
7 Appendix

7.1 Proof of Antisymmetry and Inversion

Proof of antisymmetry pattern In order to prove the antisymmetry pattern, we need to prove the
following inequality when imaginary components are nonzero:

Qh ⊗W /
r ·Qt 6= Qt ⊗W /

r ·Qh (11)

Firstly, we expand the left term:

Qh ⊗W /
r ·Qt = [(ah ◦ p− bh ◦ q − ch ◦ u− dh ◦ v) + (ah ◦ q + bh ◦ p+ ch ◦ v − dh ◦ u)i+

(ah ◦ u− bh ◦ v + ch ◦ p+ dh ◦ q)j + (ah ◦ v + bh ◦ u− ch ◦ q + dh ◦ p)k] · (at + bti + ctj + dtk)

=(ah ◦ p− bh ◦ q − ch ◦ u− dh ◦ v) · at + (ah ◦ q + bh ◦ p+ ch ◦ v − dh ◦ u) · bt+
(ah ◦ u− bh ◦ v + ch ◦ p+ dh ◦ q) · ct + (ah ◦ v + bh ◦ u− ch ◦ q + dh ◦ p) · dt

=〈ah, p, at〉 − 〈bh, q, at〉 − 〈ch, u, at〉 − 〈dh, v, at〉+ 〈ah, q, bt〉+
〈bh, p, bt〉+ 〈ch, v, bt〉 − 〈dh, u, bt〉+ 〈ah, u, ct〉 − 〈bh, v, ct〉+
〈ch, p, ct〉+ 〈dh, q, ct〉+ 〈ah, v, dt〉+ 〈bh, u, dt〉 − 〈ch, q, dt〉+ 〈dh, p, dt〉

We then expand the right term:

Qt ⊗W /
r ·Qh = [(at ◦ p− bt ◦ q − ct ◦ u− dt ◦ v) + (at ◦ q + bt ◦ p+ ct ◦ v − dt ◦ u)i+

(at ◦ u− bt ◦ v + ct ◦ p+ dt ◦ q)j + (at ◦ v + bt ◦ u− ct ◦ q + dt ◦ p)k] · (ah + bhi + chj + dhk)

=(at ◦ p− bt ◦ q − ct ◦ u− dt ◦ v) · ah + (at ◦ q + bt ◦ p+ ct ◦ v − dt ◦ u) · bh+

(at ◦ u− bt ◦ v + ct ◦ p+ dt ◦ q) · ch + (at ◦ v + bt ◦ u− ct ◦ q + dt ◦ p) · dh
=〈at, p, ah〉 − 〈bt, q, ah〉 − 〈ct, u, ah〉 − 〈dt, v, ah〉+ 〈at, q, bh〉+
〈bt, p, bh〉+ 〈ct, v, bh〉 − 〈dt, u, bh〉+ 〈at, u, ch〉 − 〈bt, v, ch〉+
〈ct, p, ch〉+ 〈dt, q, ch〉+ 〈at, v, dh〉+ 〈bt, u, dh〉 − 〈ct, q, dh〉+ 〈dt, p, dh〉

We can easily see that those two terms are not equal as the signs for some terms are not the same.

Proof of inversion pattern To prove the inversion pattern, we need to prove that:

Qh ⊗W /
r ·Qt = Qt ⊗ W̄ /

r ·Qh (12)

We expand the right term:

Qt ⊗ W̄ /
r ·Qh = [(at ◦ p+ bt ◦ q + ct ◦ u+ dt ◦ v) + (−at ◦ q + bt ◦ p− ct ◦ v + dt ◦ u)i+

(−at ◦ u+ bt ◦ v + ct ◦ p− dt ◦ q)j + (−at ◦ v − bt ◦ u+ ct ◦ q + dt ◦ p)k] · (ah + bhi + chj + dhk)

=(at ◦ p− bt ◦ q − ct ◦ u− dt ◦ v) · ah + (at ◦ q + bt ◦ p+ ct ◦ v − dt ◦ u) · bh+

(at ◦ u− bt ◦ v + ct ◦ p+ dt ◦ q) · ch + (at ◦ v + bt ◦ u− ct ◦ q + dt ◦ p) · dh
=〈at, p, ah〉+ 〈bt, q, ah〉+ 〈ct, u, ah〉+ 〈dt, v, ah〉 − 〈at, q, bh〉+
〈bt, p, bh〉 − 〈ct, v, bh〉+ 〈dt, u, bh〉 − 〈at, u, ch〉+ 〈bt, v, ch〉+
〈ct, p, ch〉 − 〈dt, q, ch〉 − 〈at, v, dh〉 − 〈bt, u, dh〉+ 〈ct, q, dh〉+ 〈dt, p, dh〉

We can easily check the equality of these two terms.

