
A Remarks

In this section we present some remarks about our work.

Alternative protocol The protocol investigated in [33] updates the iterates via ωt+1,v =∑
w∈V Pvwωt,w − ηt

1
m

∑m
i=1

(
〈ωt,v, xi,v〉H − yi,v

)
xi,v. The original motivations for this pro-

tocol are that it is fully decentralised, that agents are only required communicate locally, and that it
reduces to a distributed averaging consensus protocol when the gradient is zero. The protocol (3)
that we consider preserves these properties while making the analysis easier. For a discussion on the
difference between the two protocols we refer to [41].

Network error The network error terms (5) and (6) track the error between the distributed protocol
and the ideal single-machine protocol. In the case of a complete graph the deviation is zero so the
network terms vanish and the convergence rates for Single-Machine Gradient Descent are recovered.
Following the literature on decentralised optimisation, we present our final results (cf. Theorem 2)
in terms of the spectral gap, so plugging in the spectral gap of a complete graph in the bound in
Theorem 2 does not immediately yield the Single-Machine Gradient Descent result.

Parameter tuning The choice of parameters in Theorem 1 depends on the quantities r and γ that
are related to the estimation problem. In practice, these quantities are often unknown. In the single-
machine setting, this lack of knowledge is typically addressed via cross-validation [48]. Investigating
the design of decentralised cross-validation schemes is outside of the scope of this work and we leave
it to future research. However, we highlight that as we consider implicit regularisation strategies and,
in particular, early stopping, model complexity can be controlled with iteration time and this yields
computational savings for cross-validation compared to methods that required to solve independent
problem instances for different choices of parameters.

Accelerated gossip Accelerated gossip schemes can also be considered to yield improved depen-
dence on the network topology, depending on the amount of information agents have access to about
the communication matrix P . Accelerated gossip can be achieved by replacing the matrix P by a
polynomial of appropriate order, e.g. k, leading to P̃ :=

∑k
`=1 α`P

`. The weights {α}`=1,...,K

can be tuned to increase the spectral gap i.e. (1 − σ2(P̃ ))−1 ≤ (1 − σ2)−1. We highlight that the
algorithm that we consider only needs to have access to the number of nodes n and the second
largest eigenvalue in magnitude σ2 of the matrix P . Within this framework, one can use Chebyshev
polynomials to obtain the improved rate (1− σ2(P̃ ))−1/2, and more information on the spectrum of
P yields better rates on the transitive phase [11, 5].

Additional requirements in Theorem 2 Theorem 2 includes two additional requirements over
single-machine gradient descent, which we briefly explain the origins of. The requirement θ ≤ 3/4
is purely cosmetic and serves to yield a cleaner bound. For more details, see the proof of Lemma 9 in
Section C.3.2. The requirement t/2 ≥ (r+1) log(t)

1−σ2
, on the other hand, often arises when analysing

Distributed Gradient Descent, see [18] for instance. In particular, it ensures sufficient iterations have
been performed to reach the mixing time of the Markov chain associated to P . See Section C.3.1.

Communication model We include additional details on the communication model. Consider a
lockstep communication model where each round lasts for τ units of time. Within each round, agents
send/receive the messages to/from their neighbours in order to implement a single update of algorithm
(3). With a gradient evaluation costing 1 unit of time, each iteration of Distributed Gradient Descent
takes the following amount of time m+ τ + Deg(P ): m gradient evaluations; τ in communication
delay; Deg(P ) for each agent to aggregating their neighbours and own gradients, as the sum in
algorithm (3)

∑
w∈V Pvw has computational cost O(Deg(P )). The delay τ can depend on factors

arising from: noisy transmission, compressing or decompressing messages and synchronizing with
neighbours. One particular model for τ is studied within [50] and discussed in the following remark.

Comparison to speed-up and communication model within [50] The work [50] assumes the
delay τ is a linear function of the network degree and some transmit time TTransmit ≥ 0 so τ =
TTransmitDeg(P ). In our work, for sufficiently many samples m, the speed-up under this model for
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any network topology is of the order nm
m+Deg(P )TTransmit

. Meanwhile, the speed-up seen within [50]
is3 of the order nm

m+Deg(P )TTransmit
(1− σ2), that is, same as ours but scaled by the spectral gap of the

communication matrix P .

B Proof scheme

In this section we illustrate the main scheme for the proof of Theorem 2, from which Theorem 1
follows. Section B.1 presents the error decomposition into bias, variance, and network terms. Section
B.2 presents the sketch of the statistical analysis for these terms, which is given in full in Section C.

B.1 Error decomposition

The error decomposition is based on the introduction of two auxiliary processes used to compare the
iterates of Distributed Gradient Descent (3).

The first auxiliary process represents the iterates generated if agents were to know the marginal
distribution ρX . Initialised at µ1 = 0, the process is defined as follows for t ≥ 1:

µt+1 = µt − ηt
∫
X

(〈µt, x〉H − fρ(x))xdρX(x).

This device has already been used in the analysis of non-parametric regression in the single-machine
setting [27].

The second auxiliary process represents the iterates generated if agents were to be part of a complete
graph topology and were to use the protocol given by P = 1

n11
>. Initialised at ξ1,v = 0 for all

v ∈ V , the process is defined as follows for t ≥ 1:

ξt+1,v =
∑
w∈V

1

n

(
ξt,w − ηt

1

m

m∑
i=1

(〈ξt,w, xi,w〉H − yi,w
)
xi,w

)
.

The analysis of iterative decentralised algorithms typically builds upon the introduction of a device
analogous to this one [33, 18]. Initialised at ξ1 = 0, Single-Machine Gradient Descent is defined as
follows for t ≥ 1:

ξt+1 = ξt − ηt
1

nm

∑
w∈V

m∑
i=1

(
〈ξt, xi,w〉H − yi,w

)
xi,w.

It is easy to see that we have ξt,v = ξt for t ≥ 1 and v ∈ V . This allows us to produce an analysis of
Distributed Gradient Descent that relies upon known results for Single-Machine Gradient Descent.

Let us introduce the linear map Sρ : H → L2(H, ρX) defined by Sρω = 〈ω, · 〉H . The following
error decomposition holds.
Proposition 1. For any t ≥ 1 and v ∈ V we have

E(ωt,v)− inf
ω∈H
E(ω) ≤ 2 ‖Sρµt − fH‖2ρ︸ ︷︷ ︸

(Bias)2

+4 ‖Sρ(ξt − µt)‖2ρ︸ ︷︷ ︸
Sample Variance

+4 ‖Sρ(ωt,v − ξt,v)‖2ρ︸ ︷︷ ︸
Network Error

.

Proof. From the work in [40], E(ω)− infω∈H E(ω) = ‖Sρω − fH‖2ρ for any ω ∈ H . Adding and
subtracting Sρµt and using ‖x− y‖2ρ ≤ (‖x‖ρ + ‖y‖ρ)2 ≤ 2‖x‖2ρ + 2‖y‖2ρ we get

E(ωt,v)− inf
ω∈H
E(ω) = ‖Sρωt,v − Sρµt + Sρµt − fH‖2ρ ≤ 2‖Sρωt,v − Sρµt‖2ρ + 2‖Sρµt − fH‖2ρ.

Following the same steps, adding and subtracting Sρξt,v , we find

‖Sρωt,v−Sρµt‖2ρ = ‖Sρωt,v−Sρξt,v + Sρξt,v−Sρµt‖2ρ ≤ 2‖Sρ(ωt,v − ξt,v)‖2ρ + 2‖Sρ(ξt − µt)‖2ρ
where we used the equality of {ξs,v}s≥1 and {ξs}s≥1.

3 The units of time within [50, Section 3.2] are in terms of the time taken to compute a gradient for nm
samples, and as such, can be translated into units per gradient computation by multiplying by nm.
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Proposition 1 decomposes the error into three terms. The first term ‖Sρµt − fH‖2ρ is deterministic
and corresponds to the square of the Bias in the single-machine setting [57]. The second term
‖Sρ(ξt − µt)‖2ρ aligns with what is called the Sample Variance in the single-machine setting, and
in this case matches the sample variance obtained for Single-Machine Gradient Descent run on all
nm observations. The third term ‖Sρ(ωt,v − ξt,v)‖2ρ accounts for the error due to performing a
decentralised protocol and we call it the Network Error.

B.2 Statistical analysis of error terms

In this section we illustrate the main ideas of the statistical analysis used to control the error terms in
Proposition 1. Full details are given in Section C.

Notation Let t and k be positive natural numbers with t − 1 ≥ k ≥ 1. For any operator
L : H → H , define Πt:k+1(L) := (I − ηtL)(I − ηt−1L) · · · (I − ηk+1L), with the conven-
tion Πt:t+1(L) := I , where I is the identity operator on H . Let wt:k+1 ≡ wtwt−1 . . . wk+1 :=
(wt, wt−1, . . . , wk+1) ∈ V t−k denote a sequence of nodes in V . For a family of opera-
tors indexed by the nodes on the graph {Lv}v∈V , define Lwt:k+1

:= (Lwt , . . . ,Lwk+1
) and

Πt:k+1(Lwt:k+1
) := (I − ηtLwt)(I − ηt−1Lwt−1

) · · · (I − ηk+1Lwk+1
), with Πt:t+1(Lwt:t+1

) := I .
Let Pwt:k+1

:= Pwtwt−1Pwt−1wt−2 · · ·Pwk+2wk+1
be the probability of the path generated by a

Markov Chain with transition kernel P . For each agent v ∈ V , let Txv : H → H with
Txv = 1

m

∑m
i=1〈 · , xi,v〉Hxi,v be the empirical covariance operator associated to the agent’s own

data xv, and let Txwt:k+1
:= (Txwt , . . . , Txwk+1

). For k ≥ 1, v ∈ V , let Nk,v ∈ H be a random
variable that only depends on the randomness in zv and that has zero mean, E[Nk,v] = 0. The
random variable Nk,v , formally defined in (8) in Section C.3, captures the sampling error introduced
at iteration k of gradient descent by agent v. For the discussion below it suffices to mentioned the
two above properties.

The following paragraphs discuss the analysis for each of the error terms.

Bias The analysis follows the single-machine setting and is given in Proposition 2 in Section C.1.

Sample Variance The analysis follows the single-machine setting [27], although the original result
yields a high probability bound with a requirement on the number of samples nm. We therefore
follow the result in [26] which yields a bound in high probability without a condition on the sample
size. The bound for this term is presented in Theorem 3 in Section C.2.

