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Abstract

Substring kernels are classical tools for representing biological sequences or text.
However, when large amounts of annotated data are available, models that allow
end-to-end training such as neural networks are often preferred. Links between
recurrent neural networks (RNNs) and substring kernels have recently been drawn,
by formally showing that RNNs with specific activation functions were points
in a reproducing kernel Hilbert space (RKHS). In this paper, we revisit this link
by generalizing convolutional kernel networks—originally related to a relaxation
of the mismatch kernel—to model gaps in sequences. It results in a new type of
recurrent neural network which can be trained end-to-end with backpropagation, or
without supervision by using kernel approximation techniques. We experimentally
show that our approach is well suited to biological sequences, where it outperforms
existing methods for protein classification tasks.

1 Introduction

Learning from biological sequences is important for a variety of scientific fields such as evolution [8]
or human health [16]. In order to use classical statistical models, a first step is often to map sequences
to vectors of fixed size, while retaining relevant features for the considered learning task. For a long
time, such features have been extracted from sequence alignment, either against a reference or between
each others [3]. The resulting features are appropriate for sequences that are similar enough, but they
become ill-defined when sequences are not suited to alignment. This includes important cases such as
microbial genomes, distant species, or human diseases, and calls for alternative representations [7].

String kernels provide generic representations for biological sequences, most of which do not require
global alignment [34]. In particular, a classical approach maps sequences to a huge-dimensional
feature space by enumerating statistics about all occuring subsequences. These subsequences may be
simple classical k-mers leading to the spectrum kernel [21], k-mers up to mismatches [22], or gap-
allowing subsequences [24]. Other approaches involve kernels based on a generative model [17, 35],
or based on local alignments between sequences [36] inspired by convolution kernels [11, 37].

The goal of kernel design is then to encode prior knowledge in the learning process. For instance,
modeling gaps in biological sequences is important since it allows taking into account short insertion
and deletion events, a common source of genetic variation. However, even though kernel methods are
good at encoding prior knowledge, they provide fixed task-independent representations. When large
amounts of data are available, approaches that optimize the data representation for the prediction task
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are now often preferred. For instance, convolutional neural networks [19] are commonly used for DNA
sequence modeling [1, 2, 41], and have been successful for natural language processing [18]. While
convolution filters learned over images are interpreted as image patches, those learned over sequences
are viewed as sequence motifs. RNNs such as long short-term memory networks (LSTMs) [14] are
also commonly used in both biological [13] and natural language processing contexts [5, 26].

Motivated by the regularization mechanisms of kernel methods, which are useful when the amount
of data is small and are yet imperfect in neural networks, hybrid approaches have been developed
between the kernel and neural networks paradigms [6, 27, 40]. Closely related to our work, the
convolutional kernel network (CKN) model originally developed for images [25] was successfully
adapted to biological sequences in [4]. CKNs for sequences consist in a continuous relaxation of the
mismatch kernel: while the latter represents a sequence by its content in k-mers up to a few discrete
errors, the former considers a continuous relaxation, leading to an infinite-dimensional sequence
representation. Finally, a kernel approximation relying on the Nyström method [38] projects the
mapped sequences to a linear subspace of the RKHS, spanned by a finite number of motifs. When
these motifs are learned end-to-end with backpropagation, learning with CKNs can also be thought
of as performing feature selection in the—infinite dimensional—RKHS.

In this paper, we generalize CKNs for sequences by allowing gaps in motifs, motivated by genomics
applications. The kernel map retains the convolutional structure of CKNs but the kernel approx-
imation that we introduce can be computed using a recurrent network, which we call recurrent
kernel network (RKN). This RNN arises from the dynamic programming structure used to compute
efficiently the substring kernel of [24], a link already exploited by [20] to derive their sequence neural
network, which was a source of inspiration for our work. Both our kernels rely on a RNN to build
a representation of an input sequence by computing a string kernel between this sequence and a
set of learnable filters. Yet, our model exhibits several differences with [20], who use the regular
substring kernel of [24] and compose this representation with another non-linear map—by applying
an activation function to the output of the RNN. By contrast, we obtain a different RKHS directly by
relaxing the substring kernel to allow for inexact matching at the compared positions, and embed
the Nyström approximation within the RNN. The resulting feature space can be interpreted as a
continuous neighborhood around all substrings (with gaps) of the described sequence. Furthermore,
our RNN provides a finite-dimensional approximation of the relaxed kernel, relying on the Nyström
approximation method [38]. As a consequence, RKNs may be learned in an unsupervised manner (in
such a case, the goal is to approximate the kernel map), and with supervision with backpropagation,
which may be interpreted as performing feature selection in the RKHS.

Contributions. In this paper, we make the following contributions:
•We generalize convolutional kernel networks for sequences [4] to allow gaps, an important option
for biological data. As in [4], we observe that the kernel formulation brings practical benefits over
traditional CNNs or RNNs [13] when the amount of labeled data is small or moderate.
• We provide a kernel point of view on recurrent neural networks with new unsupervised and
supervised learning algorithms. The resulting feature map can be interpreted in terms of gappy motifs,
and end-to-end learning amounts to performing feature selection.
• Based on [28], we propose a new way to simulate max pooling in RKHSs, thus solving a classical
discrepancy between theory and practice in the literature of string kernels, where sums are often
replaced by a maximum operator that does not ensure positive definiteness [36].

2 Background on Kernel Methods and String Kernels

Kernel methods consist in mapping data points living in a set X to a possibly infinite-dimensional
Hilbert spaceH, through a mapping function Φ : X → H, before learning a simple predictive model
in H [33]. The so-called kernel trick allows to perform learning without explicitly computing this
mapping, as long as the inner-product K(x,x′) = 〈Φ(x),Φ(x′)〉H between two points x,x′ can
be efficiently computed. Whereas kernel methods traditionally lack scalability since they require
computing an n× n Gram matrix, where n is the amount of training data, recent approaches based
on approximations have managed to make kernel methods work at large scale in many cases [30, 38].

For sequences in X = A∗, which is the set of sequences of any possible length over an alphabet A,
the mapping Φ often enumerates subsequence content. For instance, the spectrum kernel maps
sequences to a fixed-length vector Φ(x) = (φu(x))u∈Ak , where Ak is the set of k-mers—length-k
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sequence of characters in A for some k in N, and φu(x) counts the number of occurrences of u
in x [21]. The mismatch kernel [22] operates similarly, but φu(x) counts the occurrences of u up to a
few mismatched letters, which is useful when k is large and exact occurrences are rare.

