
Supplementary material: fast structure learning with modular regularization

A Proofs

A.1 Proof of proposition 2.1

Proposition. 2.1 restated. The random variables X and Z are described by a directed graphical
model where the parents of X are in Z and the Z’s are independent if and only if TC(X|Z) +
TC(Z) = 0.

Proof. Because TC is always non-negative,
TC(X|Z) + TC(Z) = 0 , TC(Z) = 0 and TC(X|Z) = 0.

We also have the following standard statements [6]

TC(X|Z) = 0 , 8x, z, p(x|z) =
pY

i=1

p(xi|z),

TC(Z) = 0 , 8z, p(z) =
mY

j=1

p(zj).

Putting these together, we have

8x, z, p(x, z) =
pY

i=1

mY

j=1

p(xi|z)p(zj).

We can see that this statement is equivalent to the definition of a Bayesian network for random
variables X,Z with respect to the graph in Fig. 1a.

A.2 Proof of theorem 2.1

Theorem. 2.1 restated. A multivariate Gaussian distribution p(x, z) is a modular latent factor model
if and only if TC(X|Z) + TC(Z) = 0 and 8i, TC(Z|Xi) = 0.

Proof. First we show that for any modular latent factor model, even non-Gaussian, the constraints
are satisfied. Thm. 2.1 establishes that the model implies TC(X|Z) + TC(Z) = 0. We must
show that the additional restriction that each Xi has only one parent, Z⇡i , implies the condition
8i, TC(Z|Xi) = 0. Looking at the rules for d-separation we see that Z1, . . . , Zm are independent
conditioned on Xi. Therefore, 8i, TC(Z|Xi) = 0.

Now, we show that a multivariate Gaussian distribution p(x, z) with TC(X|Z) + TC(Z) = 0 and
8i, TC(Z|Xi) = 0 is a modular latent factor model:

8x, z, p(x, z) =
pY

i=1

p(xi|z⇡i)
mY

j=1

p(zj), for some ⇡i 2 {1, 2, . . . ,m}.

By Thm. 2.1 we have that 8x, z, p(x, z) =
Qp

i=1 p(xi|z)
Qm

j=1 p(zj). To complete the proof we
show that (TC(Z) = 0 & TC(Z|Xi) = 0) ) p(xi|z) = p(xi|z⇡i) for some ⇡i 2 {1, . . . ,m}. We
have

p(xi|z) = p(xi)/p(z)
mY

j=1

p(zj |xi)

= p(xi)
mY

j=1

p(zj |xi)/p(zj)

= p(xi)
mY

j=1

p(zj , xi)/(p(xi)p(zj)). (5)
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We also have that TC(Z|Xi) = 0 ) 8j 6= k,Cov[Zj , Zk|Xi] = 0. For Gaussians
Cov[Zj , Zk|Xi] = Cov[Zj , Zk] � Cov[Zj , Xi]Cov[Zk, Xi]/Var[Xi]. Having Var[Xi] > 0 and
(TC(Z) = 0 ) Cov[Zj , Zk] = 0), we get Cov[Zj , Xi] = 0 _ Cov[Zk, Xi] = 0. There-
fore, for all but at most one index, ⇡i, it must be the covariance of Xi and Zj is zero, so that
p(zj , xi) = p(xi)p(zj). Putting this in Eq. (5) we get p(xi|z) = p(xi|z⇡i).

Note that we cannot remove the Gaussian assumption, since it is possible to have TC(X|Z) =
0, TC(Z) = 0, and 8i, TC(Z|Xi) = 0, but still have two non-trivial parents for one Xi. For
example, if Z1, Z2

iid⇠ Bernoulli(1/2) and X1 = 2Z1 + Z2. It can be easily seen that the conditions
are satisfied, but it is impossible to model X1 with only Z1 or Z2 as its parent.