Network Error Unraveling the iterates (Lemma 5 in Section C.3) we get, for any v ∈ V, t ≥ 1:

‖Sρ(ωt+1,v−ξt+1,v)‖ρ =

∥∥∥∥ t∑
k=1

ηk
∑

wt:k∈V t−k+1

(
Pvwt:k−

1

nt−k+1

)
T 1/2
ρ Πt:k+1(Txwt:k+1

)Nk,wk

∥∥∥∥
H

.

This characterisation makes explicit the dependence of the network error on both the communication
protocol used by the agents, via the dependence on the mixing properties of the gossip matrix P
along each path vwt:k, and on the statistical properties of the problem, via the product of empirical
covariance operators held by the agents along each path wt:k+1. As the randomness in the quantities
Nk,wk might depend on the randomness in the empirical covariance operators, we further decompose
the network error into two terms so that we can use the property E[Nk,wk ] = 0. By adding and
subtracting the terms Πt:k+1(Tρ) inside the sums we have

‖Sρ(ωt+1,v − ξt+1,v)‖2ρ ≤ 2

∥∥∥∥ t∑
k=1

ηk
∑

wt:k∈V t−k+1

(
Pvwt:k −

1

nt−k+1

)
T 1/2
ρ Πt:k+1(Tρ)Nk,wk

∥∥∥∥2
H︸ ︷︷ ︸

(Population Covariance Error)2

+ 2

∥∥∥∥ t∑
k=1

ηk
∑

wt:k∈V t−k+1

(
Pvwt:k −

1

nt−k+1

)
T 1/2
ρ

(
Πt:k+1(Txwt:k+1

)−Πt:k+1(Tρ))Nk,wk
∥∥∥∥2
H︸ ︷︷ ︸

(Residual Empirical Covariance Error)2

.
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From a statistical point of view, the Population Covariance Error term only depends on the
population covariance via the quantities Πt:k+1(Tρ), and the only source of randomness is given by
Nk,wk . Using concentration for Nk,wk , the square of this error term can be bounded by a quantity
that decreases as Õ(1/m), as announced in Section 4 alongside the discussion of Theorem 2. On
the other hand, the Residual Empirical Covariance Error term depends on deviations between the
empirical covariance and the population covariance via the quantities Πt:k+1(Txwt:k+1

)−Πt:k+1(Tρ).
Exploiting the additional concentration of these factors allows us to bound the square of this error
term by a higher-order quantity that decreases as Õ(1/m2).

We now present a separate discussion on the analysis for these two error terms, emphasizing the
interplay between network topology (mixing of random walks on graphs) and statistics (concentration).
The final bound for the network error is presented in Theorem 4 in Section C.3.

Population Covariance Error Expanding the square yields a summation over all pairs of paths:∥∥∥∥ t∑
k=1

∑
wt:k∈V t−k+1

ak,wt:k

∥∥∥∥2
H

=

t∑
k,k′=1

∑
wt:k∈V t−k+1

∑
w′
t:k′∈V

t−k′+1

〈ak,wt:kak′,w′t:k′ 〉H

for properly defined quantities ak,wt:k (the dependence on v is neglected). When taking the expec-
tation, as the random variables {Nk,v}k≥1,v∈V have zero mean and are independent across agents
v ∈ V , the only paths left are those that intersect at the final node, i.e. wt:k, w′t:k′ such that wk = wk′ .
Moreover, as all agents have identically distributed data, the remaining expectation no longer depends
on the final node of the paths. The remaining quantity is then analysed by bounding the probability
of the two paths intersecting at the final node in terms of the second largest eigenvalue in magnitude
of P and by bounding the inner product by the norm product. This yields

E[(Pop. Cov. Error)2] ≤ E

[( t∑
k=1

σt−k+1
2 ηk‖T 1/2

ρ Πt:k+1(Tρ)Nk,v‖H
)2]

.

Denoting the mixing time associated to P as t?, the series is divided into well-mixed and poorly-
mixed terms, respectively, k ≤ t − t? and k ≥ t − t?. The well-mixed terms are controlled by
σt−k+1
2 . Meanwhile, for the poorly-mixed terms begin by taking for λ > 0 maxk=1,...,t

{
‖(Tρ +

λI)−1/2Nk,v‖2H
}

outside of the series. The expectation of this maximum is controlled through
concentration and becomes Õ( 1

m2λ + 1
mλγ′

) for γ′ ∈ [1, γ]. The remaining series is controlled

through the contraction of the term ‖T 1/2
ρ Πt:k+1(Tρ)(Tρ + λI)1/2‖ and choosing λ ' 1/(ηt?).

These two steps lead to this term being of the order O(ηt
?

m2 + (ηt?)γ
′

m ), which dominates the well-
mixed terms and contributes to the dependence on the inverse of the spectral gap of P . The free
parameter γ′ ∈ [1, γ] is left open as a smaller step size η is used to control this term when m ≤ n2r/γ .
The final bound is given in Lemma 8 in Section C.3.1.

Residual Empirical Covariance Error The analysis of this term is based on the following identity
(Proposition 5 in Section C.3.2), for any t− 1 ≥ k and any wt:k+1 ∈ V t−k:

Πt:k+1(Txwt:k+1
)−Πt:k+1(Tρ) =

t∑
j=k+1

ηjΠt:j+1(Tρ)(Tρ − Txwj )Πj−1:k+1(Txwj−1:k+1
).

The above decomposition has two key properties. Firstly, it depends upon differences between the
empirical covariance operators Txwj and its expectation Tρ. This allows concentration to be used,
and, alongside the concentration for Nk,v, it ensures that (Resid. Emp. Cov. Error)2 is of order
Õ(1/m2). Secondly, it is of the form

∑t
j=k+1 ηjΠt:j+1(Tρ)[· · · ], where [· · · ] indicates the right

most factors and the quantity shown aligns with the filter function for gradient descent [26, Example
2]. Once again the contractive property of the quantity Πt:j+1(Tρ) allows to give sharper rates with
respect to the step size and number of iterations. Without it, the choice of step size ηt = ηt−θ would
yield a bound for (Resid. Emp. Cov. Error)2 of the order

(∑t
k=1 ηk

∑t−1
j=k+1 ηj

)2 ' (ηt1−θ)4.
The contraction allows to show that (Resid. Emp. Cov. Error)2 grows at the reduced order (ηt1−θ)3,
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and the addition of the capacity assumption allows it to be further reduced to the order (ηt1−θ)2+γ .
The final high-probability bound is given in Lemma 9 in Section C.3.2. This being stronger than the
bound in expectation required for Theorem 2.

C Proofs

Before going on to present proofs for the main result some notation is introduced following [40, 27].
Some notation is repeated from the previous sections, as additional details are included. Adopt the
convention for sums

∑t
k=t+1 = 0. For a given bounded operator L : L2(H, ρX) → H , let ‖L‖

denote the operator norm of L, i.e. ‖L‖ = supf∈L2(H,ρX),‖f‖ρ=1 ‖Lf‖H . Let Sρ : H → L2(H, ρX)

be the linear map ω → 〈ω, · 〉H ,which is bounded by κ under Assumption 1. Consider the adjoint
operator S?ρ : L2(H, ρX)→ H , the covariance operator Tρ : H → H given by Tρ = S?ρSρ, and the
operator Lρ : L2(H, ρX) → L2(H, ρX) given by Lρ = SρS?ρ . We have S?ρg =

∫
X
xg(x)dρX(x)

and Tρ =
∫
X
〈 · , x〉HxdρX(x). For any ω ∈ H the following isometry property holds [48]

‖Sρω‖ρ = ‖
√
Tρω‖H .

The following notation was utilised in the analysis of Single-Machine Gradient Descent [40, 27].
In this case it aligns with all of the observations in the network y := {yi,v}i=1,...,m ,v∈V ∈ Rm|V |
and x = {xi,v}i=1,...,m ,v∈V . Define the sampling operator Sx : H → Rm|V | by

(
Sxω

)
(i,v)

=

〈ω, xi,v〉H , for i = 1, . . . ,m, v ∈ V . Let ‖ · ‖Rm|V | denote the Euclidean norm in in Rm|V | times
the factor 1/

√
nm. Its adjoint operator S?x : Rm|V | → H , defined by 〈S?xy, ω〉H = 〈y,Sxω〉Rm|V |

for y ∈ Rm|V |, is given by S?xy = 1
nm

∑
v∈V

∑m
i=1 yi,vxi,v. Define the covariance operator with

respect to all of the samples Tx : H → H such that Tx = S?xSx. We have

Tx =
1

nm

∑
v∈V

m∑
i=1

〈 · , xi,v〉Hxi,v.

The following notation is analogous to the single-machine notation just introduced, although now
with respect to the datasets held by individual agents, i.e. xv and yv for v ∈ V . Let Sxv : H → Rm
with (Sxvω)i = 〈ω, xi,v〉H for i = 1, . . . ,m. Let ‖ · ‖Rm be the Euclidean norm in ‖ · ‖Rm times
1/
√
m. Its adjoint operator S?xv : Rm → H , defined by 〈S?xvyv, ω〉H = 〈yv,Sxvω〉Rm for yv ∈ Rm,

is given by S?xvyv = 1
m

∑m
i=1 yi,vxi,v . The empirical covariance operator Txv : H → H is such that

Txv = S?xvSxv , with Txv = 1
m

∑m
i=1〈 · , xi,v〉Hxi,v .

Using this notation, the processes {µt}t≥1, {ωt,v}t≥1, and {ξt}t≥1 can be rewritten as follows.
The population process reads

µt+1 = µt − ηt
(
Tρµt − S?ρfρ

)
.

The gossiped process reads

ωt+1,v =
∑
w∈V

Pvw

(
ωt,w − ηt

(
Txwωt,w − S?xwyw

))
.

The single-machine process reads

ξt+1 = ξt − ηt
(
Txξt − S?xy

)
.

The next three sections present bounds for the three error terms introduced in Proposition 1. Section
C.1 presents a bound for the Bias term, which follows directly from the results in [27] and references
therein. Section C.2 establishes a bound for the Sample Variance term, which follows from results in
[26]. Section C.3 develops bounds for the Network Error term, which are a novel contribution of this
work. Section C.4 brings the results of the previous three sections together to establish the proofs of
Theorem 2 and Theorem 1, respectively. Section C.5 includes useful inequalities that are needed to
establish our results.

C.1 Bias

The following bound on the Bias term ‖Sρµt − fH‖2ρ is taken from [27], inspired by [57, 40].