2.1 Substring kernels

As [20], we consider the substring kernel introduced in [24], which allows to model the presence
of gaps when trying to match a substring u to a sequence x. Modeling gaps requires introducing
the following notation: Ix,k denotes the set of indices of sequence x with k elements (i1, . . . , ik)
satisfying 1 ≤ i1 < · · · < ik ≤ |x|, where |x| is the length of x. For an index set i in Ix,k, we may
now consider the subsequence xi = (xi1 , . . . ,xik) of x indexed by i. Then, the substring kernel
takes the same form as the mismatch and spectrum kernels, but φu(x) counts all—consecutive or
not—subsequences of x equal to u, and weights them by the number of gaps. Formally, we consider a
parameter λ in [0, 1], and φu(x) =

∑
i∈Ix,k λ

gaps(i)δ(u,xi), where δ(u, v) = 1 if and only if u = v,
and 0 otherwise, and gaps(i) := ik − i1 − k + 1 is the number of gaps in the index set i. When λ is
small, gaps are heavily penalized, whereas a value close to 1 gives similar weights to all occurrences.
Ultimately, the resulting kernel between two sequences x and x′ is

Ks(x,x′) :=
∑

i∈Ix,k

∑

j∈Ix′,k

λgaps(i)λgaps(j)δ
(
xi,x

′
j

)
. (1)

As we will see in Section 3, our RKN model relies on (1), but unlike [20], we replace the quantity
δ(xi,x

′
j) that matches exact occurrences by a relaxation, allowing more subtle comparisons. Then,

we will show that the model can be interpreted as a gap-allowed extension of CKNs for sequences.
We also note that even though Ks seems computationally expensive at first sight, it was shown in [24]
that (1) admits a dynamic programming structure leading to efficient computations.

2.2 The Nyström method

When computing the Gram matrix is infeasible, it is typical to use kernel approximations [30, 38],
consisting in finding a q-dimensional mapping ψ : X → Rq such that the kernel K(x,x′) can be
approximated by a Euclidean inner-product 〈ψ(x), ψ(x′)〉Rq . Then, kernel methods can be simulated
by a linear model operating on ψ(x), which does not raise scalability issues if q is reasonably small.
Among kernel approximations, the Nyström method consists in projecting points of the RKHS onto a
q-dimensional subspace, allowing to represent points into a q-dimensional coordinate system.

Specifically, consider a collection of Z = {z1, . . . , zq} points in X and consider the subspace

E = Span(Φ(z1), . . . ,Φ(zq)) and define ψ(x) = K
− 1

2

ZZKZ(x),

whereKZZ is the q×q Gram matrix ofK restricted to the samples z1, . . . , zq andKZ(x) in Rq carries
the kernel values K(x, zj), j = 1, . . . , q. This approximation only requires q kernel evaluations and
often retains good performance for learning. Interestingly as noted in [25], 〈ψ(x), ψ(x′)〉Rq is exactly
the inner-product inH between the projections of Φ(x) and Φ(x′) onto E , which remain inH.

When X is a Euclidean space—this can be the case for sequences when using a one-hot encoding
representation, as discussed later— a good set of anchor points zj can be obtained by simply clustering
the data and choosing the centroids as anchor points [39]. The goal is then to obtain a subspace E
that spans data as best as possible. Otherwise, previous works on kernel networks [4, 25] have also
developed procedures to learn the set of anchor points end-to-end by optimizing over the learning
objective. This approach can then be seen as performing feature selection in the RKHS.

3 Recurrent Kernel Networks

With the previous tools in hand, we now introduce RKNs. We show that it admits variants of CKNs,
substring and local alignment kernels as special cases, and we discuss its relation with RNNs.

3.1 A continuous relaxation of the substring kernel allowing mismatches

From now on, and with an abuse of notation, we represent characters in A as vectors in Rd. For
instance, when using one-hot encoding, a DNA sequence x = (x1, . . . ,xm) of length m can be seen
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as a 4-dimensional sequence where each xj in {0, 1}4 has a unique non-zero entry indicating which
of {A,C,G, T} is present at the j-th position, and we denote by X the set of such sequences. We
now define the single-layer RKN as a generalized substring kernel (1) in which the indicator function
δ(xi,x

′
j) is replaced by a kernel for k-mers:

Kk(x,x′) :=
∑

i∈Ix,k

∑

j∈Ix′,k

λx,iλx,je
−α2 ‖xi−x′j‖2 , (2)

where we assume that the vectors representing characters have unit `2-norm, such that e−
α
2 ‖xi−x′j‖2 =

eα(〈xi,x
′
j〉−k) =

∏k
t=1 e

α(〈xit ,x′jt 〉−1) is a dot-product kernel, and λx,i = λgaps(i) if we follow (1).

For λ = 0 and using the convention 00 = 1, all the terms in these sums are zero except those
for k-mers with no gap, and we recover the kernel of the CKN model of [4] with a convolutional
structure—up to the normalization, which is done k-mer-wise in CKN instead of position-wise.

Compared to (1), the relaxed version (2) accommodates inexact k-mer matching. This is important
for protein sequences, where it is common to consider different similarities between amino acids in
terms of substitution frequency along evolution [12]. This is also reflected in the underlying sequence
representation in the RKHS illustrated in Figure 1: by considering ϕ(.) the kernel mapping and
RKHSH such that K(xi,x

′
j) = e−

α
2 ‖xi−x′j‖2 = 〈ϕ(xi), ϕ(x′j)〉H, we have

Kk(x,x′) =

〈 ∑

i∈Ix,k
λx,iϕ(xi),

∑

j∈Ix′,k

λx,jϕ(x′j)

〉

H

. (3)

A natural feature map for a sequence x is therefore Φk(x) =
∑

i∈Ix,k λx,iϕ(xi): using the RKN

amounts to representing x by a mixture of continuous neighborhoods ϕ(xi) : z 7→ e−
α
2 ‖xi−z‖2

centered on all its k-subsequences xi , each weighted by the corresponding λx,i (e.g., λx,i = λgaps(i)).
As a particular case, a feature map of CKN [4] is the sum of the kernel mapping of all the k-mers
without gap.

k-mer kernel embedding

one 4-mer of x

i1 i2 λ i3 λ i4

xi

i1 i2 i3 i4

λ2ϕ(xi)

one-layer k-subsequence kernel

x

i1 i2 λ i3 λ ik

all embedded
k-mers

λgap(i)ϕ(xi)

pooling

∑
i λ

gap(i)ϕ(xi)

Figure 1: Representation of sequences in a RKHS based on Kk with k = 4 and λx,i = λgaps(i).