B Complete derivation of linear CorEx

In this section we describe the complete derivation of linear CorEx. The first step is to define the family
of joint distributions we are searching over by parametrizing pW (z|x). If X1:p is Gaussian, then
we can ensure X1:p, Z1:m are jointly Gaussian by parametrizing pW (zj |x) = N (wT

j x, ⌘
2
j ), wj 2

Rp, j = 1..m, or equivalently by z = Wx+ ✏ with W 2 Rm⇥p, ✏ ⇠ N (0, diag(⌘21 , . . . , ⌘2m)). The
noise variances ⌘2j are taken to be constants. Please note the implicit conditional independence
assumption, TC(Z|X) = 0, we are making using this parameterization. We do this assumption since
modular latent factor models have TC(Z|X) = 0, and it simplifies further derivations. W.l.o.g. we
assume the data is standardized so that E [Xi] = 0,E

⇥
X2

i

⇤
= 1.1 If it is not standardized we can

standardize it using the empirical means and standard deviations. Motivated by Thm. 2.1, we will
start with the following optimization problem:

minimize
W

TC(X|Z) + TC(Z) +
pX

i=1

Qi, (6)

where Qi are regularization terms for encouraging modular solutions (i.e. encouraging solutions with
smaller value of TC(Z|Xi).2 We will later specify this regularizer as a non-negative quantity that
goes to zero in the case of exactly modular latent factor models. The TC(X|Z) + TC(Z) part of the
Eq. (6) can be rewritten as follows:

TC(X|Z) + TC(Z) =
pX

i=1

H(Xi|Z)�H(X|Z) +
mX

j=1

H(Zj)�H(Z)

=
pX

i=1

H(Xi|Z) +
mX

j=1

H(Zj)� (H(X|Z) +H(Z))

=
pX

i=1

H(Xi|Z) +
mX

j=1

H(Zj)� (H(Z|X) +H(X))

=
pX

i=1

H(Xi|Z) +
mX

j=1

(H(Zj)�H(Zj |X)) +H(X)

/
pX

i=1

H(Xi|Z) +
mX

j=1

I(Zj ;X). (7)

The first two lines invoke definitions and re-arrange. The third line uses Bayes’ rule to rewrite the
entropies. The fourth line invokes conditional independence of Z’s conditioned on X. Next, we write

1Unless specified all expectations are taken with respect to the joint distribution pW (x, z).
2One can set Qi / TC(Z|Xi). However, we choose not to do this since we do not have a derivation that

leads the resulting objective into an equivalent, but efficiently computable objective.
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out the explicit form of expressions in Eq. (7) for Gaussians and ignore constants:

pX

i=1

H(Xi|Z) +
mX

j=1

I(Zj ;X)

=
pX

i=1

1

2
EZ log (2⇡eVar[Xi|Z]) +

mX

j=1

(H(Zj)�H(Zj |X))

=
pX

i=1

1

2
logEZ [2⇡eVar[Xi|Z]] +

mX

j=1

(H(Zj)�H(Zj |X))

/ 1

2

pX

i=1

logE
⇥
(Xi � EXi|Z [Xi|Z])2

⇤
+

1

2

mX

j=1

(logVar[Zj ]� EX logVar[Zj |X])

/ 1

2

pX

i=1

logE
⇥
(Xi � EXi|Z [Xi|Z])2

⇤
+

1

2

mX

j=1

�
logE

⇥
Z2
j

⇤
� log(⌘2j )

�

/ 1

2

pX

i=1

logE
⇥
(Xi � EXi|Z [Xi|Z])2

⇤
+

1

2

mX

j=1

logE
⇥
Z2
j

⇤
. (8)

We used the fact that the differential entropy of a Gaussian variable with variance �2 is equal to
1/2 log(2⇡e�2). Also, we used the fact that if A,B are jointly Gaussian random variables, then
H(A|B) / EB logVar[A|B] = logEBVar[A|B]. The logarithm and expectation can be swapped
because for Gaussians Var[A|B] is constant for any value of B. In the fifth line we replace Var[Zj ]
with E

⇥
Z2
j

⇤
, because having E [X] = 0 and zj = wT

j x+ ✏j implies E [Zj ] = 0. Considering Eq. (8),
the problem (6) becomes:

minimize
W

pX

i=1

(1/2 logE
⇥
(Xi � µXi|Z)