17



Proposition 2. [27, Appendix C Proposition 2] Under Assumption 2, let ηκ2 ≤ 1. Then for any
t ∈ N,

‖Sρµt − fH‖ρ ≤ R
(

r

2
∑t
j=1 ηj

)r
.

In particular, if ηt = ηt−θ for all t ∈ N, with η ∈ (0, κ−2] and θ ∈ [0, 1) then

‖Sρµt − fH‖ρ ≤ Rrrη−rtr(θ−1).

C.2 Sample Variance

In this section we establish a bound for the expectation of the Sample Variance term E[‖Sρ(ξt−µt)‖2ρ].
The following lemma summaries a number of intermediary steps in [27] for bounding the Sample
Variance term. It arises from representing the iterates {ξt−µt}t≥1 in terms of the stochastic sequence
{Nk}k≥1 which characterises the sample noise introduced in the iterations of gradient descent.
These terms are controlled via the empirical covariance operator Tx and the population covariance
operator Tρ while introducing the pseudo-regularisation parameter λ > 0 and utilising the contractive
property of the gradient updates. For the following, let us introduce the notation Tρ,λ = Tρ + λI and
Tx,λ = Tx + λI .
Lemma 1. Let η1κ2 ≤ 1 and 0 ≤ λ. For any t ∈ N we have
‖Sρ(ξt+1 − µt+1)‖ρ

≤
( t−1∑
k=1

ηk‖T −1/2ρ,λ Nk‖H
2
∑t
i=k+1 ηi

+ λ

t−1∑
k=1

ηk‖T −1/2ρ,λ Nk‖H + ‖Tρ‖1/2(‖Tρ‖+ λ)1/2ηt‖T −1/2ρ,λ Nt‖H
)

× ‖T −1/2x,λ T 1/2
ρ ‖‖T −1/2x,λ T 1/2

ρ,λ ‖,
where

Nk = (Tρµk − S?ρfρ)− (Txµk − S?xy), ∀k ∈ N. (7)

Proof. The proof of this result follows the proof of [27, Proposition 3].

The two quantities left to control are ‖T −1/2ρ,λ Nk‖H for k ∈ N as well as ‖(Tx + λI)−1/2T 1/2
ρ ‖2.

The first of these quantities is controlled by [27, Lemma 18] which is summarised in the following
lemma.
Lemma 2. [27, Lemma 18] Let Assumptions 1, 2, 3 hold with r ≥ 1/2 and {Nk}k≥1 be as in (7).
For any λ > 0, with probability at least 1− δ, the following holds ∀k ∈ N

‖(Tρ + λI)−1/2Nk‖H ≤ 4(Rκ2r +
√
M)

(
κ

nm
√
λ

+

√
2
√
νcγ√

nmλγ

)
log

4

δ
.

The next lemma from [26, Lemma 19 Remark 1] controls ‖(Tx + λI)−1/2T 1/2
ρ ‖2.

Lemma 3. [26, Lemma 19, Remark 1] Let δ ∈ (0, 1) and λ = (nm)−p for some p ≥ 0. With
probability at least 1− δ the following holds

‖T 1/2
ρ (Tx + λ)−1/2‖2 ≤ ‖(Tρ + λI)1/2(Tx + λ)−1/2‖2

≤ 24κ2
(

log
4κ2(cγ + 1)

δ‖Tρ‖
+ pγmin

(
1

e(1− p)+
, log nm

))
(1 ∨ (nm)p−1).

Bringing together the three previous results yields the following high-probability bound for the
Sample Variance term.
Proposition 3. Fix δ ∈ (0, 1) and p ∈ (0, 1). Let Assumptions 1, 2 and 3 hold with r ≥ 1/2 and
ηt = ηt−θ with ηκ2 ≤ 1, θ ∈ [0, 1). The following holds with probability at least 1− δ for any t ∈ N

‖Sρ(ξt+1 − µt+1)‖ρ

≤ d̃1 min
( 1

e(1− p)+
, log nm

) log(t)

(nm)(1−pγ)/2
(1 ∨ (nm)−pηt1−θ ∨ ηt−θ) log2 d̃2

δ
,

with d̃1 = 768
κ2‖Tρ‖1/2(‖Tρ‖+1)1/2(Rκ2r+

√
M)(κ+

√
2
√
νcγ)

1−θ and d̃2 = 8
(
1 ∨ κ2 (cγ+1)

‖Tρ‖
)
.
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Proof. Fix δ ∈ (0, 1) and set λ = (nm)−p with p ∈ (0, 1). Lemma 2 implies that with probability at
least 1− δ

2 the following holds for any k ∈ N

‖(Tρ + λI)−1/2Nk‖H ≤ 4(Rκ2r +
√
M)

(
κ+

√
2
√
νcγ

)
log 8

δ

(nm)(1−pγ)/2
.

Similarly, Lemma 3 implies that the following holds with probability at least 1− δ
2

‖T 1/2
ρ (Tx + λI)−1/2‖2 ≤ ‖T 1/2

ρ,λ (Tx + λI)−1/2‖2

≤ 48κ2 min

(
1

e(1− p)+
, log nm

)
log

8κ2(cγ + 1)

δ‖Tρ‖
.

Following [27], the series can be bounded as follows

t−1∑
k=1

ηk

2
∑t
i=k+1 ηi

+ λ

t−1∑
k=1

ηk + ‖Tρ‖1/2(‖Tρ‖+ λ)1/2ηt

≤ 2 log(t) +
ληt1−θ

1− θ
+ ‖Tρ‖1/2(‖Tρ‖+ 1)1/2ηt−θ

≤ 4‖Tρ‖1/2(‖Tρ‖+ 1)1/2 log(t)

1− θ
(1 ∨ (ληt1−θ)) ∨ (ηt−θ)),

where we used λ = (nm)−p ≤ 1 to get (‖Tρ‖ + λ)1/2 ≤ (‖Tρ‖ + 1)1/2. Plugging everything
into Lemma 1 and using a union bound we obtain that the result holds with probability at least
1− δ

2 −
δ
2 = 1− δ.

Proposition 3 gives a bound that holds with high probability. We make use of the following lemma to
derive a bound in expectation.

Lemma 4. [7, Appendix Lemma C.1] Let F : (0, 1]→ R+ be a monotone, non-increasing, continu-
ous function and V a non-negative real-valued random variable such that

P[V > F (t)] ≤ t, ∀t ∈ (0, 1].

Then we have E[V ] ≤
∫ 1

0
F (t)dt.

The following theorem presents the final bound for the expected value of the Sample Variance term.

Theorem 3. Let Assumptions 1, 2, 3 hold with r ≥ 1/2, p ∈ (0, 1) and ηt = ηt−θ for all t ∈ N with
η ∈ (0, κ−2], θ ∈ [0, 1). Then for following holds for all t ∈ N:

E[‖Sρ(ξt − µt)‖2ρ]

≤ d̃3 min

(
1

e(1− p)+
, log nm

)2
log2(t)

(nm)(1−pγ)

(
1 ∨ ((nm)−pηt1−θ)2 ∨ t−2(ηt1−θ)2

)
,

with d̃3 = 64d̃21 log4 d̃2 and with d̃1, d̃2 defined as in Proposition 3.

Proof. Consider the term ‖Sρ(ξt − µt)‖2ρ. Utilising the high-probability bound in Proposition 3 as
well as Lemma 4, the expectation of the squared norm can be bounded as

E[‖Sρ(ξt − µt)‖2ρ]

≤ d̃21 min

(
1

e(1− p)+
, log nm

)2
log2(t)

(nm)(1−pγ)

(
1 ∨ ((nm)−pηt1−θ)2 ∨ t−2(ηt1−θ)2

)
×
∫ 1

0

log4 d̃2
δ
dδ.

The result follows by using the bound
∫ 1

0
log4 d̃2

δ dδ ≤ 64 log4(d̃2).
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C.3 Network Error

In this section we develop the bound for the Network Error term. The following lemma shows that
the error can be decomposed into terms similar to {Nk}k∈N defined in (7) for the Sample Variance.
Lemma 5. For all t ∈ N we have

‖Sρ(ωt+1,v − ξt+1,v)‖ρ =

∥∥∥∥ t∑
k=1

ηk
∑

wt:k∈V t−k+1

(
Pvwt:k−

1

nt−k+1

)
T 1/2
ρ Πt:k+1(Txwt:k+1

)Nk,wk

∥∥∥∥
H

,

where

Nk,v := (Tρµk − S?ρfρ)− (Txvµk − S?xvyv), ∀k ∈ N, v ∈ V. (8)

Proof. For t ≥ 1 the difference between the iterates ωt+1,v − µt+1 can be written as follows

ωt+1,v − µt+1 =
∑
w∈V

Pvw

(
ωt,w − µt + ηt

{
(Tρµt − S?ρfρ)− (Txwωt,w − S?xwyw)

})
=
∑
w∈V

Pvw

(
(I − ηtTxw)(ωt,w − µt) + ηt

{
(Tρµt − S?ρfρ)− (Txwµt − S?xwyw)

}︸ ︷︷ ︸
Nt,w

)

=
∑
w∈V

Pvw

(
(I − ηtTxw)(ωt,w − µt) + ηtNt,w

)
.

Unravelling the iterates and using ω1 = µ1 = 0 yield

ωt+1,v−µt+1 =
∑

wt:1∈V t
Pvwt:1Πt:1(Txwt:1 )(ω1−µ1) +

t∑
k=1

ηk
∑

wt:k∈V t
Pvwt:kΠt:k+1(Txwt:k+1

)Nk,wk

=

t∑
k=1

ηk
∑

wt:k∈V t−k+1

Pvwt:kΠt:k+1(Txwt:k+1
)Nk,wk .

The iterates ξt+1,v − µt+1 are similarly written and unravelled using ξ1,v = 0:

ξt+1,v − µt+1 =
∑
w∈V

1

n

(
(I − ηtTxw)(ξt,w − µt) + ηtNt,w

)
=

t∑
k=1

ηk
∑

wt:k∈V t−k+1

1

nt−k+1
Πt:k+1(Txwt:k+1

)Nk,wk .

The deviation ωt+1 − ξt+1,v can then be written as follows

ωt+1,v − ξt+1,v =
t∑

k=1

ηk
∑

wt:k∈V t−k+1

(
Pvwt:k −

1

nt−k+1

)
Πt:k+1(Txwt:k+1

)Nk,wk .

Applying Sρ, taking norm ‖ · ‖ρ on both sides and using the isometry property yields the result.

