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Abstract
Low-precision training is a promising way of decreasing the time and energy cost
of training machine learning models. Previous work has analyzed low-precision
training algorithms, such as low-precision stochastic gradient descent, and derived
theoretical bounds on their convergence rates. These bounds tend to depend on the
dimension of the model d in that the number of bits needed to achieve a particular
error bound increases as d increases. In this paper, we derive new bounds for
low-precision training algorithms that do not contain the dimension d , which lets
us better understand what affects the convergence of these algorithms as parameters
scale. Our methods also generalize naturally to let us prove new convergence
bounds on low-precision training with other quantization schemes, such as low-
precision floating-point computation and logarithmic quantization.

1 Introduction
As machine learning models continue to scale to target larger problems on bigger data, the task
of training these models quickly and efficiently becomes an ever-more-important problem. One
promising technique for doing this is low-precision computation, which replaces the 32-bit or 64-bit
floating point numbers that are usually used in ML computations with smaller numbers, often 8-bit or
16-bit fixed point numbers. Low-precision computation is a broadly applicable technique that has
received a lot of attention, especially for deep learning, and specialized hardware accelerators have
been developed to support it [2, 3, 14].

A major application for low-precision computation is the training of ML models using empirical
risk minimization. This training is usually done using stochastic gradient descent (SGD), and most
research in low-precision training has focused on low-precision versions of SGD. While most of this
work is empirical [4–7, 11, 12, 15, 16, 18, 20, 22, 23], significant research has also been done in the
theoretical analysis of low-precision training. This theoretical work has succeeded in proving bounds
on the convergence rate of low-precision SGD and related low-precision methods in various settings,
including for convex [8, 21] and non-convex objectives [1, 9, 17]. One common characteristic of these
results is that the bounds tend to depend on the dimension d of the model being learned (equivalently,
d is the number of parameters). For example, [17] gives the convergence bound

E [f(w̄T )− f(w∗)] ≤ (1 + log(T + 1))σ2
max

2µT
+
σmaxδ

√
d

2
, (1)

where the objective f is strongly convex with parameter µ, low-precision SGD outputs w̄T after T
iterations, w∗ is the true global minimizer of the objective, σ2

max is an upper bound on the second
moment of the stochastic gradient samples E[‖f̃(w)‖22] ≤ σ2

max, and δ is the quantization step, the
difference between adjacent numbers in the low-precision format. Notice that, as T → ∞, this
bound shows convergence down to a level of error that increases with the dimension d. Equivalently,
in order to achieve the same level of error as d increases, we would need to use more bits of
quantization to make δ smaller. Similar dimension-dependent results, where either the error or the
number of bits needed increases with d, can also be seen in other work on low-precision training
algorithms [1, 8, 21]. This dependence on d is unsatisfying because the motivation for low-precision
training is to tackle large-scale problems on big data, where d can range up to 108 or more for
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Table 1: Summary of our dimension-free results compared with prior work. The values report the
number of bits needed, according to the theoretical bound, for the LP-SGD [17] algorithm to achieve
an expected objective gap (f(w)− f(w∗)) of ε in the convex case, and an expected gradient of ε in
the non-convex case, when we let step size α→ 0, epoch length T →∞. Here we let R denote the
radius of the range of numbers representable in the low-precision format and assume ‖w∗‖2 = Θ(R).
The rest of the parameters can be found in the assumptions to be introduced later.

OBJECTIVE CLASS CONVEX NON-CONVEX

NUMBER OF BITS NEEDED FOR E [f(w)− f(w∗)] ≤ ε E
[
‖∇f(w̄)‖22

]
≤ ε

PRIOR DIMENSION-
DEPENDENT BOUND log2O(Rσmax

√
d/ε) —

OUR DIMENSION-
FREE BOUND log2O(Rσ1/ε) log2O(LRσ1/ε)

DIMENSION-FREE WITH
LOGARITHMIC QUANTIZATION log2O(Rσ

ε
· log (1 + σ1

σ
)) log2O(LR√

ε
· log (1 + σ1√

ε
))

commonly used models [19]. For example, to compensate for a factor of d = 108 in (1), we
could add bits to decrease the quantization step δ by a factor of

√
d, but this would require adding

log2(104) ≈ 13 bits, which is significant compared to the 8 or 16 bits that are commonly used in
low-precision training.