2
⇤
+Qi) +

mX

j=1

1/2 logE
⇥
Z2
j

⇤
, (9)

where µXi|Z = EXi|Z [Xi|Z]. For Gaussians, calculating µXi|Z requires a computationally unde-
sirable matrix inversion. Instead, we will select Qi to eliminate this term while also encouraging
modular structure. According to Thm. 2.1, modular models obey TC(Z|Xi) = 0, which implies that
p(xi|z) = p(xi)/p(z)

Q
j p(zj |xi). Let ⌫Xi|Z be the conditional mean of Xi given Z under such

factorization. Then it will have the following form (see Sec. B.1 for the derivation):

⌫Xi|Z =
1

1 + ri

mX

j=1

ZjBj,iq
E
⇥
Z2
j

⇤ ,

with Rj,i =
E [XiZj ]q

E [X2
i ]E

⇥
Z2
j

⇤ , Bj,i =
Rj,i

1�R2
j,i

, ri =
mX

j=1

Rj,iBj,i.

We see that computing ⌫Xi|Z is easier since it requires no matrix inversion and depends only on
pairwise statistics between observed and latent variables. If we let Qi = 1/2 logE

⇥
(Xi � ⌫Xi|Z)

2
⇤
�

1/2 logE
⇥
(Xi � µXi|Z)

2
⇤
, we will replace µXi|Z with ⌫Xi|Z in problem (9). To see why this also
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encourages modular structures we note that

Qi =
1

2
logE

⇥
(Xi � ⌫Xi|Z)

2
⇤
� 1

2
logE

⇥
(Xi � µXi|Z)

2
⇤

=
1

2
log

E
⇥
(Xi � ⌫Xi|Z)

2
⇤

E
⇥
(Xi � µXi|Z)

2
⇤

=
1

2
log

 
E
⇥
(Xi � ⌫Xi|Z + µXi|Z � µXi|Z)

2
⇤

E
⇥
(Xi � µXi|Z)

2
⇤

!

=
1

2
log

 
E
⇥
(Xi � µXi|Z)

2
⇤
+ E

⇥
(µXi|Z � ⌫Xi|Z)

2
⇤
+ 2E

⇥
(Xi � µXi|Z)(µXi|Z � ⌫Xi|Z)

⇤

E
⇥
(Xi � µXi|Z)

2
⇤

!

=
1

2
log

 
1 +

E
⇥
(µXi|Z � ⌫Xi|Z)

2
⇤
+ 2EZEXi|Z

⇥
(Xi � µXi|Z)(µXi|Z � ⌫Xi|Z)

⇤

E
⇥
(Xi � µXi|Z)

2
⇤

!

=
1

2
log

 
1 +

E
⇥
(µXi|Z � ⌫Xi|Z)

2
⇤

E
⇥
(Xi � µXi|Z)

2
⇤
!

� 0.

We see that this regularizer is always non-negative and is zero exactly for modular latent factor
models (when µXi|Z = ⌫Xi|Z). Summing up, the final objective simplifies to the following:

minimize
W

pX

i=1

1/2 logE
⇥
(Xi � ⌫Xi|Z)

2
⇤
+

mX

j=1

1/2 logE
⇥
Z2
j

⇤
. (10)

This objective depends on pairwise statistics and requires no matrix inversion. The global minimum
is achieved for modular latent factor models. The next step is to approximate the expectations in the
objective (3) with empirical means and optimize it with respect to the parameters W .

After training the method we can interpret ⇡̂i 2 argmaxj I(Zj ;Xi) = argmaxj �1/2 log(1�R2
j,i) =

argmaxj |Rj,i| as the parent of variable Xi. Additionally, we can estimate the covariance matrix of
the observed variables. The method we use for estimating the covariance is as follows. First, we
have assumed that the data is standardized, so we just need to calculate the off-diagonal terms. If
TC(X|Z) = 0, this implies the conditional covariance of X given Z is diagonal. Additionally, using
the law of total covariance we have:

Cov [Xi, X` 6=i] = E [Cov[Xi, X`|Z]] + Cov
⇥
µXi|Z , µX`|Z

⇤
.