For v, w ∈ V and k ≥ 1, we want to exploit that the random variables Nk,v and Nk,w have zero
mean, E[Nk,v] = 0, and are independent for v 6= w. To do so we add and subtract Πt:k+1(Tρ) inside
the norm so the following upper bound can be formed:

‖Sρ(ωt+1,v − ξt+1,v)‖2ρ (9)

≤ 2

∥∥∥∥ t∑
k=1

ηk
∑

wt:k∈V t−k+1

(
Pvwt:k −

1

nt−k+1

)
T 1/2
ρ Πt:k+1(Tρ)Nk,wk

∥∥∥∥2
H︸ ︷︷ ︸

(Population Covariance Error)2

+ 2

∥∥∥∥ t∑
k=1

ηk
∑

wt:k∈V t−k+1

(
Pvwt:k −

1

nt−k+1

)
T 1/2
ρ

(
Πt:k+1(Txwt:k+1

)−Πt:k+1(Tρ))Nk,wk
∥∥∥∥2
H︸ ︷︷ ︸

(Residual Empirical Covariance Error)2

.
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The Population Covariance Error (Pop. Cov. Error) will be controlled by using the independence
of the terms {Nk,w}w∈V . The Residual Empirical Covariance Error (Resid. Emp. Cov. Error)
will be analysed by decomposing it into terms that concentrate to zero sufficiently quickly.

The following lemma, similar to Lemma 2 for the sample variance, gives concentration rates for the
quantities held by the individual agents.

Lemma 6. Fix v ∈ V . Let Assumptions 1, 2, 3 hold with r ≥ 1/2 and {Ns,v}s∈N be defined as in
(8). For any λ > 0, with probability at least 1− δ, the following holds for all k ∈ N:

‖(Tρ + λI)−1/2Nk,v‖H ≤ 4(Rκ2r +
√
M)

(
κ

m
√
λ

+

√
2
√
νcγ√

mλγ

)
log

4

δ
. (10)

Let ‖ · ‖HS denote the Hilbert-Schmidt norm of a bounded operator from H to H . The following
holds with probability at least 1− δ:

‖(Tρ + λI)−1/2(Tρ − Txv )‖HS ≤ 2κ

(
2κ

m
√
λ

+

√
cγ√
mλγ

)
log

4

δ
. (11)

Proof. Both inequalities arise from concentration results for random variables in Hilbert spaces used
in [12] and based on results in [36]. Inequalities (10,11) come directly from [27, Lemma 18], where
in particular (11) was used to prove (10).

We now move on to establish bounds for the Population Covariance Error term and the Residual
Empirical Covariance Error term within the following two sections, Section C.3.1 and Section
C.3.2, respectively. Section C.3.3 then brings together the previously developed results to establish a
bound for the Network Error term.

We will need the following lemma, taken from [27, Lemma 15], which itself follows [58, 49].

Lemma 7. Let L be a compact, positive operator on a separable Hilbert Space H . Assume that
η‖L‖ ≤ 1. For t ∈ N, a > 0 and any non-negative integer k ≤ t− 1 we have

‖Πt:k+1(L)La‖ ≤
(

a

e
∑t
j=k+1 ηj

)a
.

Proof. The proof in [27, Lemma 15] considers this result with a = r. The proof for more general
a > 0 follows the same steps.

C.3.1 Analysis of Population Covariance Error

In this section we develop a bound for the Population Covariance Error term in (9). The final result
is presented in Lemma 8.

The following proposition bounds the expectation of (Population Covariance Error)2 by a series
involving the products of (deterministic) operators {T 1/2

ρ Πt:k+1(Tρ)}, as a function of the step size,
the largest eigenvalue in absolute value of the gossip matrix P , and the random variables {Nk,w}.
Proposition 4. For any t ∈ N and v ∈ V we have

E

[∥∥∥∥ t∑
k=1

ηk
∑

wt:k∈V t−k+1

(
Pvwt:k −

1

nt−k+1

)
T 1/2
ρ Πt:k+1(Tρ)Nk,wk

∥∥∥∥2
H

]

≤ E

[( t∑
k=1

σt−k+1
2 ηk‖T 1/2

ρ Πt:k+1(Tρ)Nk,v‖H
)2]

.
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Proof. Fix t ∈ N and v ∈ V . Let us introduce the notation ∆(wt:k) :=
(
Pvwt:k − 1

nt−k+1

)
.

Expanding the square and taking the expectation we get

E

[∥∥∥∥ t∑
k=1

ηk
∑

wt:k∈V t−k+1

(
Pvwt:k −

1

nt−k+1

)
T 1/2
ρ Πt:k+1(Tρ)Nk,wk

∥∥∥∥2
H

]

=

t∑
k,k′=1

ηkηk′
∑

wt:k∈V t−k+1

w′
t:k′∈V

t−k′+1

∆(wt:k)∆(w′t:k′)E〈T 1/2
ρ Πt:k+1(Tρ)Nk,wk , T 1/2

ρ Πt:k′+1(Tρ)Nk′,w′
k′
〉H

=

t∑
k,k′=1

ηkηk′E〈T 1/2
ρ Πt:k+1(Tρ)Nk,v, T 1/2

ρ Πt:k′+1(Tρ)Nk′,v〉H
∑

wt:k∈V t−k+1

w′
t:k′∈V

t−k′+1

wk=w
′
k′

∆(wt:k)∆(w′t:k′).

The last identity follows from the fact that the samples held by agents are independent and identically
distributed. As the agents’ datasets are independent, the inner products are zero for k, k′ ∈ {1, . . . , t}
whenever the final elements of the paths wt:k and w′t:k′ do not coincide, i.e.

E〈T 1/2
ρ Πt:k+1(Tρ)Nk,wk , T 1/2

ρ Πt:k′+1(Tρ)Nk′,w′
k′
〉H = 0 if wk 6= w′k′ .

As the agents’ datasets are identically distributed, the expectation of the inner products can be taken
outside the sum over the paths. The sum over all pairs of paths that intersect at the final node can be
simplified as follows:∑

wt:k∈V t−k+1

w′
t:k′∈V

t−k′+1

wk=w
′
k′

∆(wt:k)∆(w′t:k′)

=
∑

wk,w
′
k′∈V

wk=w
′
k′

∑
wt:k+1∈V t−k

∑
w′t:k+1∈V t−k

′

(
Pvwt:k −

1

nt−k+1

)(
Pvw′

t:k′
− 1

nt−k′+1

)

=
∑
w∈V

(
(P t−k+1)vw −

1

n

)(
(P t−k

′+1)vw −
1

n

)
.

For each v ∈ V let ev ∈ Rn denote the vector of all zeros but a 1 in the place aligned with agent
v. The summation can be further simplified by utilising the assumption that P is symmetric and
doubly-stochastic, i.e. P> = P and P1 = 1. By the eigendecomposition of the gossip matrix P ,
recall Section 2.3, for any s > 0 we have (P s)vv =

∑n
l=1 λ

s
l u

2
l,v = 1

n +
∑n
l=2 λ

s
l u

2
l,v. This yields

the bound |(P s)vv − 1
n | = |

∑n
l=2 λ

s
l u

2
l,v| ≤ σs2

∑n
l=2 u

2
l,v ≤ σs2 where σ2 := max{|λ2|, |λn|} is

the second largest eigenvalue in absolute value. Bringing everything together, the expected norm of
(Pop. Cov. Error)2 can be written and bounded as follows:

E

[∥∥∥∥ t∑
k=1

ηk
∑

wt:k∈V t−k+1

(
Pvwt:k −

1

nt−k+1

)
T 1/2
ρ Πt:k+1(Tρ)Nk,wk

∥∥∥∥2
H

]

=

t∑
k,k′=1

ηkηk′E〈T 1/2
ρ Πt:k+1(Tρ)Nk,v, T 1/2

ρ Πt:k′+1(Tρ)Nk′,v〉H
(
P 2t−k−k′+2
vv − 1

n

)

≤
t∑

k,k′=1

ηkηk′E|〈T 1/2
ρ Πt:k+1(Tρ)Nk,v, T 1/2

ρ Πt:k′+1(Tρ)Nk′,v〉H |
∣∣∣∣(P 2t−k−k′+2

vv − 1

n

)∣∣∣∣
≤

t∑
k,k′=1

ηkηk′E
[
‖T 1/2
ρ Πt:k+1(Tρ)Nk,v‖H‖T 1/2

ρ Πt:k′+1(Tρ)Nk′,v‖H
]
σ2t−k−k′+2
2

= E

[( t∑
k=1

ηkσ
t−k+1
2 ‖T 1/2

ρ Πt:k+1(Tρ)Nk,v‖H
)2]

,
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where we used Jensen’s inequality and the Cauchy-Schwarz inequality.

The following lemma presents the final bound for the Population Covariance Error. This result
is established by utilising the series bound in Proposition 4 to split the error into well-mixed and
poorly-mixed terms, i.e. for k such that t− k & 1/(1−σ2) and t− k . 1/(1−σ2). The well-mixed
terms are controlled using that σt−k+1

2 is small. The poorly-mixed terms (there are ∼ 1/(1− σ2) of
them) are controlled using both the concentration of the error terms {Nk,w}k≥1,w∈V as well as the
contractive nature of the gradient updates, i.e. the operator norm of {T 1/2

ρ Πt:k+1(Tρ)} in Lemma 7.
The contractive terms arising from the gradient updates are decreasing in the step size: larger steps
achieve a faster contraction. However, each term within the Network Error series is scaled by the
step size {ηk}k≥1, i.e. the Network Error takes the form

∑t
k=1 σ

t−k+1
2 ηk[· · · ] where [· · · ] indicates

the right most terms. To exploit this trade-off we introduce two free parameters α ∈ [0, 1/2] and
γ′ ∈ [1, γ], which describe the degree to which the contraction is utilised. Specifically, α = 0 and
γ′ = γ is the large step regime and, α = 1/2 and γ′ = 1 is the small step regime.
Lemma 8. Let Assumptions 1, 2, 3 hold with r ≥ 1/2, ηt = ηt−θ for t ∈ N with ηκ2 ≤ 1 and
θ ∈ [0, 1). The following holds for any v ∈ V , t/2 ≥ d (1+r) log(t)1−σ2

e =: t?, α ∈ [0, 1/2] and
γ′ ∈ [1, γ]:

E

[∥∥∥∥ t∑
k=1

ηk
∑

wt:k∈V t−k+1

(
Pvwt:k −

1

nt−k+1

)
T 1/2
ρ Πt:k+1(Tρ)Nk,wk

∥∥∥∥2
H

]

≤ ã log2(4n) log2(t?)

m

(
η2t−2r ∨ (m−1(ηt?)1+2α) ∨ (ηt?)γ

′+2α
)
,

where
ã =

1152(Rκ2r+
√
M)2(κ+

√
2
√
νcγ′ )

2(‖Tρ‖∨1)2

‖Tρ‖∧‖Tρ‖γ′

[
6
(
‖T αρ ‖t

−αθ

α ∨t
−(α+1/2)θ‖T αρ ‖

1/2+α ∨t−θ‖Tρ‖
)
1{α6=0}+10

]2
.