3.2 Extension to all k-mers and relation to the local alignment kernel

Dependency in the hyperparameter k can be removed by summing Kk over all possible values:

Ksum(x,x′) :=

∞∑

k=1

Kk(x,x′) =

max(|x|,|x′|)∑

k=1

Kk(x,x′).

Interestingly, we note that Ksum admits the local alignment kernel of [36] as a special case. More
precisely, local alignments are defined via the tensor product set Ak(x,x′) := Ix,k × Ix′,k, which
contains all possible alignments of k positions between a pair of sequences (x,x′). The local
alignment score of each such alignment π = (i, j) in Ak(x,x′) is defined, by [36], as S(x,x′, π) :=∑k
t=1 s(xit ,x

′
jt

)−∑k−1
t=1 [g(it+1 − it − 1) + g(jt+1 − jt − 1)], where s is a symmetric substitution
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function and g is a gap penalty function. The local alignment kernel in [36] can then be expressed in
terms of the above local alignment scores (Thrm. 1.7 in [36]):

KLA(x,x′) =

∞∑

k=1

Kk
LA(x,x′) :=

∞∑

k=1

∑

π∈Ak(x,x′)
exp(βS(x,x′, π)) for some β > 0. (4)

When the gap penalty function is linear—that is, g(x) = cxwith c > 0,Kk
LA becomesKk

LA(x,x′) =∑
π∈Ak(x,x′) exp(βS(x,x′, π)) =

∑
(i,j)∈Ak(x,x′) e

−cβgaps(i)e−cβgaps(j)∏k
t=1 e

βs(xit ,x
′
jt
). When

s(xit ,x
′
jt

) can be written as an inner-product 〈ψs(xit), ψs(x′jt)〉 between normalized vectors, we see
that KLA becomes a special case of (2)—up to a constant factor—with λx,i = e−cβgaps(i), α = β.

This observation sheds new lights on the relation between the substring and local alignment kernels,
which will inspire new algorithms in the sequel. To the best of our knowledge, the link we will
provide between RNNs and local alignment kernels is also new.

3.3 Nyström approximation and recurrent neural networks

As in CKNs, we now use the Nyström approximation method as a building block to make the above
kernels tractable. According to (3), we may first use the Nyström method described in Section 2.2 to
find an approximate embedding for the quantities ϕ(xi), where xi is one of the k-mers represented
as a matrix in Rk×d. This is achieved by choosing a set Z = {z1, . . . , zq} of anchor points in Rk×d,
and by encoding ϕ(xi) as K−1/2ZZ KZ(xi)—where K is the kernel ofH. Such an approximation for
k-mers yields the q-dimensional embedding for the sequence x:

ψk(x) =
∑

i∈Ix,k
λx,iK

− 1
2

ZZKZ(xi) = K
− 1

2

ZZ

∑

i∈Ix,k
λx,iKZ(xi). (5)

Then, an approximate feature map ψsum(x) for the kernel Ksum can be obtained by concatenating the
embeddings ψ1(x), . . . , ψk(x) for k large enough.

The anchor points as motifs. The continuous relaxation of the substring kernel presented in (2)
allows us to learn anchor points that can be interpreted as sequence motifs, where each position can
encode a mixture of letters. This can lead to more relevant representations than k-mers for learning on
biological sequences. For example, the fact that a DNA sequence is bound by a particular transcription
factor can be associated with the presence of a T followed by either a G or an A, followed by another
T, would require two k-mers but a single motif [4]. Our kernel is able to perform such a comparison.

Efficient computations ofKk andKsum approximation via RNNs. A naive computation ofψk(x)
would require enumerating all substrings present in the sequence, which may be exponentially large
when allowing gaps. For this reason, we use the classical dynamic programming approach of substring
kernels [20, 24]. Consider then the computation of ψj(x) defined in (5) for j = 1, . . . , k as well as a
set of anchor points Zk = {z1, . . . , zq} with the zi’s in Rd×k. We also denote by Zj the set obtained
when keeping only j-th first positions (columns) of the zj’s, leading to Zj = {[z1]1:j , . . . , [zq]1:j},
which will serve as anchor points for the kernel Kj to compute ψj(x). Finally, we denote by zji in Rd
the j-th column of zi such that zi = [z1i , . . . , z

k
i ]. Then, the embeddings ψ1(x), . . . , ψk(x) can be

computed recursively by using the following theorem:
Theorem 1. For any j ∈ {1, . . . , k} and t ∈ {1, . . . , |x|},

ψj(x1:t) = K
− 1

2

ZjZj

{
cj [t] if λx,i = λ|x|−i1−j+1,

hj [t] if λx,i = λgaps(i),
(6)

where cj [t] and hj [t] form a sequence of vectors in Rq indexed by t such that cj [0] = hj [0] = 0, and
c0[t] is a vector that contains only ones, while the sequence obeys the recursion

cj [t] = λcj [t− 1] + cj−1[t− 1]� bj [t] 1 ≤ j ≤ k,
hj [t] = hj [t− 1] + cj−1[t− 1]� bj [t] 1 ≤ j ≤ k, (7)

where � is the elementwise multiplication operator and bj [t] is a vector in Rq whose entry i in
{1, . . . , q} is e−

α
2 ‖xt−zij‖2 = eα(〈xt,z

i
j〉−1) and xt is the t-th character of x.
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A proof is provided in Appendix A and is based on classical recursions for computing the substring
kernel, which were interpreted as RNNs by [20]. The main difference in the RNN structure we
obtain is that their non-linearity is applied over the outcome of the network, leading to a feature map
formed by composing the feature map of the substring kernel of [24] and another one from a RKHS
that contains their non-linearity. By contrast, our non-linearities are built explicitly in the substring
kernel, by relaxing the indicator function used to compare characters. The resulting feature map is a
continuous neighborhood around all substrings of the described sequence. In addition, the Nyström
method yields an orthogonalization factor K−1/2ZZ to the output KZ(x) of the network to compute our
approximation, which is perhaps the only non-standard component of our RNN. This factor provides
an interpretation of ψ(x) as a kernel approximation. As discussed next, it makes it possible to learn
the anchor points by k-means, see [4], which also makes the initialization of the supervised learning
procedure simple without having to deal with the scaling of the initial motifs/filters zj .