By combining the last two statements we get:

E [Cov[Xi, X` 6=i|Z]] = E [XiX`]� E
⇥
µXi|ZµX`|Z

⇤
= 0.

If we assume the constraints TC(Z) = 0 & 8i, TC(Z|Xi) = 0 are satisfied, we saw that this implies
µXi|Z = ⌫Xi|Z . Also, as TC(Z) = 0 ) E [ZjZk] = �j,kE

⇥
Z2
j

⇤
, the off-diagonal elements of

E [XiX`] satisfy:

E [XiX` 6=i] = E
⇥
⌫Xi|Z⌫X`|Z

⇤
=

(B>B)i,`
(1 + ri)(1 + r`)

.

In conclusion we get the following covariance matrix estimates:

b⌃i,` 6=i =
(BTB)i,`

(1 + ri)(1 + r`)
, b⌃i,i = 1. (11)

Note that the covariance matrix estimate corresponds to the covariance matrix of the learned model if
TC(X|Z) = 0, TC(Z) = 0, and 8i, TC(Z|Xi) = 0, i.e. the learned model is modular. Otherwise
it is an approximation of to the covariance matrix of the learned model. From Eq. 11 we see that
the estimates are low-rank plus diagonal matrices. In case when the learned model is modular, it is
also block-diagonal with each block being a diagonal plus rank-one matrix. Therefore, encouraging
modular structures pushes the low-rank covariance estimate to be also block-diagonal with each block
being a diagonal plus rank-one matrix.
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B.1 Derivation of the conditional mean under modularity constraints

Under the conditions that X,Z are jointly Gaussian and 8i, TC(X|Zi) = 0, we would like to
derive the mean of Xi conditioned on Z, ⌫Xi|Z . We have that TC(Z|Xi) = 0 ) p(xi|z) =
p(xi)/p(z)

Q
j p(zj |xi). We will look at the distribution q(xi|z) = p(xi)/p(z)

Q
j p(zj |xi) and

calculate the conditional mean of this distribution.

Let Rj,i be the Pearson correlation coefficient between Zj and Xi whose means and standard
deviations are respectively indicated with ⌫j , ⇢j and µi,�i (all with respect to the distribution p). The
marginal distribution for the Gaussian distribution relating Zj and Xi is well known:

p(zj |xi) = N (⌫j +Rj,i⇢j/�i(xi � µi), (1�R2
j,i)⇢

2
j ).

Now we look only at the exponents of q(xi|z), ignoring the normalization, to get the following:

� log q(xi|z) / (xi � µi)
2/�2

i +
mX

j=1

(zj � ⌫j �Rj,i⇢j/�i(xi � µi))
2/((1�R2

j,i)⇢
2
j ).

Collecting only the terms involving xi we get the following:

� log q(xi|z) / Ax2
i +Bxi + C,

with A = 1/�2
i +

mX

j=1

R2
j,i⇢

2
j/�

2
i

(1�R2
j,i)⇢

2
j

, B = �2µi/�
2
i �

mX

j=1

2(zj � ⌫j + µiRj,i⇢j/�i)Rj,i⇢j/�i

(1�R2
j,i)⇢

2
j

.

From completing the square, we see that the conditional mean of Xi|Z has the form ⌫Xi|Z =
�B/(2A).

Finally, we simplify the formulae because µi = E [Xi] = ⌫j = E [Zj ] = 0 and �2
i = E

⇥
X2

i

⇤
= 1.

This implies that Rj,i = E [XiZj ] /
q
E [X2

i ]E
⇥
Z2
j

⇤
, leaving us with the following form:

⌫Xi|Z =
1

1 + ri

mX

j=1

Bj,i
Zjq
E
⇥
Z2
j

⇤ , with Bj,i =
Rj,i

1�R2
j,i

, ri =
mX

j=1

Rj,iBj,i.

C Sample complexity lower bound

In this section we derive a lower bound on sample complexity for learning the structure of modular
latent factor model. We follow the construction of information-theoretic sample complexity bounds
in [7].
Theorem C.1. For a multivariate Gaussian modular latent factor model with p observed variables
X1:p, m latent variables Z1:m with p/m children each and additive white Gaussian noise channel
from parent to child with signal-to-noise ratio s , the number of samples, n, required to recover the
structure of the graphical model with error probability ✏ is lower bounded as

n �
2
⇣
(1� ✏) log

⇣� p
p/m,...,p/m

�
1
m!