Proof. Consider the bound of Population Covariance Error in Proposition 4. Let ‖Tρ‖ ≥ λ ≥ 0,
λ̃ ≥ 0 and for c > 0 introduce the cutoff t? = d c log(t)1−σ2

e. For k = 1, . . . , t and v ∈ V we have

‖T 1/2
ρ Πt:k+1(Tρ)Nk,v‖H ≤ ‖T 1/2

ρ Πt:k+1(Tρ)T 1/2
ρ,λ ‖‖T

−1/2
ρ,λ Nk,v‖H

≤ ‖T 1/2
ρ Πt:k+1(Tρ)T 1/2

ρ,λ ‖ max
k=1,...,t

{
‖T −1/2ρ,λ Nk,v‖H

}
,

and similarly for λ̃. Let us split the summation at k ≤ t − t? − 1 and k ≥ t − t? using the bound
above to obtain( t∑

k=1

σt−k+1
2 ηk‖T 1/2

ρ Πt:k+1(Tρ)Nk,v‖H
)2

≤ 2

( t−t?−1∑
k=1

σt−k+1
2 ηk‖T 1/2

ρ Πt:k+1(Tρ)T 1/2
ρ,λ ‖︸ ︷︷ ︸

Well-Mixed Network Error

)2

max
k=1,...,t

{
‖T −1/2ρ,λ Nk,v‖2H

}

+ 2

( t∑
k=t−t?

σt−k+1
2 ηk‖T 1/2

ρ Πt:k+1(Tρ)T 1/2

ρ,λ̃
‖︸ ︷︷ ︸

Poorly-Mixed Network Error

)2

max
k=1,...,t

{
‖T −1/2
ρ,λ̃

Nk,v‖2H
}
.

The Well-Mixed Network Error is controlled through σt−k+1
2 being small for k ≤ t − t?.

From ‖Πt:k+1(Tρ)‖ ≤ 1 and λ ≤ ‖Tρ‖ we have ‖T 1/2
ρ Πt:k+1(Tρ)T 1/2

ρ,λ ‖H ≤ 2‖Tρ‖, and from

1/ log(1/σ2) ≤ 1/(1−σ2) we have t? ≥ c log(t)
− log(σ2)

. These two facts allow the Well-Mixed Network
Error to be bounded as follows:

Well-Mixed Network Error ≤ 2‖Tρ‖η
t−t?∑
k=1

σt−k+1
2 k−θ ≤ 2η‖Tρ‖

t−t?∑
k=1

σ
c log(t)
− log(σ2)

2 ≤ 2η‖Tρ‖t1−c.
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For the Poorly-Mixed Network Error let us consider the two cases α ∈ (0, 1/2] and α = 0
separately. Consider α ∈ (0, 1/2] first. Using Lemma 74 we have, for t− 1 ≥ k ≥ 1,

‖T 1/2
ρ Πt:k+1(Tρ)T 1/2

ρ,λ̃
‖ ≤ ‖TρΠt:k+1(Tρ)‖+

√
λ̃‖T 1/2

ρ Πt:k+1(Tρ)‖

≤ ‖T αρ ‖‖T 1−α
ρ Πt:k+1(Tρ)‖+

√
λ̃‖T αρ ‖‖T 1/2−α

ρ Πt:k+1(Tρ)‖

≤ ‖T αρ ‖
(

1− α
e
∑t
j=k+1 ηj

)1−α

+
√
λ̃‖T αρ ‖

(
1/2− α

e
∑t
j=k+1 ηj

)1/2−α

.

When plugging the above into the Poorly-Mixed Network Error, summations of the form∑t−1
k=t−t?

ηk
(
∑t
j=k+1 ηj)

β appear for β = 1 − α and β = 1/2 − α. To bound these consider the

following for β ∈ [0, 1) and t ≥ 2t?:

t−1∑
k=t−t?

ηk(∑t
j=k+1 ηj

)β = η1−β
t−1∑

k=t−t?

k−θ(∑t
j=k+1 j

−θ
)β

≤ η1−βtθβ
t−1∑

k=t−t?

k−θ(
t− k

)β
≤ η1−βtθβ

(t− t?)θ
t−1∑

k=t−t?

1(
t− k

)β
=
η1−βtθβ

(t− t?)θ
t?∑
k=1

1

kβ

≤ 2η1−βtθ(β−1)
(t?)1−β

1− β
,

where the last inequality follows from an integral bound as well as using that tθβ

(t−t?)θ = tθ(β−1)

(1− t?t )θ
≤

2tθ(β−1) from t ≥ 2t?. Splitting the summation at k = t, plugging the above two bounds into the
Poorly-Mixed Network Error term and using (ηt?)α ≥ η from η ≤ κ−2 ≤ 1 yields a bound for
α ∈ (0, 1/2]:

Poorly-Mixed Network Error

≤
2‖T αρ ‖t−αθ

α
(ηt?)α +

2t−(α+1/2)θ‖T αρ ‖
1/2 + α

√
λ̃(ηt?)1/2+α +

√
2ηt−θ‖Tρ‖

≤ 6

(‖T αρ ‖t−αθ
α

∨
t−(α+1/2)θ‖T αρ ‖

1/2 + α
∨ t−θ‖Tρ‖

)
((ηt?)α ∨

√
λ̃(ηt?)1/2+α).

Now consider the case α = 0. The summation for β = 1 in this case is bounded following the
previous steps

t−1∑
k=t−t?

ηk(∑t
j=k+1 ηj

) ≤ tθ

(t− t?)θ
t−1∑

k=t−t?

1

(t− k)
≤ 21+θ log(t?),

leading to the Poorly-Mixed Network Error bounded as for α = 0 from η‖Tρ‖ ≤ 1:

Poorly-Mixed Network Error ≤ 21+θ log(t?) + 4t−θ/2
√
λ̃(ηt?)1/2 +

√
2ηt−θ‖Tρ‖

≤ 10 log(t?)(1 ∨ (
√
λ̃(ηt?)1/2)).

4 The operator norm can be bounded ‖T 1/2
ρ Πt:k+1(Tρ)T 1/2

ρ,λ ‖ ≤ supx∈(0,κ2)

{
x1/2(x+λ)1/2

∏t
`=k+1(1−

η`x)
}
≤ supx∈(0,κ2)

{
x
∏t
`=k+1(1− η`x)

}
+
√
λ supx∈(0,κ2)

{
x1/2

∏t
`=k+1(1− η`x)

}
. Using techniques

used to prove [27, Lemma 15], these terms can be bounded as shown.
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Combining the two bounds for α = 0 and α ∈ (0, 1/2] gives
Poorly-Mixed Network Error

≤ log(t?)

[
6

(‖T αρ ‖t−αθ
α

∨
t−(α+1/2)θ‖T αρ ‖

1/2 + α
∨t−θ‖Tρ‖

)
1{α6=0}+10

]
((ηt?)α ∨

√
λ̃(ηt?)1/2+α).

We now consider the terms maxk=1,...,t{‖T −1/2ρ,λ Nk,v‖2H} for both λ and λ̃. We use the high-

probability bounds of Lemma 6 to uniformly control ‖T −1/2ρ,λ Nk,v‖2H for all k = 1, . . . , t and v ∈ V .
For w ∈ V , let δw = δ

n . With probability at least 1− δw the following holds for all k = 1, . . . , t and
γ′ ∈ [1, γ]:

‖T −1/2ρ,λ Nk,w‖2H ≤ 16(Rκ2r +
√
M)2

(
κ

m
√
λ

+

√
2
√
νcγ′√

mλγ′

)2

log2 4n

δ
.

We note that if the capacity assumption holds for γ, then it also holds for all γ′ ∈ [1, γ]. Applying
a union bound, we get that the above holds with probability at least 1 −

∑
v∈V δv = 1 − δ for all

w ∈ V and k = 1, . . . , t. Using Lemma 4, the expectation of the maximum can be bounded for any
v ∈ V and γ′ ∈ [1, γ] as follows:

E
[

max
k=1,...,t

{
‖T −1/2ρ,λ Nk,v‖2H

}]
≤ 16(Rκ2r +

√
M)2

(
κ

m
√
λ

+

√
2
√
νcγ′√

mλγ′

)2 ∫ 1

0

log2 4n

δ
dδ

≤ 96(Rκ2r +
√
M)2

(
κ

m
√
λ

+

√
2
√
νcγ′√

mλγ′

)2

log2 4n,

where we used
∫ 1

0
log2 4n

δ dδ ≤ 6 log2 4n.

Bringing together the bounds for the Poorly- and Well-Mixed Network Error with the above bound
for the quantity E

[
maxk=1,...,t

{
‖T −1/2ρ,λ Nk,v‖2H

}]
yields

E

[( t∑
k=1

σt−k+1
2 ηk‖T 1/2

ρ Πt:k+1(Tρ)Nk,v‖H
)2]

≤ 96 log2(4n) log2(t?)(Rκ2r +
√
M)2

×

(
8‖Tρ‖2

( κ

m
√
λ

+

√
2
√
νcγ√

mλγ

)2
η2t2(1−c)

+ 2
[
6
(‖T αρ ‖t−αθ

α
∨
t−(α+1/2)θ‖T αρ ‖

1/2 + α
∨ t−θ‖Tρ‖

)
1{α 6=0}+10

]2( κ

m
√
λ̃

+

√
2
√
νcγ′√

mλ̃γ′

)2
×
(

(ηt?)2α ∨ λ̃(ηt?)1+2α
))

.

