
Zr
Z

)
≤ log

(
1 +

∣∣∣Zr
Z
− 1
∣∣∣) ≤ ∣∣∣Zr

Z
− 1
∣∣∣ ≤ CI ||x− xr||X , (37)

which completes the proof with constant C = 2CI

Appendix B: Globalization by line search

Except for in the case of a linear inference problem, the cost functional—Kullback–Leibler
divergence—is nonconvex. In the case of that the Newton approximation to the Kullback–Leibler
divergence is locally exact, the simple choice of ε = 1 is the optimal choice for the step size. However,
since the geometry generally exhibits complex non-quadratic local structure, a constant stepsize ε
renders minimization of DKL inefficient. A careful choice of the step size ε is crucial for both fast
convergence and stability of Stein variational methods. While, there are many options to choose from,

11

we employ an Armijo line search globalization method to choose this step size, to much success.
Specifically, at step l = 1, 2, . . . , we seek ε to minimize the Kullback–Leibler divergence

DKL((Tl)∗πl−1|πy) = DKL(πl−1|(Tl)∗πy), (38)

where (Tl)
∗ is the pullback operator. Because

DKL(πl−1|(Tl)∗πy) = Eπl−1
[log(πl−1(·))]

− Eπl−1
[log(πy(Tl(·))|det ∇wTl(·)|)],

(39)

where the first term does not depend on ε. Hence we only need to consider the second term denoted
as D(2)

KL , which is evaluated by the sample average approximation as

D(2)
KL ≈−

1

N

N∑
n=1

log(πy(Tl(w
l−1
n)))

− 1

N

N∑
n=1

log(|det ∇wTl(wl−1
n)|),

(40)

which can be readily computed for every ε. We remark that the second term of (40) is close to 0 when
the kernel function kn(w) in (21) is close to 0 at every sample wl−1

m for m 6= n, so we only need to
consider the first term of (40). Moreover, to guarantee that D(2)

KL is reduced for a suitable ε, we can
find sample-dependent step sizes ε(wl−1

n) such that

− log(πy(Tl(w
l−1
n))) (41)

is reduced for each n = 1, . . . , N .

Appendix C: Complexity analysis for parallel pSVN

We presented a parallel implementation of pSVN in Algorithm 1. Lines 4 and 12 involve global
communication(gather and broadcast) of the low-dimensional samples wm, m = 1, . . . ,M , of
size Mr, which are used for the kernel and its gradient evaluations at all samples, as well as for
the sample update in (21). Line 7 involves global communication (gathers and broadcasts) of the
gradients (of size Mr) and Hessians (of size Mr2) of the log posterior density (25), which are used
in the expectation evaluation at all samples for assembling the system (27). Line 9 involves global
communication (gathers and broadcasts) of the kernel values (of size NM) at all samples, which are
used in moving the samples by (21). Meanwhile, Line 9 gathers a local sum of the kernel values∑
m km(w) (of size N) and its gradients

∑
m∇wkm(w) (of size rN), performs a global sum of

them, and broadcasts the results to all cores, which are used for assembling the lumped Hessian (28).
In summary, the data volumes of communication in Algorithm 1 are bounded by max(Mr2,MN)
floats.

To implement a parallel version of the adaptive pSVN Algorithm 2, we only need to construct
the bases Ψ in parallel to replace its Line 5, for which we perform an averaged Hessian action in
random directions with M samples in each core by O(M(rCh)) flops, followed by a MPI_Allreduce
with a SUM operator to get a global averaged Hessian action before performing randomized SVD
with O(dr2) flops. The data volumes for communication is dr floats, which dominates all other
communication cost if d is so large that dr > max(r2M,NM). Alternatively, we can construct the
bases Ψ using Hessian at the local samples in each core without communication for Ψ.

Appendix D: Bayesian Autoencoder Example

We consider a Bayesian inference problem constrained by a convolutional autoencoder neural network.

In the Bayesian autoencoder problem, we seek to learn a low dimensional representation of data
under uncertainty. Given input data z ∈ Rdata the 2m layer autoencoder mapping is defined as

y(·) = ◦2mi=1φi(wi ∗ (·) + bi) (42)

where wi is the convolution kernel (weights) for layer i, and φi is an nonlinear activation functions.
The ∗ operations represents both convolution and downsampling. The first m compositions map

12

down to a low dimensional latent representation of the input data z, the last m compositions map the
data back to Rdata.

The data z for the problem are 1000 randomly selected MNIST images. The target data has 5%
i.i.d. noise added to it based on min-max normalization of the data. The objective function for
the autoencoder training problem is a least squares misfit that measures the error between the
reconstructed input image and the noisy target image. The inference parameter {xi} = {(wi, bi)} ∈
Rd has the i.i.d. priorN (0, σ2

i), where σ1 = 1, and σ2
i+1 = 0.5σ2

i . We use a fixed convolution kernel
support of 4× 4 and vary the number of filters on each layer from 2, 4, 8 and use m = 2 layers.

Low rank structure of Hessians has been observed for neural network training problems [1, 15, 25].
Due to the low dimensional nature of the autoencoder, the pSVN algorithm can efficiently find a r
dimensional Hessian subspace. The dimensionality of this subspace depends on the decay of the
absolute eigenvalues |λi|.
Numerical results are shown below in Figure 4. In these trials the problem dimension of the inference
parameter is 133; 128 particles were used. A fixed candidate rank was chosed to be r = 40, which is
the effective rank of the prior preconditioned Hessian for the problem as seen in the left figure in 4.
The right figure shows that pSVN minimizes the objective function in training faster than the SVN
algorithm for this particular example.

0 20 40 60 80
i

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g1

0(
|

i|)

2 4 6 8 10 12 14
Iterations

2.1

2.2

2.3

2.4

2.5

2.6
Lo

g1
0(

Tr
ai

ni
ng

 E
rro

r)

Log10(Training error), d = 133
SVN train
pSVN train

Figure 4: Left: Absolute value of eigenvalues of the prior preconditioned Hessian used for the pSVN
subspace. Right: Training error for pSVN vs SVN.

Appendix E: Code

We implemented the stein variational methods (and the DILI MCMC method) in hIPPYlib (https:
//hippylib.github.io/), a python library for solving inverse problems, which relies on FEniCS
(https://fenicsproject.org/), a computing platform for solving partial differential equations.
The code for our tests can be downloaded from https://github.com/cpempire/pSVN.

13

https://hippylib.github.io/
https://hippylib.github.io/
https://fenicsproject.org/
https://github.com/cpempire/pSVN