⌘
� 1
⌘

(p� 1) log(1 + s 1�1/m
1�1/p )� (m� 1) log(1 + s p

m )
. (12)

Proof. Consider the class of modular latent factor models with p observed variables and m latent
factors each having exactly p/m children. To distinguish the structure among this class of models
corresponds to partitioning the observed variables into m equally sized groups. The number of such
groupings is,

M =

✓
p

p/m, . . . , p/m

◆
1

m!
,

the multinomial coefficient for dividing p items into m equally sized boxes, divided by the number of
indistinguishable permutations among boxes, m!. We take ✓ 2 {1, . . . ,M} to be an index specifying
a model in this ensemble. Now learning the structure corresponds to finding ✓ from data.
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W.l.o.g. assume 8j,Var[Zj ] = b. Then Xi = Z⇡✓(i) + ⌘i, where ⇡✓(i) is the index of the parent
of Xi in model ✓ and ⌘i is independent Gaussian noise with variance a. Since we have fixed the
signal-to-noise ratio, we have that a = b/s. W.l.o.g. we can assume that 8i,E[Xi] = 0. Then the
covariance matrix of observed variables, ⌃✓,i,j = E[XiXj ] = b�⇡✓(i),⇡✓(j) + a�i,j , where � is the
Kronecker delta.

Fano’s inequality tells us that the probability of an error, ✏, in picking the correct index ✓ given n
samples of data, X1:n

1:p , is bounded as follows:

✏ � 1�
I(✓;X1:n

1:p ) + 1

logM
.

Following [7], we use an upper bound for the mutual information, I(✓;X1:n
1:p )  nF/2, where

F = log det ⌃̄� 1/M
MX

✓=1

log det⌃✓,

and ⌃̄ = 1/M
PM

✓=1 ⌃✓. Re-arranging Fano’s inequality gives the following sample complexity
bound:

n � 2
(1� ✏) logM � 1

F
.

All that remains is to find an expression for F . To build intuition, we explicitly write out the case for
p = 4,m = 2, and for some ✓.

⌃✓ =

2

64

b+ a b 0 0
b b+ a 0 0
0 0 b+ a b
0 0 b b+ a

3

75

Clearly this is a block diagonal matrix where each block is a diagonal plus rank-one (DPR1) matrix.
After we average over all ✓ to get ⌃̄, every off-diagonal entry will be the same, equal to the probability
of j 6= i being in the same group as i, or (p/m � 1)/(p � 1). Therefore ⌃̄ is also a DPR1 matrix.
Using standard identities for block diagonal and DPR1 matrices, we calculate the determinants:

det⌃✓ = ap
✓
1 +

b

a

p

m

◆m

,

det ⌃̄ = ap
✓
1 +

b

a

p

m

◆✓
1 +

b

a

p

m

✓
m� 1

p� 1

◆◆p�1

.

Finally, we can combine all of these expressions to get a lower bound for sample complexity that
depends only on p,m, and the signal-to-noise ratio, s = b/a.

The bound of Thm. C.1 is not very intuitive because it involves logarithm of a multinomial coefficient.
We provide a simpler asymptotic expression for the bound. Using Stirling’s approximation we have
that log

� p
p/m,...,p/m

�
1
m! ⇡ p logm+ 1/2 log(p/m)�m/2 log(m p 2⇡/e2) for large values of p. In

the limit of large p, this approximation gives us the following lower bound:

n � 2(1� ✏) logm

log (1 + s(1� 1/m))
.