In this paper, we address this problem by proving bounds on the convergence of LP-SGD [17] that do
not contain dimension d in the expression. Our main technique for doing so is a tight dimension-free
bound on the expected quantization error of the low-precision stochastic gradients in terms of the
`1-norm. Our results are summarized in Table 1, and we make the following contributions:

• We describe conditions under which we can prove a dimension-free bound on the conver-
gence of SGD with fixed-point, quantized iterates on both convex and non-convex problems.

• We study non-linear quantization schemes, in which the representable low-precision numbers
are distributed non-uniformly. We prove dimension-free convergence bounds for SGD using
logarithmic quantization [16], and we show that using logarithmic quantization can reduce
the number of bits needed for LP-SPG to provably converge.

• We study quantization using low-precision floating-point numbers, and we present theoretical
analyis that suggests how to assign a given number of bits to exponent and mantissa to
optimize the accuracy of training algorithms. We validate our results experimentally.

2 Related Work

Motivated by the practical implications of faster machine learning, much work has been done on
low-precision training. This work can be roughly divided into two groups. The first focuses on
training deep models with low-precision weights, to be later used for faster inference. For some
applications, methods of this type have achieved good results with very low-precision models: for
example, binarized [5, 12, 18] and ternary networks [23] have been observed to be effective (although
as is usual for deep learning they lack theoretical convergence results). However, these approaches
are still typically trained with full-precision iterates: the goal is faster inference, not faster training
(although faster training is often achieved as a bonus side-effect).
A second line of work on low-precision training, which is applied to both DNN training and non-deep-
learning tasks, focuses on making various aspects of SGD low-precision, while still trying to solve the
same optimization problem as the full-precision version. The most common way to do this is to make
the iterates of SGD (the wt in the SGD update step wt+1 = wt − αt∇ft(wt)) stored and computed
in low-precision arithmetic [4, 8, 9, 11, 17]. This is the setting we will focus on most in this paper,
because it has substantial theoretical prior work which exhibits the dimension-dependence we set out
to study [1, 8, 17, 21]. The only paper we found with a bound that was not dimension-dependent was
De Sa et al. [9], but in that paper the authors required that the gradient samples be 1-sparse (have
only one nonzero entry), which is not a realistic assumption for most ML training tasks. In addition
to quantizing the iterates, other work has studied quantizing the training set [21] and numbers used
to communicate among parallel workers [1]. We expect that our results on dimension-free bounds
will be complementary with these existing theoretical approaches, and we hope that they can help to
explain the success of the exciting empirical work in this area.
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3 Dimension-Free Bounds for SGD
In this section, we analyze the performance of stochastic gradient descent (SGD) using low-precision
training. Though there are numerous variants of this algorithm, SGD remains the de facto algorithm
used most for machine learning. We will start by describing SGD and how it can be made low-
precision. Suppose we are trying to solve the problem

minimize: f(w) =
1

n

n∑
i=1

f̃i(w) over: w ∈ Rd. (2)

SGD solves this problem iteratively by repeatedly running the update step
wt+1 = wt − α∇f̃it(wt) (3)

where α is the step size1 or learning rate, and it is the index of a component function chosen randomly
and uniformly at each iteration from {1, . . . , n}. To make this algorithm low-precision, we quantize
the iterates (the vectors wt) and store them in a low-precision format. The standard format to use lets
us represent numbers in a set

dom(δ, b) = {−δ · 2b−1, · · · ,−δ, 0, δ, · · · , δ · (2b−1 − 1)}
with δ > 0 being the quantization gap, the distance between adjacent representable numbers, and
b ∈ N being the number of bits we use [8]. Usually, δ is a power of 2, and this scheme is called
fixed-point arithmetic. It is straightforward to encode numbers in this set as b-bit signed integers,
by just multiplying or dividing by δ to convert to or from the encoded format—and we can even
do many arithmetic computations on these numbers directly as integers. This is sometimes called
linear quantization because the representable points are distributed uniformly throughout their range.
However, as the gradient samples will produce numbers outside this set during iteration, we need
some way to map these numbers to the set of numbers that we can represent. The standard way to
do this is with a quantization function Q(x) : R→ dom(δ, b). While many quantization functions
have been proposed, the one typically used in theoretical analysis (which we will continue to use
here) is randomized rounding. Randomized rounding, also known as unbiased rounding or stochastic
rounding, rounds up or down at random such that E [Q(x)] = x whenever x is within the range of
representable numbers (i.e. when −δ · 2b−1 ≤ x ≤ δ · (2b−1 − 1)). When x is outside that range, we
quantize it to the closest representable point. When we apply Q to a vector argument, it quantizes
each of its components independently.