7.2 Hyperparameters Settings

We list the best hyperparameters setting of QuatE on the benchmark datasets:

Hyperparameters for QuatE1 without type constraints:

• WN18: k = 300, λ1 = 0.05, λ2 = 0.05,#neg = 10

• FB15K: k = 200, λ1 = 0.05, λ2 = 0.05,#neg = 10

• WN18RR: k = 100, λ1 = 0.1, λ2 = 0.1,#neg = 1

• FB15K-237: k = 100, λ1 = 0.3, λ2 = 0.3,#neg = 10
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Figure 2: Fano Plane, a mnemonic for the products of the unit octonions.

Hyperparameters for QuatE2 with N3 regularization and reciprocal learning, without type constraints:

• WN18: k = 1000, reg = 0.05

• FB15K: k = 1000, reg = 0.0025

• WN18RR: k = 1000, reg = 0.1

• FB15K-237: k = 1000, reg = 0.05

Hyperparameters for QuatE3 with type constraint:

• WN18: k = 250, λ1 = 0.05, λ2 = 0,#neg = 10

• FB15K: k = 200, λ1 = 0.1, λ2 = 0,#neg = 20

• WN18RR: k = 100, λ1 = 0.1, λ2 = 0.1,#neg = 1

• FB15K-237: k = 100, λ1 = 0.2, λ2 = 0.2,#neg = 10

Number of epochs. The number of epochs needed of QuatE and RotatE are shown in Table 8.

Table 8: Number of epochs needed of QuatE1 and RotatE.
Datasets WN18 WN18RR FB15K FB15K-237
QuatE1 3000 40000 5000 5000
RotatE 80000 80000 150000 150000

7.3 Octonion for Knowledge Graph embedding

Apart from Quaternion, we can also extend our framework to Octonions (hypercomplex number
with one real part and seven imaginary parts) and even Sedenions (hypercomplex number with one
real part and fifteen imaginary parts). Here, we use OctonionE to denote the method with Octonion
embeddings and details are given in the following text.

Octonions are hypercomplex numbers with seven imaginary components. The Octonion algebra, or
Cayley algebra, O defines operations between Octonion numbers. An Octonion is represented in the
form: O1 = x0 + x1e1 + x2e2 + x3e3 + x4e4 + x5e5 + x6e6 + x7e7, where e1, e2, e3, e4, e5, e6, e7

are imaginary units which re the square roots of −1. The multiplication rules are encoded in the
Fano Plane (shown in Figure 2). Multiplying two neighboring elements on a line results in the third
element on that same line. Moving with the arrows gives a positive answer and moving against arrows
gives a negative answer.

The conjugate of Octonion is defined as: Ō1 = x0−x1e1−x2e2−x3e3−x4e4−x5e5−x6e6−x7e7.

The norm of Octonion is defined as: |O1| =
√
x2

0 + x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6 + x2
7.
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If we have another Octonion: O2 = y0 + y1e1 + y2e2 + y3e3 + y4e4 + y5e5 + y6e6 + y7e7. We
derive the multiplication rule with the Fano Plane.

O1 ⊗O2 = (x0y0 − x1y1 − x2y2 − x3y3 − x4y4 − x5y5 − x6y6 − x7y7)

+ (x0y1 + x1y0 + x2y3 − x3y2 + x4y5 − x5y4 − x6y7 + x7y6)e1

+ (x0y2 − x1y3 + x2y0 + x3y1 + x4y6 + x5y7 − x6y4 − x7y5)e2

+ (x0y3 + x1y2 − x2y1 + x3y0 + x4y7 − x5y6 + x6y5 − x7y4)e3

+ (x0y4 − x1y5 − x2y6 − x3y7 + x4y0 + x5y1 + x6y2 + x7y3)e4

+ (x0y5 + x1y4 − x2y7 + x3y6 − x4y1 + x5y0 − x6y3 + x7y2)e6

+ (x0y6 + x1y7 + x2y4 − x3y5 − x4y2 + x5y3 + x6y0 − x7y1)e5

+ (x0y7 − x1y6 + x2y5 + x3y4 − x4y3 − x5y2 + x6y1 + x7y0)e7

(13)

We can also consider Octonions as a combination of two Quaternions. The scoring functions of
OctonionE remains the same as QuatE.

φ(h, r, t) = Qh ⊗W /
r ·Qt : {Qh,Wr, Qt ∈ Ok} (14)

The results of OctonionE on dataset WN18 and WN18RR are given below. We observe that OctonionE
performs equally to QuatE. It seems that extending the model to Octonion space does not give
additional benefits. Octonions lose some algebraic properties such as associativity, which might bring
some side effects to the model.

Table 9: Results of Octonion Knowledge graph embedding.
WN18

Model MR MRR Hit@10 Hit@3 Hit@1
OctonionE 182 0.950 0.959 0.954 0.944

WN18RR
Model MR MRR Hit@10 Hit@3 Hit@1

OctonionE 2098 0.486 0.582 0.508 0.435
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