Learning the anchor points Z. We now turn to the application of RKNs to supervised learning.
Given n sequences x1, . . . ,xn in X and their associated labels y1, . . . , yn in Y , e.g., Y = {−1, 1}
for binary classification or Y = R for regression, our objective is to learn a function in the RKHSH
of Kk by minimizing

min
f∈H

1

n

n∑

i=1

L(f(xi), yi) +
µ

2
‖f‖2H,

where L : R × R → R is a convex loss function that measures the fitness of a prediction f(xi) to
the true label yi and µ controls the smoothness of the predictive function. After injecting our kernel
approximation Kk(x,x′) ' 〈ψk(x), ψk(x′)〉Rq , the problem becomes

min
w∈Rq

1

n

n∑

i=1

L
(
〈ψk(xi),w〉, yi

)
+
µ

2
‖w‖2. (8)

Following [4, 25], we can learn the anchor points Z without exploiting training labels, by applying
a k-means algorithm to all (or a subset of) the k-mers extracted from the database and using the
obtained centroids as anchor points. Importantly, once Z has been obtained, the linear function
parametrized by w is still optimized with respect to the supervised objective (8). This procedure can
be thought of as learning a general representation of the sequences disregarding the supervised task,
which can lead to a relevant description while limiting overfitting.

Another strategy consists in optimizing (8) jointly over (Z,w), after observing that ψk(x) =

K
−1/2
ZZ

∑
i∈Ix,k λx,iKZ(xi) is a smooth function of Z. Learning can be achieved by using backprop-

agation over (Z,w), or by using an alternating minimization strategy between Z and w. It leads to
an end-to-end scheme where both the representation and the function defined over this representation
are learned with respect to the supervised objective (8). Backpropagation rules for most operations
are classical, except for the matrix inverse square root function, which is detailed in Appendix B.
Initialization is also parameter-free since the unsupervised learning approach may be used for that.

3.4 Extensions

Multilayer construction. In order to account for long-range dependencies, it is possible to con-
struct a multilayer model based on kernel compositions similar to [20]. Assume that K(n)

k is the n-th
layer kernel and Φ

(n)
k its mapping function. The corresponding (n+ 1)-th layer kernel is defined as

K(n+1)
k (x,x′) =

∑

i∈Ix,k,j∈Ix′,k

λ
(n+1)
x,i λ

(n+1)
x′,j

k∏

t=1

Kn+1(Φ
(n)
k (x1:it),Φ

(n)
k (x′1:jt)), (9)

where Kn+1 will be defined in the sequel and the choice of weights λ(n)x,i slightly differs from the

single-layer model. We choose indeed λ(N)
x,i = λgaps(i) only for the last layer N of the kernel, which

depends on the number of gaps in the index set i but not on the index positions. Since (9) involves
a kernel Kn+1 operating on the representation of prefix sequences Φ

(n)
k (x1:t) from layer n, the

representation makes sense only if Φ
(n)
k (x1:t) carries mostly local information close to position t.
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Otherwise, information from the beginning of the sequence would be overrepresented. Ideally, we
would like the range-dependency of Φ

(n)
k (x1:t) (the size of the window of indices before t that

influences the representation, akin to receptive fields in CNNs) to grow with the number of layers
in a controllable manner. This can be achieved by choosing λ(n)x,i = λ|x|−i1−k+1 for n < N , which
assigns exponentially more weights to the k-mers close to the end of the sequence.

For the first layer, we recover the single-layer networkKk defined in (2) by defining Φ
(0)
k (x1:ik)=xik

and K1(xik ,x
′
jk

) = eα(〈xik ,x
′
jk
〉−1). For n > 1, it remains to define Kn+1 to be a homogeneous

dot-product kernel, as used for instance in CKNs [25]:

Kn+1(u,u′) = ‖u‖Hn‖u‖Hnκn
(〈

u

‖u‖Hn
,

u′

‖u′‖Hn

〉

Hn

)
with κn(t) = eαn(t−1). (10)

Note that the Gaussian kernel K1 used for 1st layer may also be written as (10) since characters are
normalized. As for CKNs, the goal of homogenization is to prevent norms to grow/vanish exponen-
tially fast with n, while dot-product kernels lend themselves well to neural network interpretations.

As detailed in Appendix C, extending the Nyström approximation scheme for the multilayer con-
struction may be achieved in the same manner as with CKNs—that is, we learn one approximate
embedding ψ(n)

k at each layer, allowing to replace the inner-products 〈Φ(n)
k (x1:it),Φ

(n)
k (x′1:jt)〉 by

their approximations 〈ψ(n)
k (x1:it), ψ

(n)
k (x′1:jt)〉, and it is easy to show that the interpretation in terms

of RNNs is still valid since K(n)
k has the same sum structure as (2).

Max pooling in RKHS. Alignment scores (e.g. Smith-Waterman) in molecular biology rely on
a max operation—over the scores of all possible alignments—to compute similarities between
sequences. However, using max in a string kernel usually breaks positive definiteness, even though it
seems to perform well in practice. To solve such an issue, sum-exponential is used as a proxy in [32],
but it leads to diagonal dominance issue and makes SVM solvers unable to learn. For RKN, the sum
in (3) can also be replaced by a max

Kmax
k (x,x′) =

〈
max
i∈Ix,k

λx,iψk(xi), max
j∈Ix′,k

λx,jψk(x′j)

〉
, (11)

which empirically seems to perform well, but breaks the kernel interpretation, as in [32]. The
corresponding recursion amounts to replacing all the sum in (7) by a max.

An alternative way to aggregate local features is the generalized max pooling (GMP) introduced in
[28], which can be adapted to the context of RKHSs. Assuming that before pooling x is embedded
to a set of N local features (ϕ1, . . . , ϕN ) ∈ HN , GMP builds a representation ϕgmp whose inner-
product with all the local features ϕi is one: 〈ϕi, ϕgmp〉H = 1, for i = 1, . . . , N . ϕgmp coincides
with the regular max when each ϕ is an element of the canonical basis of a finite representation—i.e.,
assuming that at each position, a single feature has value 1 and all others are 0.