Wee see that in the limit of large p the bound becomes constant rather than becoming infinite.
Moreover, when we plot the lower bound of Eq. (12) in Fig. 7, we see that for fixed number of
latent factors the bound goes down as we increase p. These two facts together hint (but do not
prove) that modular latent factor models may allow blessing of dimensionality. An evidence of
blessing of dimensionality is demonstrated in Sec. 4. Intuitively, recovery gets easier because more
variables provide more signal to reconstruct the fixed number of latent factors. While it is tempting to
retrospectively see this as obvious, the same argument could be (mistakenly) applied to other families
of latent factor models, such as the unconstrained latent factor models shown in Fig. 1a, for which
the sample complexity grows as we increase p [2, 15].
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Figure 7: Theorem C.1 prevents perfect structure recovery in the shaded region. On the left: for
fixed signal-to-noise ratio and number of latent factors, the lower bound of Thm. C.1 decreases as the
number of observed variables increases. On the right: the same effect is visible for other values of
signal-to-noise ratio.

D Implementation details

In this section we present details on baselines, experiments, and hyperparameters.

Baselines For factor analysis, PCA, sparse PCA, independent component analysis, k-means cluster-
ing, spectral clustering, negative matrix factorization, hierarchical agglomerative clustering using
Euclidean distance, hierarchical agglomerative clustering the Ward linkage rule, Ledoit-Wolf and
graphical LASSO we used the scikit-learn implementations [42]. We implemented latent tree mod-
eling with the “Relaxed RG” method. We slightly modified latent tree modeling to use the same
prior information as other methods in the comparison, namely, that there are exactly m groups and
observed nodes can be siblings, but not parent and child. For latent variable graphical LASSO, we
used the implementation available in the REGAIN repository.3

Experimental setups In the blessing of dimensionality experiments all methods were given the
correct number of clusters. The scores were computed using 10000 test examples. When possible we
reported the means and standard deviations over 20 runs. In the covariance estimation experiments
with synthetic data, models requiring a number of latent factors or a number of components were
given the correct number. The scores were computed using 1000 test examples. We reported the
means and standard deviations over 5 runs. In the stock market experiments models were trained
on n weeks and their estimates were evaluated using the negative log-likelihood on the subsequent
26 weeks. We presented the average score from rolling the training and testing sets over the entire
time period. Standard deviations are not presented because scores corresponding to different time
periods are very different, resulting in large standard deviations. This is due to the stock market
exhibiting different behaviour in different time periods. In experiments with OpenML datasets we
used a random 80-20 train-test split. We reported the negative log-likelihood on test sets. As large
amount of computation is needed to generate results on OpenML datasets, we did only a single run
for each dataset.

Hyperparameters In all cases the proposed method was trained using Adam optimizer with 0.01
learning rate, �1 = 0.9, and �2 = 0.999. In all covariance estimation problems the hyperparameters
were selected from a grid of values using a 3-fold cross-validation procedure. The sparsity parameter
of sparse PCA was selected from [0.1, 0.3, 1.0, 3.0, 10.0]. The sparsity parameters of GLASSO
and latent variable GLASSO were selected from [0.01, 0.1, 0.3, 1.0, 3.0, 10.0]. For latent variable
GLASSO, the additional regularization parameter (“tau”, controlling the nuclear norm of the low-
rank part of the inverse covariance matrix) was selected from [0.01, 0.1, 1.0, 10.0, 100.0]. In the
experiments with OpenML datasets the sparsity hyperparameter of BigQUIC was selected form
[20, 21, 22, 23]. In the timing experiments the sparsity parameters of sparse PCA and GLASSO were
set to 1.0. LVGLASSO was trained with the sparsity parameter set to 0.1 and with “tau” set to 30.0.

3https://github.com/fdtomasi/regain
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(a) Modular latent factor model (b) Modular + extra parents

(c) Modular + correlated Zs (d) Modular + extra parents and correlated Zs

Figure 8: Empirical covariance matrices (estimated using n = 104 samples) corresponding to modular
(a) and approximately modular (b, c, d) latent factor models. In all examples m = 8, p = 128,
s = 0.5.

E Details on generating synthetic data

In all experiments involving a synthetic modular latent factor model we generate the data the following
way. We first take m independent standard Gaussian random variables, Z1, Z2, . . . , Zm

iid⇠ N (0, 1).
For simplicity we assume that m divides p and each latent factor has exactly p/m children. W.l.o.g.
we connect the first p/m observed variables with Z1, then next p/m variables with Z2 and so on. We
assume additive white Gaussian noise channel with signal-to-noise ratio s from each parent to its
children. In this setup, we set Xi =

q
s

s+1Z⇡i +
q

1
s+1⌘i, where ⇡i is the index of the parent of Xi,

and ⌘i is independent standard Gaussian noise. Fig. 8a shows a covariance matrix corresponding to a
modular latent factor models created using the described procedure.