Using this quantization function, we can write the update step for low-precision SGD (LP-SGD),
which is a simple quantization of (3),

wt+1 = Q(wt − α∇f̃it(wt)) (4)
As mentioned before, one common feature of prior bounds on the convergence of LP-SGD is that
they depend on the number of dimensions d, whereas bounds on full precision SGD under the same
conditions don’t. This difference is due to the fact that, when we quantize a number w, it increases
its variance by E

[
(Q(w)− w)2

]
≤ δ2/4. Observe that this inequality is tight since it holds as

an equality when w is in the middle of two quantization points, e.g. w = δ/2, as illustrated in
Figure 1(a). When quantizing a vector w ∈ Rd, the squared error can be increased by

E
[
‖Q(w)− w‖22

]
=

d∑
k=1

E
[
(Q(wk)− wk)2

]
≤ δ2d

4
, (5)

and this bound is again tight. This variance inequality is the source of the d term in analyses of
LP-SGD, and the tightness of the bound leads to the natural belief that the d term is inherent, and that
low-precision results are inevitably dimension-dependent.

However, we propose that if we can instead bound the variance in (5) with some properties of the
problem itself that is not inherently dependent on d, we can achieve a result that is dimension-free.
One way to do this is to look at the variance graphically. Figure 1(a) plots the quantization error
as a function of w along with the bound in (5). Notice that the squared error looks like a series of
parabolas, and the bound in (5) is tight at the top of those parabolas, but loose elsewhere. Instead,
suppose we want to do the opposite and produce a bound that is tight when the error is zero (at points
in dom(δ, b)). To do this, we observe that E

[
(Q(w)− w)2

]
≤ δ|w− z| for any z ∈ dom(δ, b). This

1Usually in SGD the step size is decreased over time, but here for simplicity we consider a constant learning
rate schedule.
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Figure 1: A figure of actual quantization variance E[(Q(w)− w)2] and the tight upper bound that
we introduced in one dimension. We plot this bound when taking the minimum over all possible z.

bound is also tight when z is adjacent to w, and we plot it in Figure 1(a) as well. The natural vector
analog of this is

E[‖Q(w)− w‖22] ≤
∑d
k=1 δ|wk − zk|= δ ‖w − z‖1 , ∀z ∈ dom(δ, b)d (6)

where ‖·‖1 denotes the `1-norm. This is a dimension-free bound we can use to replace (5) to bound
the convergence of LP-SGD and other algorithms. However, this replacement is nontrivial as our
bound is now non-constant: it depends on w, which is a variable updated each iteration. Also, in
order to bound this new `1-norm term, we will need some new assumptions about the problem. Next,
we will state these assumptions, along with the standard assumptions used in the analysis of SGD for
both convex and non-convex objectives, and then we will use them to present our dimension-free
bound on the convergence of SGD.
Assumption 1. All the loss functions f̃i are differentiable, and their gradients are L-Lipschitz
continuous in the sense of 2-norm, that is,

∀i ∈ {1, 2, · · · , n}, ∀x, y ∈ Rd, ‖∇f̃i(x)−∇f̃i(y)‖2≤ L ‖x− y‖2
Assumption 2. All the gradients of the loss functions f̃i are L1-Lipschitz continuous in the sense of
1-norm to 2-norm, that is,

∀i ∈ {1, 2, · · · , n}, ∀x, y ∈ Rd, ‖∇f̃i(x)−∇f̃i(y)‖1≤ L1 ‖x− y‖2
These two assumptions are simply expressing of Lipschitz continuity in different norms. Assumption 1
is a standard assumption in the analysis of SGD on convex objectives, and has been applied in the
low-precision case as well in prior work [8]. Assumption 2 is analogous to 1, except we are bounding
the `1-norm instead of the `2-norm. This holds naturally (with a reasonable value of L1) for many
problems, in particular problems for which the gradient samples are sparse.
Assumption 3. The total loss function f is µ-strongly convex for some µ > 0:

∀w, v, f(w)− f(v)− µ

2
‖w − v‖22 ≥ (w − v)T∇f(v)

This is a standard assumption that bounds the curvature of the loss function f , and is satisfied for
many classes of convex objectives. When an objective is strongly convex and Lipschitz continuous, it
is standard to say it has condition number κ = L/µ, and here we extend this to say it has L1 condition
number κ1 = L1/µ. And for our analysis on the non-convex case, we don’t have this assumption.
Assumption 4. If the objective is convex, we assume that the gradient of each loss function is
bounded by some constant near the optimal point w∗ in the sense of l1 and l2 norm, that is,