Since GMP is defined by a set of inner-products constraints, it can be applied to our approximate
kernel embeddings by solving a linear system. This is compatible with CKN but becomes intractable
for RKN which pools across |Ix,k| positions. Instead, we heuristically apply GMP over the set
ψk(x1:t) for all t with λx,i = λ|x|−i1−k+1, which can be obtained from the RNN described in
Theorem 1. This amounts to composing GMP with mean poolings obtained over each prefix of x.
We observe that it performs well in our experiments. More details are provided in Appendix D.

4 Experiments

We evaluate RKN and compare it to typical string kernels and RNN for protein fold recognition.
Pytorch code is provided with the submission and additional details given in Appendix E.

4.1 Protein fold recognition on SCOP 1.67

Sequencing technologies provide access to gene and, indirectly, protein sequences for yet poorly
studied species. In order to predict the 3D structure and function from the linear sequence of these
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proteins, it is common to search for evolutionary related ones, a problem known as homology
detection. When no evolutionary related protein with known structure is available, a—more difficult—
alternative is to resort to protein fold recognition. We evaluate our RKN on such a task, where the
objective is to predict which proteins share a 3D structure with the query [31].

Here we consider the Structural Classification Of Proteins (SCOP) version 1.67 [29]. We follow
the preprocessing procedures of [10] and remove the sequences that are more than 95% similar,
yielding 85 fold recognition tasks. Each positive training set is then extended with Uniref50 to
make the dataset more balanced, as proposed in [13]. The resulting dataset can be downloaded
from http://www.bioinf.jku.at/software/LSTM_protein. The number of training samples
for each task is typically around 9,000 proteins, whose length varies from tens to thousands of
amino-acids. In all our experiments we use logistic loss. We measure classification performances
using auROC and auROC50 scores (area under the ROC curve and up to 50% false positives).

For CKN and RKN, we evaluate both one-hot encoding of amino-acids by 20-dimensional binary
vectors and an alternative representation relying on the BLOSUM62 substitution matrix [12]. Specif-
ically in the latter case, we represent each amino-acid by the centered and normalized vector of
its corresponding substitution probabilities with other amino-acids. The local alignment kernel (4),
which we include in our comparison, natively uses BLOSUM62.

Hyperparameters. We follow the training procedure of CKN presented in [4]. Specifically, for
each of the 85 tasks, we hold out one quarter of the training samples as a validation set, use it to
tune α, gap penalty λ and the regularization parameter µ in the prediction layer. These parameters are
then fixed across datasets. RKN training also relies on the alternating strategy used for CKN: we use
an Adam algorithm to update anchor points, and the L-BFGS algorithm to optimize the prediction
layer. We train 100 epochs for each dataset: the initial learning rate for Adam is fixed to 0.05 and is
halved as long as there is no decrease of the validation loss for 5 successive epochs. We fix k to 10,
the number of anchor points q to 128 and use single layer CKN and RKN throughout the experiments.

Implementation details for unsupervised models. The anchor points for CKN and RKN are
learned by k-means on 30,000 extracted k-mers from each dataset. The resulting sequence represen-
tations are standardized by removing mean and dividing by standard deviation and are used within a
logistic regression classifier. α in Gaussian kernel and the parameter λ are chosen based on validation
loss and are fixed across the datasets. µ for regularization is chosen by a 5-fold cross validation on
each dataset. As before, we fix k to 10 and the number of anchor points q to 1024. Note that the
performance could be improved with larger q as observed in [4], at a higher computational cost.

Comparisons and results. The results are shown in Table 1. The blosum62 version of CKN and
RKN outperform all other methods. Improvement against the mismatch and LA kernels is likely
caused by end-to-end trained kernel networks learning a task-specific representation in the form of a
sparse set of motifs, whereas data-independent kernels lead to learning a dense function over the set
of descriptors. This difference can have a regularizing effect akin to the `1-norm in the parametric
world, by reducing the dimension of the learned linear function w while retaining relevant features
for the prediction task. GPkernel also learns motifs, but relies on the exact presence of discrete motifs.
Finally, both LSTM and [20] are based on RNNs but are outperformed by kernel networks. The latter
was designed and optimized for NLP tasks and yields a 0.4 auROC50 on this task.

RKNs outperform CKNs, albeit not by a large margin. Interestingly, as the two kernels only differ
by their allowing gaps when comparing sequences, this results suggests that this aspect is not the
most important for identifying common foldings in a one versus all setting: as the learned function
discriminates on fold from all others, it may rely on coarser features and not exploit more subtle ones
such as gappy motifs. In particular, the advantage of the LA-kernel against its mismatch counterpart
is more likely caused by other differences than gap modelling, namely using a max rather than a
mean pooling of k-mer similarities across the sequence, and a general substitution matrix rather than
a Dirac function to quantify mismatches. Consistently, within kernel networks GMP systematically
outperforms mean pooling, while being slightly behind max pooling.

Additional details and results, scatter plots, and pairwise tests between methods to assess the statistical
significance of our conclusions are provided in Appendix E. Note that when k = 14, the auROC and
auROC50 further increase to 0.877 and 0.636 respectively.
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Table 1: Average auROC and auROC50 for SCOP fold recognition benchmark. LA-kernel uses
BLOSUM62 to compare amino acids which is a little different from our encoding approach. Details
about pairwise statistical tests between methods can be found in Appendix E.

Method pooling one-hot BLOSUM62
auROC auROC50 auROC auROC50

GPkernel [10] 0.844 0.514
– –SVM-pairwise [23] 0.724 0.359

Mismatch [22] 0.814 0.467
LA-kernel [32] – – 0.834 0.504

LSTM [13] 0.830 0.566 – –

CKN-seq [4] mean 0.827 0.536 0.843 0.563
CKN-seq [4] max 0.837 0.572 0.866 0.621
CKN-seq GMP 0.838 0.561 0.856 0.608
CKN-seq (unsup)[4] mean 0.804 0.493 0.827 0.548

RKN (λ = 0) mean 0.829 0.542 0.838 0.563
RKN mean 0.829 0.541 0.840 0.571
RKN (λ = 0) max 0.840 0.575 0.862 0.618
RKN max 0.844 0.587 0.871 0.629
RKN (λ = 0) GMP 0.840 0.563 0.855 0.598
RKN GMP 0.848 0.570 0.852 0.609
RKN (unsup) mean 0.805 0.504 0.833 0.570

Table 2: Classification accuracy for SCOP 2.06. The complete table with error bars can be found in
Appendix E.