To create approximately modular latent factor models we do two modifications on a modular latent
factor model: correlating the latent variables and adding extra parents for observed variables. For
correlating the latent factors we take m independent standard normal random variables ⇠j , j = 1..m
and compute zj = (

p
2⇠j + ⇠u + ⇠v)/2, where u, v ⇠ Uniform{1, 2, . . . ,m}. For adding extra

parents, we randomly sample p extra edges from a latent factor to a non-child observed variable. By
this we create on average one extra edge per each observed variable. To keep the notion of clusters
well-defined, we make sure that each observed variable has higher mutual information with its main
parent compared to that with added extra parents. Suppose some Xi has k extra parents, Z⌧1 , . . . , Z⌧k .
Then we splits s

s+1 – the variance of the signal in a pure modular case – into k + 2 equal parts,
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(a) Modular latent factor model (b) Modular + extra parents

(c) Modular + correlated Zs (d) Modular + extra parents and correlated Zs

Figure 9: Mutual information matrices between observed variables and latent factors linear CorEx
produces when it is trained on a modular (a) and approximately modular (b, c, d) latent factor models.
In all examples m = 8, p = 128, s = 5.0.

Figure 10: Mutual information matrix between observed variables (stocks) and latent factors linear
CorEx produces when trained on the stock marked data (January 2014-January 2017).

� = s
(s+1)(k+2) . We then set Xi =

p
2�Z⇡i +

p
�Z⌧1 + · · ·+

p
�Z⌧k +

q
1

s+1⌘i, where again ⌘i is
independent standard Gaussian noise. Figs. 8b, 8c, 8d show covariance matrices corresponding to
approximately modular latent factor models created using the described procedures.

F Additional results

In this section we provide additional results that were not presented in the main text due to the space
constraints.

F.1 Examining the modularity of learned models

We do visualizations to see whether the regularization term of linear CorEx actually leads to learning
modular (or approximately modular) latent factor models. We examine the mutual information
matrices between observed and latent variables that linear CorEx produces when it is trained on
different types of synthetic data (see Fig 9). We see that the regularization term we add for encouraging
modular structures is indeed effective.
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Figure 11: Inverse covariance matrix of some of the S&P 500 stocks. Plotted are the cells that have
absolute value greater than 0.015.

Next, we look at the same mutual information matrix for stock market data. Fig. 10 shows the
mutual information matrix for S&P 500 stocks belonging to “consumer discretionary”, “consumer
staples”, “energy”, “financials”, and “health care” sectors. We see that most of the stocks have
significant mutual information only with a few latent factors. Moreover, stocks belonging to the
same sector are likely to share a parent. Additionally, we visualize the inverse covariance matrix of
these stocks (see Fig. 11). For Gaussian random variables the thresholded inverse covariance matrix
can be interpreted as a random Markov field. We see that it is almost block-diagonal, but has some
off-diagonal connections, confirming that the learned model is close to being a modular latent factor
model.

Summing up, all these visualizations assert that the linear CorEx succeeds in biasing the model
selection procedure towards modular structures. More importantly, we see that when the pure modular
structure is inappropriate, it picks solutions that are close to being modular.