Let λ = ‖Tρ‖ and λ̃ =
‖Tρ‖
ηt? . The bound

1

m
√
λ̃

+
1√
mλ̃γ′

≤ 2√
m

(
1√

m‖Tρ‖(ηt?)−1
∨ 1

‖Tρ‖γ′/2(ηt?)−γ′/2

)
≤ 2√

m(‖Tρ‖ ∧ ‖Tρ‖γ′)

(√
ηt?/m ∨ (ηt?)γ

′/2
)

allows the expected squared series to be bounded as follows:

E

[( t∑
k=1

σt−k+1
2 ηk‖T 1/2

ρ Πt:k+1(Tρ)Nk,v‖H
)2]

≤ ã log2(4n) log2(t?)

m

(
(ηt1−c)2 ∨ (m−1(ηt?)1+2α) ∨ (ηt?)γ

′+2α
)
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where
ã =

1152(Rκ2r+
√
M)2(κ+

√
2
√
νcγ′ )

2(‖Tρ‖∨1)2

‖Tρ‖∧‖Tρ‖γ′

[
6
(
‖T αρ ‖t

−αθ

α ∨t
−(α+1/2)θ‖T αρ ‖

1/2+α ∨t−θ‖Tρ‖
)
1{α6=0}+10

]2
.

The choice c = 1 + r yields the final result.

C.3.2 Analysis of Residual Empirical Covariance Error

In this section we develop a bound for the Residual Empirical Covariance Error term in (9). The
final result is presented in Lemma 9.

The following proposition writes the Residual Empirical Covariance Error in terms of a series of
quantities that will be later controlled.

Proposition 5. Let t ≥ k + 1. For any wt:k+1 ∈ V t−k we have

Πt:k+1(Txwt:k+1
) = Πt:k+1(Tρ) +

t∑
j=k+1

ηjΠt:j+1(Tρ)(Tρ − Txwj )Πj−1:k+1(Txwj−1:k+1
).

Proof. Adding and subtracting (I−ηtTρ)Πt−1:k+1(Txwt−1:k+1
) and unravelling yields the following:

Πt:k+1(Txwt:k+1
)−Πt:k+1(Tρ)

= (I − ηtTxwt )Πt−1:k+1(Txwt−1:k+1
)− (I − ηtTρ)Πt−1:k+1(Tρ)

= (I − ηtTxwt )Πt−1:k+1(Txwt−1:k+1
)− (I − ηtTρ)Πt−1:k+1(Txwt−1:k+1

)

+ (I − ηtTρ)Πt−1:k+1(Txwt−1:k+1
)− (I − ηtTρ)Πt−1:k+1(Tρ)

= ηt(Tρ − Txwt )Πt−1:k+1(Txwt−1:k+1
) + (I − ηtTρ)

[
Πt−1:k+1(Txwt−1:k+1

)−Πt−1:k+1(Tρ)
]

=

t∑
j=k+1

ηjΠt:j+1(Tρ)(Tρ − Txwj )Πj−1:k+1(Txwj−1:k+1
).

Applying Proposition 5 to the Residual Empirical Covariance Error term, using the triangle
equality, yields∥∥∥∥ t∑

k=1

ηk
∑

wt:k∈V t−k+1

∆(wt:k)T 1/2
ρ

(
Πt:k+1(Txwt:k+1

)−Πt:k+1(Tρ)
)
Nk,wk

∥∥∥∥
H

≤
t−1∑
k=1

ηk
∑

wt:k∈V t−k+1

|∆(wt:k)|
t∑

j=k+1

ηj

× ‖T 1/2
ρ Πt:j+1(Tρ)(Tρ − Txwj )Πj−1:k+1(Txwj−1:k+1

)Nk,wk‖H , (12)

where the quantity is zero in the case k = t. For j ∈ {2, . . . , t− 1} the above includes the quantity
Πt:j+1(Tρ). This can be interpreted in a similar manner to the filter function associated for gradient
descent, see for instance [26, Example 2]. In this context it is used to control the growth of the above
error term, which is absent in the case j = t. This yields the following proposition.

Proposition 6. Let Assumptions 1, 2, 3 hold with r ≥ 1/2 and ηt = ηt−θ for t ∈ N with ηκ2 ≤ 1,
θ ∈ (0, 1). Fix λ, λ̃ > 0 and δ ∈ (0, 1). With probability at least 1− δ the following hold: for any
t− 1 ≥ j ≥ k + 1 and path wt:k ∈ V t−k+1 we have

‖T 1/2
ρ Πt:j+1(Tρ)(Tρ − Txwj )Πj−1:k+1(Txwj−1:k+1

)Nk,wk‖H

≤ 2κ‖T 1/2

ρ,λ̃
‖
(

1∑t
i=j+1 ηi

+

(
λ∑t

i=j+1 ηi

)1/2)(
2κ

m
√
λ

+

√
cγ√
mλγ

)
log

(
4n

δ

)
×max
w∈V

{
‖T −1/2
ρ,λ̃

Nk,w‖H
}
, (13)
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for any t− 1 ≥ k ≥ 1 and nodes wt, wk ∈ V

‖T 1/2
ρ (Tρ − Txwt )Nk,wk‖H

≤ 2κ‖T 1/2
ρ T 1/2

ρ,λ ‖‖T
1/2

ρ,λ̃
‖
(

2κ

m
√
λ

+

√
cγ√
mλγ

)
log

4n

δ
max
w∈V

{
‖T −1/2
ρ,λ̃

Nk,w‖H
}
. (14)

Proof. Fix t− 1 ≥ j ≥ k + 1 and wt:k ∈ V t−k+1. Begin by proving (13). Expanding the norm,

‖T 1/2
ρ Πt:j+1(Tρ)(Tρ − Txwj )Πj−1:k+1(Txwj−1:k+1

)Nk,wk‖H

= ‖T 1/2
ρ Πt:j+1(Tρ)T 1/2

ρ,λ T
−1/2
ρ,λ (Tρ − Txwj )Πj−1:k+1(Txwj−1:k+1

)T 1/2

ρ,λ̃
T −1/2
ρ,λ̃

Nk,wk‖H

≤ ‖T 1/2
ρ Πt:j+1(Tρ)T 1/2

ρ,λ ‖‖T
−1/2
ρ,λ (Tρ − Txwj )‖‖Πj−1:k+1(Txwj−1:k+1

)‖‖T 1/2

ρ,λ̃
‖‖T −1/2

ρ,λ̃
Nk,wk‖H

≤ ‖T 1/2
ρ Πt:j+1(Tρ)T 1/2

ρ,λ ‖‖T
−1/2
ρ,λ (Tρ − Txwj )‖‖T 1/2

ρ,λ̃
‖‖T −1/2

ρ,λ̃
Nk,wk‖H

≤ ‖T 1/2
ρ Πt:j+1(Tρ)T 1/2

ρ,λ ‖‖T
−1/2
ρ,λ (Tρ − Txwj )‖‖T 1/2

ρ,λ̃
‖max
w∈V

{
‖T −1/2
ρ,λ̃

Nk,w‖H
}
,

where we used, from ηκ2 ≤ 1 and η‖Txv‖ ≤ 1 for any v ∈ V , that ‖Πj−1:k+1(Txwj−1:k+1
)‖ ≤ 1 for

j ≥ k+ 2. The first operator norm is bounded as follows by using techniques similar to those used to
prove Lemma 7:

‖T 1/2
ρ Πt:j+1(Tρ)T 1/2

ρ,λ ‖ ≤
(

1

e
∑t
i=j+1 ηi

+

(
λ

2e
∑t
i=j+1 ηi

)1/2)

≤
(

1∑t
i=j+1 ηi

+

(
λ∑t

i=j+1 ηi

)1/2)
. (15)

We proceed to construct a high-probability bound for the quantity ‖(Tρ + λI)−1/2(Tρ − Txwj )‖, for
any wj ∈ V . For v ∈ V , let δv = δ

n and apply (11) from Lemma 6 to obtain the following5 with
probability at least 1− δv:

‖(Tρ + λI)−1/2(Tρ − Txv )‖ ≤ ‖(Tρ + λI)−1/2(Tρ − Txv )‖HS ≤ 2κ

(
2κ

m
√
λ

+

√
cγ√
mλγ

)
log

4n

δ
.

Applying a union bound yields the following with probability at least 1−
∑
v∈V δv = 1− δ:

‖(Tρ + λI)−1/2(Tρ − Txv )‖ ≤ 2κ

(
2κ

m
√
λ

+

√
cγ√
mλγ

)
log

4n

δ
∀v ∈ V. (16)

The result (13) then comes from plugging (15) and (16) into the expanded quantity at the start of the
proof.

To prove (14), fix t− 1 ≥ k ≥ 1 and wt, wk ∈ V . Expanding the norm we get

‖T 1/2
ρ (Tρ − Txwt )Nk,wk‖H = ‖T 1/2

ρ T 1/2
ρ,λ T

−1/2
ρ,λ (Tρ − Txwt )T

1/2

ρ,λ̃
T −1/2
ρ,λ̃

Nk,wk‖H

≤ ‖T 1/2
ρ T 1/2

ρ,λ ‖‖T
−1/2
ρ,λ (Tρ − Txwt )‖‖T

1/2

ρ,λ̃
‖‖T −1/2

ρ,λ̃
Nk,wk‖H

≤ ‖T 1/2
ρ T 1/2

ρ,λ ‖‖T
−1/2
ρ,λ (Tρ − Txwt )‖‖T

1/2

ρ,λ̃
‖max
w∈V

{
‖T −1/2
ρ,λ̃

Nk,w‖H
}
.

The result follows by using (16) to bound ‖T −1/2ρ,λ (Tρ − Txwt )‖.

The following proposition utilise the previous proposition to bound the summation (12).

5 For an operator L note that ‖L‖ = ‖LL?‖1/2 where L? is the adjoint of L. The Hilbert-Schmidt norm
bounds the operator norm as we have ‖L‖2 = ‖LL?‖ ≤ Tr

(
LL?

)
= ‖L‖2HS .
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Proposition 7. Let the assumptions of Proposition 6 hold. For any v ∈ V , with probability at least
1− δ we have

Resid. Emp. Cov. Error ≤ 8κ

(
2κ

m
√
λ

+

√
cγ√
mλγ

)
log

4n

δ

[
B1 + B2

]
,

where

B1 = ‖T 1/2
ρ T 1/2

ρ,λ ‖‖T
1/2

ρ,λ̃
‖ηt

t−1∑
k=1

ηk max
w∈V

{
‖T −1/2
ρ,λ̃

Nk,w‖H
}
,

B2 = ‖T 1/2

ρ,λ̃
‖
t−2∑
k=1

ηk

t−1∑
j=k+1

ηj

(
1∑t

i=j+1 ηi
+

(
λ∑t

i=j+1 ηi

)1/2)
max
w∈V

{
‖T −1/2
ρ,λ̃

Nk,w‖H
}
.