Method ]Params Accuracy on SCOP 2.06 Level-stratified accuracy (top1/top5/top10)
top 1 top 5 top 10 family superfamily fold

PSI-BLAST - 84.53 86.48 87.34 82.20/84.50/85.30 86.90/88.40/89.30 18.90/35.10/35.10
DeepSF 920k 73.00 90.25 94.51 75.87/91.77/95.14 72.23/90.08/94.70 51.35/67.57/72.97
CKN (128 filters) 211k 76.30 92.17 95.27 83.30/94.22/96.00 74.03/91.83/95.34 43.78/67.03/77.57
CKN (512 filters) 843k 84.11 94.29 96.36 90.24/95.77/97.21 82.33/94.20/96.35 45.41/69.19/79.73

RKN (128 filters) 211k 77.82 92.89 95.51 76.91/93.13/95.70 78.56/92.98/95.53 60.54/83.78/90.54
RKN (512 filters) 843k 85.29 94.95 96.54 84.31/94.80/96.74 85.99/95.22/96.60 71.35/84.86/89.73

4.2 Protein fold classification on SCOP 2.06

We further benchmark RKN in a fold classification task, following the protocols used in [15].
Specifically, the training and validation datasets are composed of 14699 and 2013 sequences from
SCOP 1.75, belonging to 1195 different folds. The test set consists of 2533 sequences from SCOP
2.06, after removing the sequences with similarity greater than 40% with SCOP 1.75. The input
sequence feature is represented by a vector of 45 dimensions, consisting of a 20-dimensional one-hot
encoding of the sequence, a 20-dimensional position-specific scoring matrix (PSSM) representing
the profile of amino acids, a 3-class secondary structure represented by a one-hot vector and a
2-class solvent accessibility. We further normalize each type of the feature vectors to have unit
`2-norm, which is done for each sequence position. More dataset details can be found in [15]. We
use mean pooling for both CKN and RKN models, as it is more stable during training for multi-class
classification. The other hyperparameters are chosen in the same way as previously. More details
about hyperparameter search grid can be found in Appendix E.

The accuracy results are obtained by averaging 10 different runs and are shown in Table 2, stratified
by prediction difficulty (family/superfamily/fold, more details can be found in [15]). By contrast
to what we observed on SCOP 1.67, RKN sometimes yields a large improvement on CKN for fold
classification, especially for detecting distant homologies. This suggests that accounting for gaps
does help in some fold prediction tasks, at least in a multi-class context where a single function is
learned for each fold.
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A Nyström Approximation for Single-Layer RKN

We detail here the Nytröm approximation presented in Section 3.3, which we recall here for a
sequence x:

ψk(x) = K
−1/2
ZZ

∑

i∈Ix,k
λx,iKZ(xi). (12)

Consider then the computation of ψj(x) defined in (12) for j = 1, . . . , k given a set of anchor points
Zk = {z1, . . . , zq} with the zi’s in Rd×k. Given the notations introduced in Section 3.3, we are now
in shape to prove Theorem 1.

Proof. The proof is based on Theorem 1 of [20] and definition 2 of [24]. For i ∈ Ix,j , let us denote
by i′ = (i1, . . . , ij−1) the j − 1 first entries of i. We first notice that for the Gaussian kernel K, we
have the following factorization relation for i = 1, . . . , q

K(xi, [zi]1:j) = eα(〈xi,[zi]1:j〉−j)

= eα(〈xi′ ,[zi]1:j−1〉−(j−1))eα(〈xij ,zj〉−1)

= K(xi′ , [zi]1:j−1)eα(〈xij ,zj〉−1).

Thus
KZj (xi) = KZj−1(xi′)� bj [ij ],

with bj [t] defined as in the theorem.

Let us denote
∑

i∈Ix1:t,j
λx1:t,iKZj (xi) by c̃j [t] if λx,i = λ|x|−i1−j+1 and by h̃j [t] if λx,i = λgaps(i).

We want to prove that c̃j [t] = cj [t] and h̃j [t] = hj [t]. First, it is clear that c̃j [0] = 0 for any j. We
show by induction on j that c̃j [t] = cj [t]. When j = 1, we have

c̃1[t] =
∑

1≤i1≤t
λt−i1KZ1

(xi1)

=
∑

1≤i1≤t−1
λt−i1KZ1

(xi1) +KZ1
(xt),

= λc̃1[t− 1] + b1[t].

c̃1[t] and c1[t] have the same recursion and initial state thus are identical. When j > 1 and suppose
that c̃j−1[t] = cj−1[t], then we have

c̃j [t] =
∑

i∈Ix1:t,j

λt−i1−j+1KZj (xi),

=
∑

i∈Ix1:t−1,j

λt−i1−j+1KZj (xi)

︸ ︷︷ ︸
ij<t

+
∑

i′∈Ix1:t−1,j−1

λ(t−1)−s1−(j−1)+1KZj−1
(xi′)� bj [t]

︸ ︷︷ ︸
ij=t

,

= λc̃j [t− 1] + c̃j−1[t]� bj [t],

= λc̃j [t− 1] + cj−1[t]� bj [t].

c̃j [t] and cj [t] have the same recursion and initial state. We have thus proved that c̃j [t] = cj [t]. Let
us move on for proving h̃j [t] = hj [t] by showing that they have the same initial state and recursion.
It is straightforward that h̃j [0] = 0, then for 1 ≤ j ≤ k we have

h̃j [t] =
∑

i∈Ix1:t,j

λij−i1−j+1KZj (xi),

=
∑

i∈Ix1:t−1,j

λij−i1−j+1KZj (xi) +
∑

i′∈Ix1:t−1,j−1

λ(t−1)−s1−(j−1)+1KZj−1(xi′)� bj [t]

=h̃j [t− 1] + cj−1[t]� bj [t].

