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A Test of Consistency

A.1 Terminology

A connected graph G is such that there is a path between each pair of vertices of G. A connected

component of a graph is a maximal connected subgraph. An articulation point (or cut point) is a
vertex in a connected graph whose removal would disconnect the graph and thus increase its number
of connected components. A biconnected graph is a connected graph without articulation point. A
biconnected component (or block) is a maximal biconnected subgraph.

A.2 Biconnected Component Analysis

For a pair (X,Y ) in a graph G, one of the necessary conditions for its separating set to be consistent,
as stated in definition 1, is that for each vertex Z in the separating set, Z lies on a path �Z

XY between
X and Y in the skeleton of G. For one pair of vertices, checking the existence of a path for all Z can
already be time consuming if the degrees of the vertices are large. In addition, the complexity will
be further multiplied by the number of pairs to be considered. Fortunately, it is possible to avoid
this high complexity with the help of the biconnected component analysis based on block-cut tree
decomposition, and thus to limit the search of consistent separating vertices within those that are
consistent with respect to the skeleton.
Definition 5 (Block-cut tree). G a connected (sub)graph. The block-cut tree decomposition of G is
denoted by T (B,C,Br) where B = { bi }mi=1 is the set of biconnected components (or blocks) of
G, C = { cj }nj=1 is the set of articulation points (or cut points) and Br = { (bi, cj) | bi 2 B, cj 2
C, bi and cj are adjacent in T } is the set of connections between B and C.

In the following we establish a relation between biconnected components and the path existence
problem.
Lemma 6 (Menger’s theorem for biconnected graph). Let G(V ,E) be a biconnected graph,

{X,Y } ✓ V a pair of vertices. There is a cycle in G that contains X and Y .

Theorem 7. Let G(V ,E) be an undirected graph, H(VH,EH) ✓ G a biconnected component of

G, {X,Y } ✓ VH a pair of vertices, and Z 2 VG a third vertex. There is a path �Z
XY if and only if

Z 2 VH.

Proof. If there is a path �Z
XY , suppose that Z /2 VH, then the subgraph H0 of G over VH [ {Z } is

biconnected thanks to �Z
XY , and H ⇢ H0 is not a biconnected component of G as it is not maximal.

Therefore we must have Z 2 VH.

If {X,Y, Z } ✓ VH, then lemma 6 guarantees a cycle that contains Z and Y . Since VH contains at
least three vertices, such a cycle contains n � 1 vertices other than Z and Y , and can be represented
by two edge-distinct paths between Z and Y :

�(1)
ZY = ZU1U2 · · ·UkY, �(2)

ZY = ZUk+1Uk+2 · · ·UnY

where k 2 Z�0 (with k = 0 indicating a direct edge between Z and Y ), n 2 Z+, k < n and {Ui }ni=1
are distinct vertices. Since Y is not an articulation point, there is a path �XZ that does not contain Y :

�XZ = XD1D2 · · ·DmZ
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where m 2 Z�0 and {Dj }mj=1 are distinct vertices. If {Ui }ni=1 \ {Dj }mj=1 = ;, then there is a
path

�Z
XY = �XZ�

(i)
ZY , i 2 { 1, 2 }.

Otherwise, suppose {Ui }ni=1 \ {Dj }mj=1 = {Dp1 , Dp2 , . . . , Dpt } where t 2 Z+ and p1 < p2 <
· · · < pt, and suppose Dp1 = Ul. If l  k, then there is a path

�Z
XY = XD1D2 · · ·Dp1(Ul)Ul�1 · · ·U1�

(2)
ZY ,

if l > k, then there is a path

�Z
XY = XD1D2 · · ·Dp1(Ul)Ul�1 · · ·Uk+1�

(1)
ZY .

As a result, if {X,Y, Z } ✓ VH, then there is always a path �Z
XY .

Corollary 8. Let G(V ,E) be a connected graph, T (B,C,Br) the block-cut tree decomposition

of G, {X,Y } ✓ V a pair of vertices, nX , nY the corresponding nodes of X and Y in T , and

S = {Z 2 V \ {X,Y } | at least one path �Z
XY exists. }

1. If nX = nY = bi 2 B, then S = V (bi) \ {X,Y }.

2. If nX 6= nY , let ⌫XY = w1w2 · · ·wk, w1 = nX , wk = nY be the path between nX and

nY where each wi belongs to B or C, then S =
S
(V (wi))

k
i=1 \ {X,Y }.

The first case is a direct result of theorem 7. The second case is not difficult to prove once we notice
the fact that ⌫XY is the unique path between nX and nY in T , and that every �XY must contain all
the cut points in ⌫XY , and thus can be decomposed into segments of paths between these cut points.

Each undirected graph G(V ,E) can be decomposed into a set of single vertices and a set of connected
subgraphs, where each subgraph can be represented by a block-cut tree. Based on this decomposition,
algorithm 5 gives the consistent candidate vertices for separating set for a pair of vertices as described
in definition 1.

Algorithm 5 Consistent candidates
Require: (Partially directed) graph G(V ,E), its block-cut tree decomposition for each connected

component (with respect to its skeleton) { Ti(B,C,Br) }, two vertices {X,Y } ✓ V
Ensure: Set of all candidate vertices Consist(X,Y | G).

if X and Y do not belong to the same block-cut tree Ti then

return ;
end if

if X and Y belong to the same block bi 2 B then

return (Ne(X) \ Child(X)) \ (V (bi) \ {X,Y })
else

⌫XY  TreePath(nX , nY ) = w1w2 · · ·wk

return (Ne(X) \ Child(X)) \ (
S
(V (wi))

k
i=1 \ {X,Y })

end if

The block-cut tree decomposition can be done beforehand within a single depth first search with
complexity O(|V | + |E|). Thus for each pair (X,Y ), the complexity of finding all candidate Z
depends on the size of the block-cut tree. In the worst case where G is a forest with only bridges
(edges, the removal of each bridge increases the number of connected components of G), the number
of nodes and branches in the block-cut tree T of G is of the same order of |V | and |E|, and for all
pair of vertices {X,Y } ✓ V we need to perform a path search in T of complexity O(|V |+ |E|)
to get S. In the best scenario where G is biconnected, S = V \ {X,Y } for all pairs. Then, an
operation of set intersection (Ne(X) \Child(X))\S with linear complexity O(|Ne(X)|+ |S|) will
give the result.
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B Supplementary Figures
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Figure S1: Precision-recall curves for the original PC-stable (yellow), orientation-consistent PC-stable

(blue) and skeleton-consistent PC-stable (green). Data-sets of N=100 samples (top row) or of N=1000
(bottom row), with strong (left), medium (middle) and weak (right) interactions. See Figure 4 for more
information.
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Figure S2: Proportion of valid d-separation sepsets among edge-removing sepsets found during recon-

struction. Data-sets of N=100 samples (top two rows) or of N=1000 (bottom two rows), with strong (left),
medium (middle) and weak (right) interactions. See Figure 6 for more information.
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