F.2 Results on OpenML datasets

Table 2 presents a comparison of various covariance estimation baselines on 51 OpenML datasets.
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Table 2: This table compares covariance estimates on OpenML data. Scores reported are negative
log-likelihood (lower better) and the best entry is bolded. Scores orders of magnitude larger than
the best score or evaluating to NaN are shortened with “*”. Methods compared, in order, are PCA,
Sparse PCA, factor analysis, Ledoit-Wolf, GLASSO (using the BigQUIC algorithm), and the method
proposed in this paper.
ID:Dataset p n Methods

PCA SPCA FA LW BigQUIC Proposed

5:arrhythmia 206 54 178 -33 * 164 * -74
407:krystek 1143 24 2122 -1748 * 707 -1428 -2816
408:depreux 1143 20 1454 * * 852 * -482
409:pdgfr 321 63 112 40 * 83 364 -6
410:carbolenes 1143 29 1900 * * 923 * -8
419:PHENETYL1 629 17 876 560 5584 281 1041 286
420:cristalli 1143 25 1846 * * 1366 * 780
424:pah 113 64 -129 47 -188 25 134 58
439:chang 1143 27 2331 * * 1058 * -6
1017:arrhythmia 206 54 178 -33 * 164 * -60
1104:leukemia 7129 57 17028 13164 396636 7019 11530 7336
1107:tumorsC 7129 48 16990 8499 9642 8070 9398 8399
1122:APBreastProstat 10935 330 18427 17219 17741 13431 17002 10639
1123:APEndometriumBr 10935 324 18960 12616 12720 11356 18330 10452
1124:APOmentumUterus 10935 160 84928 82496 82656 66784 76832 66176
1125:APOmentumProsta 10935 116 90024 100392 100032 69168 81264 67560
1126:APColonLung 10935 329 84612 76362 76626 66198 76098 67188
1127:APBreastOmentum 10935 336 86020 88196 88604 66824 79968 68408
1128:OVABreast 10935 1236 83626 79434 79087 64951 76483 70308
1129:APUterusKidney 10935 307 85498 74276 74214 68882 75764 68882
1130:OVALung 10935 1236 81989 * 73904 81518 76409 69291
1131:APProstateUteru 10935 154 85653 73687 73625 67208 74617 67363
1132:APOmentumLung 10935 162 88803 83820 83424 70917 79002 68805
1133:APEndometriumCo 10935 277 84840 75376 75152 65576 76776 66920
1134:OVAKidney 10935 1236 81964 75144 73507 81592 76210 69242
1135:APColonProstate 10935 284 84702 82365 82194 65550 78318 67260
1136:APLungUterus 10935 200 87200 77880 77360 69200 76480 68440
1137:APColonKidney 10935 436 83776 73515 73084 66616 75882 68094
1138:OVAUterus 10935 1236 81964 74772 73358 81493 76136 69242
1139:OVAOmentum 10935 1236 81964 75442 74152 81567 76458 69266
1140:APOvaryLung 10935 259 87464 * 85280 86320 79560 68380
1141:APEndometriumPr 10935 104 90006 85449 84063 69447 77994 67263
1142:OVAEndometrium 10935 1236 81989 74574 73086 81493 76062 69242
1143:APColonOmentum 10935 290 84332 77198 77140 65250 76908 66816
1144:APProstateKidne 10935 263 85277 79553 79553 69589 77857 68052
1145:APBreastColon 10935 504 84416 77346 77305 65165 78144 68448
1146:OVAProstate 10935 1236 81989 75318 73160 81542 76434 69266
1147:APOmentumKidney 10935 269 84780 75114 74952 68796 77112 67770
1148:APBreastUterus 10935 374 85500 73275 73155 66892 79575 68475
1149:APOvaryKidney 10935 366 86062 * 76590 85470 77626 68835
1150:APBreastLung 10935 376 86868 86032 86260 68195 80332 69441
1151:APEndometriumOm 10935 110 89474 98868 100386 68178 80388 66550
1152:APProstateOvary 10935 213 87118 * 75594 86473 78045 68026
1153:APColonOvary 10935 387 85488 * 91572 85254 81198 68047
1154:APEndometriumLu 10935 149 89490 74940 75180 70350 76710 67260
1233:eating 6373 756 7843 6703 5381 -1110 7980 5457
1457:amazon-commerce 10000 1200 15576 11376 11256 10680 12216 10920
1458:arcene 10000 160 19181 9152 8746 -1267 * 8179
1484:lsvt 310 100 200 152 872 212 464 180
1514:micro-mass 1300 288 1166 50547 50912 1056 * -708
1515:micro-mass 1300 456 1260 8041 71493 1224 * 589

Total # wins 0 1 1 18 0 32
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