Therefore h̃j [t] = hj [t].
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B Back-propagation for Matrix Inverse Square Root

In Section 3.3, we have described an end-to-end scheme to jointly optimize Z and w. The back-
propagation of Z requires computing that of the matrix inverse square root operation as it is involved
in the approximate feature map of x as shown in (12). The back-propagation formula is given by the
following proposition, which is based on an errata of [25] and we include it here for completeness.
Proposition 1. Given A a symmetric positive definite matrix in Rn×n and the eigencomposition of
A is written as A = U∆U> where U is orthogonal and ∆ is diagonal with eigenvalues δ1, . . . , δn.
Then

d(A−
1
2 ) = −U(F ◦ (U>dAU))U>. (13)

Proof. First, let us differentiate with respect to the inverse matrix A−1:

A−1A = I =⇒ A−1dA + d(A−1)A = 0 =⇒ d(A−1) = −A−1dAA−1.

Then, by applying the same (classical) trick,

A−
1
2 A−

1
2 = A−1 =⇒ d(A−

1
2 )A−

1
2 + A−

1
2 d(A−

1
2 ) = d(A−1) = −A−1dAA−1.

By multiplying the last relation by U> on the left and by U on the right.

U>d(A−
1
2 )U∆−

1
2 + ∆−

1
2 U>d(A−

1
2 )U = −∆−1U>dAU∆−1.

Note that ∆ is diagonal. By introducing the matrix F such that Fkl = 1√
δk
√
δl(
√
δk+
√
δl)

, it is then
easy to show that

U>d(A−
1
2 )U = −F ◦ (U>dAU),

where ◦ is the Hadamard product between matrices. Then, we are left with

d(A−
1
2 ) = −U(F ◦ (U>dAU))U>.

When doing back-propagation, one is usually interested in computing a quantity Ā such that given B̄
(with appropriate dimensions), we have

〈B̄, d(A−
1
2 )〉F = 〈Ā, dA〉F ,

see [9], for instance. Here, 〈, 〉F denotes the Frobenius inner product. Then, it is easy to show that

Ā = −U(F ◦ (U>B̄U))U>.

C Multilayer Construction of RKN

For multilayer RKN, assume that we have defined K(n) the n-th layer kernel. To simplify
the notation below, we consider that an input sequence x is encoded at layer n as x(n) :=

(Φ
(n)
k (x1),Φ

(n)
k (x1:2), . . . ,Φ

(n)
k (x)) where the feature map at position t is x

(n)
t = Φ

(n)
k (x1:t). The

(n+ 1)-layer kernel is defined by induction by

K(n+1)
k (x,x′) =

∑

i∈Ix,k,j∈Ix′,k

λ
(n)
x,i λ

(n)
x′,j

k∏

t=1

Kn+1(x
(n)
it
,x
′(n)
jt

), (14)

where Kn+1 is defined in (10. With the choice of weights described in Section 3.4, the construc-
tion scheme for an n-layer RKN is illustrated in Figure 2 The Nyström approximation scheme
for multilayer RKN is straightforward by inductively applying the Nytröm method to the kernels
K(1), . . . ,K(n) from bottom to top layers. Specifically, assume that K(n)(x,x′) is approximated by
〈ψ(n)
k (x), ψ

(n)
k (x′)〉Rqn such that the approximate feature map of x(n) at position t is ψ(n)

k (x1:t).
Now Consider a set of anchor points Zk = {z1, . . . , zqn+1

} with the zi’s in Rqn×k which have unit
norm at each column. We use the same notations as in single-layer construction. Then very similar to
the single-layer RKN, the embeddings (ψ

(n+1)
j (x

(n)
1:t ))1=1,...,k,t=1,...,|x(n)| are given by the following

recursion
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x ∈ X

first layer kernel

K(1)
k

x(1) ∈ H|x|
1

Φ
(1)
k

(x1) = 0 Φ
(1)
k

(x1:4) Φ
(1)
k

(x1:t) ∈ H1 Φ
(1)
k

(x)

x(n) ∈ H|x|
n

Φ
(n)
k

(
x
(n−1)
1:t

)
Φ
(n)
k

(
x(n−1)

)

prediction
layer

y

Figure 2: Multilayer construction of RKN: an example with k = 4.

Theorem 2. For any j ∈ {1, . . . , k} and t ∈ {1, . . . , |x(n)|},

ψ
(n+1)
j (x

(n)
1:t ) = K

−1/2
ZjZj

{
cj [t] if λ(n)x,i = λ|x

(n)|−i1−j+1,

hj [t] if λ(n)x,i = λgaps(i),

where cj [t] and hj [t] form a sequence of vectors in Rqn+1 indexed by t such that cj [0] = hj [0] = 0,
and c0[t] is a vector that contains only ones, while the sequence obeys the recursion

cj [t] = λcj [t− 1] + cj−1[t− 1]� bj [t] 1 ≤ j ≤ k,
hj [t] = hj [t− 1] + cj−1[t− 1]� bj [t] 1 ≤ j ≤ k, (15)

where � is the elementwise multiplication operator and bj [t] whose entry i is Kn+1(zij ,x
(n)
t ) =

‖x(n)
t ‖κn

(〈
zij ,

x
(n)
t

‖x(n)
t ‖

〉)
.

Proof. The proof can be obtained by that of Theorem 1 by replacing the Gaussian kernel eα(〈xt,z
i
j)

with the kernel Kn+1(x
(n)
t , zij).

D Generalized Max Pooling for RKN

Assume that a sequence x is embedded to (ϕ1, . . . , ϕn) ∈ Hn local features, as in Section 3.4.
Generalized max pooling (GMP) looks for a representation ϕgmp such that the inner product between
this vector and all the local representations is one: 〈ϕi, ϕgmp〉H = 1, for i = 1, . . . , n. Assuming that
each ϕi is now represented by a vector ψi in Rq , the above problem can be approximately solved by
search an embedding vector ψgmp in Rq such that 〈ψi, ψgmp〉 = 1 for i = 1, . . . , n. In practice, and to
prevent ill-conditioned problems, as shown in [28], it is possible to solve a ridge regression problem:

ψgmp = arg min
ψ∈Rq

‖Ψ>ψ − 1‖2 + γ‖ψ‖2, (16)

where Ψ = [ψ1, . . . , ψn] ∈ Rq×n and 1 denotes the n-dimensional vectors with only 1 as entries.
The solution is simply given by ψgmp = (ΨΨ> + γI)−1Ψ1. It requires inverting a q × q matrix
which is usually tractable when the number of anchor points is small. In particular, when ψi =

K
−1/2
ZZ KZ(xi) the Nyström approximation of a local feature map, we have Ψ = K

−1/2
ZZ KZX with

[KZX ]ji = K(zj ,xi) and thus

ψgmp = K
1
2

ZZ(KZXK
>
ZX + γKZZ)−1KZX1.