Proof. Splitting the sum in (12) at j = t and otherwise, directly applying (13) and (14) from
Proposition 6 allows Resid. Emp. Cov. Error to be bounded as follows:
Resid. Emp. Cov. Error

≤ ηt
t−1∑
k=1

ηk
∑

wt:k∈V t−k+1

|∆(wt:k)|‖T 1/2
ρ (Tρ − Txwt )Πt−1:k+1(Txwt−1:k+1

)Nk,wk‖H

+

t−2∑
k=1

ηk
∑

wt:k∈V t−k+1

|∆(wt:k)|
t−1∑

j=k+1

ηj‖T 1/2
ρ Πt:j+1(Tρ)(Tρ−Txwj )Πj−1:k+1(Txwj−1:k+1

)Nk,wk‖H

≤ 2κ

(
2κ

m
√
λ

+

√
cγ√
mλγ

)
log

4n

δ

×
[
‖T 1/2
ρ T 1/2

ρ,λ ‖‖T
1/2

ρ,λ̃
‖ηt

t−1∑
k=1

ηk max
w∈V

{
‖T −1/2
ρ,λ̃

Nk,w‖H
}

︸ ︷︷ ︸
B1

∑
wt:k∈V t−k+1

|∆(wt:k)|

+ ‖T 1/2

ρ,λ̃
‖
t−2∑
k=1

ηk

t−1∑
j=k+1

ηj

(
1∑t

i=j+1 ηi
+

(
λ∑t

i=j+1 ηi

)1/2)
max
w∈V

{
‖T −1/2
ρ,λ̃

Nk,w‖H
}

︸ ︷︷ ︸
B2

×
∑

wt:k∈V t−k+1

|∆(wt:k)|
]
.

The result is then arrived at by applying the following bound for the summation∑
wt:k∈V t−k+1 |∆(wt:k)| for each k ≤ t:∑

wt:k∈V t−k+1

|∆(wt:k)| =
∑

wt:k∈V t−k+1

∣∣∣∣Pvwt:k − 1

nt−k+1

∣∣∣∣
=

∑
wt:k∈V t−k+1

Pvwt:k≥n
−(t−k+1)

(
Pvwt:k −

1

nt−k+1

)
−

∑
wt:k∈V t−k+1

Pvwt:k<n
−(t−k+1)

(
Pvwt:k −

1

nt−k+1

)
≤ 4.

Given Proposition 7 we can now plug in a high-probability bound for maxw∈V
{
‖T −1/2
ρ,λ̃

Nk,w‖H
}

and bound the resulting summations. This is summarised in the following lemma.
Lemma 9. Let the assumptions of Proposition 6 hold with 0 ≤ θ ≤ 3/4, 0 ≤ λ ≤ ‖Tρ‖ and
0 ≤ λ̃ ≤ ‖Tρ‖. Given δ ∈ (0, 1), the following holds with probability at least 1− δ:

Resid. Emp. Cov. Error

≤ b̃1
log2 8n

δ log(t)

m
√(

(mλ) ∧ λγ
)(

(mλ̃) ∧ λ̃γ
) (1 ∨ (ηt1−θ) ∨

√
λ(ηt1−θ)3/2 ∨ (t−1(ηt1−θ)2)),
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where b̃1 =
128κ(Rκ2r+

√
M)(2κ+

√
2
√
νcγ)

2‖Tρ‖1/2(4+‖Tρ‖)
(1−θ) .

Proof. Consider Proposition 7 with δ
2 , so the following holds with probability at least 1− δ

2

Resid. Emp. Cov. Error ≤ 8κ

(
2κ

m
√
λ

+

√
cγ√
mλγ

)
log

8n

δ
(B1 + B2)

≤
8κ(2κ+

√
2
√
νcγ)√

(mλ) ∧ λγ
log 8n

δ√
m

(B1 + B2),

where we used that ν ≥ 1. Proceed to bound both B1 and B2. Start by constructing a high-probability
bound for the term maxw∈V

{
‖T −1/2
ρ,λ̃

Nk,w‖H
}
k = 1, . . . , t. For v ∈ V , let δ′v = δ

2n . Lemma 6
states with probability at least 1− δ′v the following holds for any k ∈ N:

‖T −1/2
ρ,λ̃

Nk,v‖ ≤ 4(Rκ2r +
√
M)

(
κ

m
√
λ̃

+

√
2
√
νcγ√

mλ̃γ

)
log

8n

δ
.

Applying a union bound so the following holds with probability at least 1−
∑
v∈V δ

′
v = 1− δ

2 for
any k ∈ N:

max
w∈V

{
‖T −1/2
ρ,λ̃

Nk,w‖H
}
≤ 4(Rκ2r +

√
M)

(
κ

m
√
λ̃

+

√
2
√
νcγ√

mλ̃γ

)
log

8n

δ

≤
4(Rκ2r +

√
M)(2κ+

√
2
√
νcγ)√

(mλ̃) ∧ λ̃γ
log 8n

δ√
m

, (17)

where we used that κ ≥ 1. The terms B1 and B2 are now bounded in the following two paragraphs.

Term B1 Using the high-probability bound (17), the following holds with probability at least 1− δ
2 :

B1 ≤ ‖T 1/2
ρ T 1/2

ρ,λ ‖‖T
1/2

ρ,λ̃
‖

4(Rκ2r +
√
M)(2κ+

√
2
√
νcγ)√

(mλ̃) ∧ λ̃γ
log 8n

δ√
m

ηt

t−1∑
k=1

ηk

≤ ‖T 1/2
ρ T 1/2

ρ,λ ‖‖T
1/2

ρ,λ̃
‖

4(Rκ2r +
√
M)(2κ+

√
2
√
νcγ)√

(mλ̃) ∧ λ̃γ(1− θ)

log 8n
δ√
m

t−1(ηt1−θ)2,

where we have applied the integral bound t
∑t−1
k=1 k

−θ ≤ t1−θ

1−θ , see for instance [27, Lemma 12], on
the following summation:

ηt

t−1∑
k=1

ηk = η2t−θ
t−1∑
k=1

k−θ ≤ η2

1− θ
t1−2θ =

t−1(ηt1−θ)2

1− θ
.

Term B2 Similarly, using the high-probability bound (17), the following holds with probability at
least 1− δ

2 :

B2 ≤ ‖T 1/2

ρ,λ̃
‖

4(Rκ2r +
√
M)(2κ+

√
2
√
νcγ)√

(mλ̃) ∧ λ̃γ
log 8n

δ√
m

×
t−2∑
k=1

ηk

t−1∑
j=k+1

ηj

(
1∑t

i=j+1 ηi
+

(
λ∑t

i=j+1 ηi

)1/2)
.
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We proceed to bound the remaining terms by utilising results from Section C.5. Firstly, switching the
order of sums and applying an integral bound yields

t−2∑
k=1

ηk

t−1∑
j=k+1

ηj∑t
i=j+1 ηi

= η

t−2∑
k=1

k−θ
t−1∑

j=k+1

j−θ∑t
i=j+1 i

−θ

= η

t−1∑
j=2

j−θ∑t
i=j+1 i

−θ

j−1∑
k=1

k−θ

≤ η

1− θ

t−1∑
j=2

j−θ(j − 1)1−θ∑t
i=j+1 i

−θ
. (18)

At this point use
∑t
i=j+1 i

−θ ≥ t−θ(t− j) as well as Lemma 10 to obtain

t−1∑
j=2

j−θ(j − 1)1−θ∑t
i=j+1 i

−θ
≤ tθ

t−2∑
j=2

(j − 1)1−2θ

t− j
≤ 4tθt−min(2θ−1,1) log(t) = 4t1−θ log(t).

For the second term follow the steps to (18) and use Lemma 11 as follows:

t−2∑
k=1

ηk

t−1∑
j=k+1

ηj(∑t
i=j+1 ηi

)1/2 ≤ η3/2tθ/2

1− θ

t−1∑
j=2

(j − 1)1−2θ

(t− j)1/2

≤ 4η3/2tθ/2

1− θ
tmax(3/2−2θ,0)

=
4η3/2

1− θ
tmax(3(1−θ)/2,θ/2).

This results in the following bound for B2, which holds with probability at least 1− δ
2 :

B2 ≤ ‖T 1/2

ρ,λ̃
‖

4(Rκ2r +
√
M)(2κ+

√
2
√
νcγ)√

(mλ̃) ∧ λ̃γ(1− θ)

log 8n
δ log(t)
√
m

(
4ηt1−θ + 4

√
λ
(
ηtmax(1−θ,θ/3))3/2).

The final bound arises by bringing everything together with a union bound implying it holds with
probability at least 1 − δ

2 −
δ
2 = 1 − δ. Constants are then cleaned up using λ ≤ ‖Tρ‖ as well as

λ̃ ≤ ‖Tρ‖ to say ‖T 1/2
ρ T 1/2

ρ,λ ‖‖T
1/2

ρ,λ̃
‖ ≤ 4‖Tρ‖3/2 and ‖T 1/2

ρ,λ̃
‖ ≤ 2‖Tρ‖1/2.

C.3.3 Network Error bound

In this section we bring together the bounds developed in the previous two sections for the Population
Covariance Error term and Residual Empirical Covariance Error term to construct the final
bound on the Network Term as presented in the following theorem.

Theorem 4. Let Assumptions 1, 2, 3 hold with r ≥ 1/2, and ηt = ηt−θ for t ∈ N with ηκ2 ≤ 1

and θ ∈ (0, 3/4). Assume t/2 ≥ d (r+1) log(t)
1−σ2

e =: t? The following bound holds for any v ∈ V ,
α ∈ [0, 1/2] and γ′ ∈ [1, γ]:

E[‖Sρ(ωt+1,v − ξt+1,v)‖2ρ] ≤ 2
ã log2(4n) log2(t?)

m

(
η2t−2r ∨ (m−1(ηt?)1+2α) ∨ (ηt?)γ

′+2α
)

+ 2b̃2
log4(8n) log2(t)

m2

(
1 ∨ (ηt1−θ)2 ∨ (t−2(ηt1−θ)4)

)(
(m−1ηt1−θ) ∨ (ηt1−θ)γ

)
,

where b̃2 = 64
(‖Tρ‖+1)2

(‖Tρ‖∧‖Tρ‖γ)2 b̃
2
1 with b̃1 defined as in Theorem 9 and ã defined as in Lemma 8.