E Additional Experimental Material

In this section, we provide additional details about experiments and scatter plots with pairwise
statistical tests.
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Figure 3: Boxplots when varying filter number q (left) and filter size (right).

E.1 Protein fold recognition on SCOP 1.67

Hyperparameter search grids. Here, we first provide the grids used for hyperparameter search.
In our experiments, we use σ instead of α such that α = 1/kσ2. The search range is specified in
Table 3.

Table 3: Hyperparameter search range.

hyperparameter search range

σ (α = 1/kσ2) [0.3;0.4;0.5;0.6]
µ for mean pooling [1e-06;1e-05;1e-04]
µ for max pooling [0.001;0.01;0.1;1.0]
λ integer multipliers of 0.05 in [0;1]

Comparison of unsupervised CKNs and RKNs. Then, we provide an additional table of results
to compare the unsupervised models of CKN and RKN. In this unsupervised regime, mean pooling
perform better than max pooling, which is different than what we have observed in the supervised
case. RKN tend to work better than CKN, while RKN-sum—that is, using the kernel Ksum instead of
Kk, works better than RKN.

Table 4: Comparison of unsupervised CKN and RKN with 1024 anchor points.

Method Pooling one-hot BLOSUM62
auROC auROC50 auROC auROC50

CKN mean 0.804 0.493 0.827 0.548
CKN max 0.795 0.480 0.821 0.545
RKN (λ = 0) mean 0.804 0.500 0.833 0.565
RKN mean 0.805 0.504 0.833 0.570
RKN (λ = 0) max 0.795 0.482 0.824 0.537
RKN max 0.801 0.492 0.824 0.542
RKN-sum (λ = 0) mean 0.820 0.526 0.834 0.567
RKN-sum mean 0.821 0.527 0.834 0.565
RKN-sum (λ = 0) max 0.825 0.526 0.837 0.563
RKN-sum max 0.825 0.528 0.837 0.564

Study of filter number q and size k. Here we use max pooling and fix σ to 0.4 and λ to 0.1. When
q varies k is fixed to 10 and q is fixed to 128 when k varies. We show here the performance of RKN
with different choices of q and k. The gap hyperparameter λ is chosen optimally for each q and k.
The results are shown in Figure 3.

Discussion about complexity. Performing backpropgation with our RKN model has the same
complexity has a performing a similar step within a recurrent neural network, up to the computation
of the inverse square root matrix K−1/2ZZ , which has complexity O(q3). When q is reasonably small
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q = 128 in our experiments, such a complexity is negligible. For instance, one forward pass with a
minibatch of b = 128 sequences of length m yields a complexity O(k2mbq), which can typically be
much greater than q3.

Computing infrastructures. Experiments were conduced by using a shared GPU cluster, in large
parts build with Nvidia gamer cards (Titan X, GTX1080TI). About 10 of these GPUs were used
simultaneously to perform the experiments of this paper.

Scatter plots and statistical testing. Even though each method was run only one time for each
task, the 85 tasks allow us to conduct statistical testing when comparing two methods. In Figures 4
and 5, we provide pairwise comparisons allowing us to assess the statistical significance of various
conclusions drawn in the paper. We use a Wilcoxon signed-rank test to provide p-values.

E.2 Protein fold classification on SCOP 2.06

Hyperparameter search grids. We provide the grids used for hyperparameter search, shown in
Table 5.

Table 5: Hyperparameter search range for SCOP 2.06.

hyperparameter search range

σ (α = 1/kσ2) [0.3;0.4;0.5;0.6]
µ [0.01;0.03;0.1;0.3;1.0;3.0;10.0]
λ integer multipliers of 0.05 in [0;1]

Complete results with error bars. The classification accuracy for CKNs and RKNs on protein
fold classification on SCOP 2.06 are obtained by averaging on 10 runs with different seeds. The
results are shown in Table 6 with error bars.

Table 6: Classification accuracy for SCOP 2.06 on all (top) and level-stratified (bottom) test data. For
CKNs and RKNs, the results are obtained over 10 different runs.

Method Params Accuracy on SCOP 2.06
top 1 top 5 top 10

PSI-BLAST - 84.53 86.48 87.34
DeepSF 920k 73.00 90.25 94.51
CKN (128 filters) 211k 76.30±0.70 92.17±0.16 95.27±0.17
CKN (512 filters) 843k 84.11±0.16 94.29±0.20 96.36±0.13

RKN (128 filters) 211k 77.82±0.35 92.89±0.19 95.51±0.20
RKN (512 filters) 843k 85.29±0.27 94.95±0.15 96.54±0.12

Method Level-stratified accuracy (top1/top5/top10)
family superfamily fold

PSI-BLAST 82.20/84.50/85.30 86.90/88.40/89.30 18.90/35.10/35.10
DeepSF 75.87/91.77/95.14 72.23/90.08/94.70 51.35/67.57/72.97
CKN (128 filters) 83.30±0.78/94.22±0.25/96.00±0.26 74.03±0.87/91.83±0.24/95.34±0.20 43.78±3.59/67.03±3.38/77.57±3.64
CKN (512 filters) 90.24±0.16/95.77±0.21/97.21±0.15 82.33±0.19/94.20±0.21/96.35±0.13 45.41±1.62/69.19±1.79/79.73±3.68

RKN (128 filters) 76.91±0.87/93.13±0.17/95.70±0.37 78.56±0.40/92.98±0.22/95.53±0.18 60.54±2.76/83.78±2.96/90.54±1.35
RKN (512 filters) 84.31±0.61/94.80±0.21/96.74±0.29 85.99±0.30/95.22±0.16/96.60±0.12 71.35±1.32/84.86±2.16/89.73±1.08
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Figure 4: Scatterplots when comparing pairs of methods. In particular, we want to compare RKN vs
CKN (top); , RKN vs RKN (unsup) (middle); RKN vs. LSTM (bottom).
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Figure 5: Scatterplots when comparing pairs of methods. In particular, we want to compare RKN-gmp
vs RKN-max (top); RKN-max vs. RKN-mean (bottom).
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