Proof. Use decomposition (9). Taking the expectation, note that the first term E[(Pop. Cov. Error)2]
is controlled by Lemma 8. We now proceed to control the term E[(Resid. Emp. Cov. Error)2].
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Begin by using the high-probability bound for Resid. Emp. Cov. Error in Lemma 9, with λ̃ = ‖Tρ‖
and λ = ‖Tρ‖(ηt1−θ)−1. The following upper bound holds for the quantity that appears in Lemma 9:

1

(mλ) ∧ λγ
=

1

(‖Tρ‖m(ηt1−θ)−1) ∧ (‖Tρ‖γ(ηt1−θ)−γ)

≤ 1

‖Tρ‖ ∧ ‖Tρ‖γ
(

(m−1(ηt1−θ)) ∨ (ηt1−θ)γ
)
.

Plugging the above into Lemma 9 for the Resid. Emp. Cov. Error allows the expectation to be
bounded with Lemma 4:

E[(Resid. Emp. Cov. Error)2]

≤ b̃21
(‖Tρ‖+ 1)2(
‖Tρ‖ ∧ ‖Tρ‖γ

)2 log2(t)

m2

(
1 ∨ (ηt1−θ)2 ∨ (t−2(ηt1−θ)4)

)(
(m−1ηt1−θ) ∨ (ηt1−θ)γ

)
×
∫ 1

0

log4 8n

δ
dδ.

The result is arrived at by using
∫ 1

0
log4 8n

δ dδ ≤ 64 log4(8n) and bringing together the two bounds
for E[(Pop. Cov. Error)2] and E[(Resid. Emp. Cov. Error)2].

C.4 Final Bound

In this section we bring together the bounds from the previous sections to construct the final bounds
in Theorem 2 and Theorem 1 in the main body of the work. The main result is the following.
Theorem 5. Let Assumptions 1, 2, 3 hold with r ≥ 1/2 and ηt = ηt−θ for all t ∈ N with ηκ2 ≤ 1

θ ∈ (0, 3/4). The following holds for all t/2 ≥ d (r+1) log(t)
1−σ2

e =: t?, any v ∈ V , α ∈ [0, 1/2] and
γ′ ∈ [1, γ]:

E[E(ωt+1,v)]− inf
ω∈H
E(ω) ≤ 2R2(ηt1−θ)−2r

+ d̃4(nm)−2r/(2r+γ)
(

1 ∨ (nm)−2/(2r+γ)(ηt1−θ)2 ∨ t−2(ηt1−θ)2
)

log2(t)

+ 8
ã log2(4n) log2(t?)

m

(
η2t−2r ∨ (m−1(ηt?)1+2α) ∨ (ηt?)γ

′+2α)
)

+ 8
b̃2 log4(8n) log2(t)

m2

(
1 ∨ (ηt1−θ)2 ∨ t−2(ηt1−θ)4

)(
(m−1ηt1−θ) ∨ (ηt1−θ)γ

)
,

where d̃4 = 4
(

2r+γ
2r+γ−1

)2
d̃23 with d̃3 defined as in Theorem 3.

Proof. Begin with the decomposition in Proposition 1 and take the expectation E[ · ]. Plug in the
bounds for each term proven in the previous sections, i.e. Proposition 2 for the Bias, Theorem 3 with
p = 1/(2r + γ) for the Sample Variance term and Theorem 4 for the Network Error term.

Theorem 2 follows directly from Theorem 5.

Proof of Theorem 2. Consider Theorem 5 with constants

q1 = 2R2

q2 = d̃4

q3 = 16ã(log2(4) + 1)

q4 = 24b̃2(log2(8) + 1)2,

where the sample variance constant d̃4 is defined in Theorem 5, the first network error constant ã is
defined in Lemma 8, and the second network error constant b̃2 is defined in Theorem 4.

We now go on to prove Theorem 1.
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Proof of Theorem 1. Consider the setting of Theorem 5 with θ = 0. Begin by setting

t =
⌈
(nm)1/(2r+γ)

[ 1

1− σ2

( nr

mr+γ

)2/((1+2α)(2r+γ))

∨ 1

1− σ2

(n2r
mγ

)1/((γ′+2α)(2r+γ))

∨ 1
]⌉

and η = κ−2(nm)1/(2r+γ)/t. It is clear that ηt = κ−2(nm)1/(2r+γ). We proceed to show that this
choice of iterations t and step size η ensures each of the terms in the bound of Theorem 5 are of order
Õ((nm)−2r/(2r+γ)).

The Bias term is

2R2(ηt)−2r = 2R2κ4r(nm)−2r/(2r+γ).

The Sample Variance term is bounded as follows:

d̃4(nm)−2r/(2r+γ)
(

1 ∨ (nm)−2/(2r+γ)(ηt)2 ∨ t−2(ηt)2
)

log2(t)

≤ 4κ−4d̃4(nm)−2r/(2r+γ) log2(t).

The first Network Error term is bounded in three parts aligning with the three terms within the quantity
m−1(η2t−2r ∨ (m−1(ηt?)1+2α)∨ (ηt?)γ

′+2α)). Firstly, as t ≥ (nm)1/(2r+γ) and η ≤ 1/κ2 we get

η2t−2r ≤ κ−4(nm)−2r/(2r+γ). Secondly, from t ≥ (nm)1/(2r+γ) 1
1−σ2

(
nr

mr+γ

)2/((1+2α)(2r+γ))

ensuring η ≤ κ−2(1− σ2)
(
mr+γ

nr

)2/((1+2α)(2r+γ))

we get

(ηt?)1+2α

m2
≤ (κ−22(r + 1) log(t))1+2αm

2(r+γ)/(2r+γ)−2

n2r/(2r+γ)

= (κ−22(r + 1) log(t))1+2α(nm)−2r/(2r+γ).

Thirdly, from t ≥ (nm)1/(2r+γ) 1
1−σ2

(
n2r

mγ

)1/((γ′+2α)(2r+γ))

we have

η ≤ κ−2(1− σ2)
(
mγ

n2r

)1/((γ′+2α)(2r+γ))

and so

(ηt?)γ
′+2α

m
≤ (κ−22(r + 1) log(t))γ

′+2αm
γ/(2r+γ)−1

n2r/(2r+γ)

= (κ−22(r + 1) log(t))γ
′+2α(nm)−2r/(2r+γ).

Using the above three bounds we arrive at the first Network term being Õ((nm)−2r/(2r+γ)).

Now consider the second Network Error term. Since ηt = κ−2(nm)1/(2r+γ) and m ≥ n
2r+2+γ
2r+γ−2 ≥

n
1−γ

2(r+γ)−1 we have(
1 ∨ (ηt)2 ∨ t−2(ηt)4

)((
m−1(ηt)

)
∨ (ηt)γ

)
≤
(

1 ∨ (ηt)2+γ ∨ t−2(ηt)4+γ
)
.

The second Network Error term then becomes, due to t ≥ (nm)1/(2r+γ),

8
b̃2 log4(8n) log2(t)

m2

(
1 ∨ (ηt)2+γ ∨ t−2(ηt)4+γ

)
≤ 8(κ−2)2+γ b̃2 log4(8n) log2(t)

(nm)(2+γ)/(2r+γ)

m2
.

For this quantity to be Õ((nm)−2r/(2r+γ)) we require (nm)(2+γ)/(2r+γ)

m2 ≤ (nm)−2r/(2r+γ) which is
satisfied for m ≥ n(2r+γ+2)/(2r+γ−2). Now ensure t

log(t) ≥ 2 (1+r)
1−σ2

. Note the previous requirements
on the iterations t imply

t ≥ (nm)1/(2r+γ)

1− σ2
n2r/(2r+γ)

mγ/(2r+γ)
≥ n(2r+1)/2r+γ

1− σ2
≥ n

1− σ2
.

And since x→ x/(log(x)) is increasing for x ≥ 1, the requirement t ≥ 2 (1+r) log(t)
(1−σ2)

is satisfied by
n

log( n
1−σ2

) ≥ 2(1 + r).
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Now, consider choosing γ′ ∈ [1, γ] and α ∈ [0, 1/2] to minimise the number of iterations t. Consider
the two cases m ≥ n2r/γ and m ≤ n2r/γ . When m ≥ n2r/γ we have both n2r

mγ ≤ 1 and nr

mr+γ ≤ 1
so the number of iterations t required is minimised by picking γ′ = γ and α = 0. Since 2(r+ γ) ≥ 1

we get n2r

m2(r+γ) ≤ n2r/γ

m and the number of iterations becomes

t = (nm)1/(2r+γ)
[(

1
1−σ2

(
n2r/γ

m

)1/(2r+γ))
∨1
]

= (nm)1/(2r+γ)
[(

(nm)2r/(2r+γ)

m(1−σ2)γ

)1/γ
∨1
]
. When

n2r

mγ ≥ 1, the number of iterations t required is minimised by: setting γ′ = 1, noting n2r

m2(r+γ) ≤ n2r

mγ

and further picking α = 1/2. It is clear in this case that the number of iterations required becomes

t = (nm)1/2r+γ 1
1−σ2

(
nr

mγ/2

)1/(2r+γ)
= (nm)1/(2r+γ) (nm)r/(2r+γ)√

m(1−σ2)
.

C.5 Useful inequalities

In this section we collect useful inequalities used within the proofs.
Lemma 10. The following holds for q ∈ R and t ∈ N with t ≥ 3:

t−1∑
k−1

1

t− k
k−q ≤ 2t−min(q,1)(1 + log(t)).

Proof. See Lemma 14 in [27].

Lemma 11. The following holds for q ∈ R and t ∈ N with t ≥ 3:

t−1∑
k−1

1

(t− k)1/2
k−q ≤ 4tmax(1/2−q,0).

Proof. Begin with

t−1∑
k=1

1

(t− k)1/2
k−q ≤ tmax(1/2−q,0)

t−1∑
k=1

1

(t− k)1/2k1/2
.

Suppose t is even. The bound arises by splitting the sum and using the integral bounds

t/2∑
k=1

1

(t− k)1/2k1/2
≤
√

2

t1/2

t/2∑
k=1

1

k1/2
≤
√

2

t1/2

[
1 +

∫ t/2

1

x−1/2dx

]
=

√
2

t1/2

[
1 + 2

(√
t

2
− 1

)]
≤ 2,

and
t−1∑

k=t/2+1

1

(t− k)1/2k1/2
≤
√

2

t

t−1∑
k=t/2+1

1

(t− k)1/2
≤
√

2

t

[
1 +

∫ t−1

t/2+1

(t− x)−1/2dx

]

=

√
2

t

[
1 + 2

(√
t

2
− 1− 1

)]
≤ 2.

If t is odd, follow the steps above and split the sum at k = (t− 1)/2 and k = (t− 1)/2 + 1.
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