E[‖∇f̃i(w∗)‖22] ≤ σ2, E[‖∇f̃i(w∗)‖1] ≤ σ1
If the objective is non-convex, there is not necessarily a single optimal point, so we just assume each
loss function has a global bound on its gradient: for any w,

∀w, E[‖∇f̃i(w)‖22] ≤ σ2, E[‖∇f̃i(w)‖1] ≤ σ1
This assumption constrains the gradient for each loss function at the optimal point. We know
∇f(w∗) = 1

n

∑
i ∇̃fi(w∗) = 0, so it is intuitive that each∇f̃i(w∗) can be bounded by some value.

In the non-convex case, however, we need a global bound on the gradient instead of just at the
optimum. This is a natural assumption to make and it has been used in a lot of other work in this area.
Note that this assumption only needs to hold under the expectation over all f̃i.

For non-convex cases, we need the following additional assumption.
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Assumption 5. The variance of the gradient of each loss function is bounded by some constant σ2
0:

∀w, Var(∇fi(w)) = E[‖∇fi(w)−∇f(w)‖22] 6 σ2
0

With these assumptions, we proved the following theorems for low-precision SGD:
Theorem 1. Suppose that we run LP-SGD on an objective that satisfies Assumptions 1–4, and with
step size α < 1/(2κ2µ). After T LP-SGD update steps (4), select w̄T uniformly at random from
{w0, w1, . . . , wT−1}. Then, the expected objective gap of w̄T is bounded by

E [f(w̄T )− f(w∗)] ≤ 1

2αT
‖w0 − w∗‖22 +

ασ2 + δσ1
2

+
δ2κ21µ

4
Theorem 2. Suppose that we run LP-SGD on an objective that is non-convex and satisfies Assump-
tions 1, 4, 5, with constant step size α. After T LP-SGD update steps, select w̄T uniformly at random
from {w0, w1, . . . , wT−1}. Then the expected squared gradient norm of w̄T is bounded by

E
[
‖∇f(w̄)‖22

]
6

2

2α− α2L

f(w0)− f∗

T
+
ασ2

0L+ Lδσ1
2− αL

The first theorem shows a bound of the expected distance between the result we get at T -th iteration
and the optimal value for a convex objective, and the second shows a bound of the expected gradient
at T -th iteration, where f∗ is the global minimum of objective f . By choosing an appropriate step
size we can achieve convergence at a 1/T rate, while the limit we converge to is only dependent
on dimension-free factors. Meanwhile, as mentioned in the first section, previous work gives a
dimension-dependent bound (1) for the problem, which also converges at a 1/T rate.2 Therefore our
result guarantees a dimension-free convergence limit without weakening the convergence rate.

It is important to note that, because the dimension-dependent bound in (5) was tight, we should not
expect our new result to improve upon the previous theory in all cases. In the worst case, κ1 =

√
d ·κ

and similarly σ1 =
√
d · σ; this follows from the fact that for vectors in Rd, the norms are related by

the inequality ‖x‖1 ≤
√
d · ‖x‖2. Substituting this into our result produces a dimension-dependent

bound again. This illustrates the importance of introducing the new parameters κ1 and σ1 and
requiring that they be bounded; if we could not express our bound in terms of these parameters, the
best we could do here is recover a dimension-dependent bound.

Experiments Next, we validate our theoretical results experimentally on convex problems. To do
this, we analyzed how the size of the noise floor of convergence of SGD and LP-SGD varies as the
dimension is changed for a class of synthetic problems. Importantly, we needed to pick a class of
problems for which the parameters L, L1, µ, σ, and σ1, did not change as we changed the dimension
d. To do this, we chose a class of synthetic linear regression models with loss components sampled
independently and identically as

f̃i(w) =
1

2
(x̃Tw − ỹ)2

where x̃ is a sparse vector sampled to have s nonzero entries each of which is sampled uniformly
from {−1, 1}, and ỹ is sampled from N (x̃Tw∗, β2) for some variance parameter β. Importantly, the
nonzero entries of x̃ were chosen non-uniformly such that Pr[x̃i 6= 0] = pi for some probabilities
pi which decrease as i increases; this lets us ensure that µ remains constant as d is increased. For
simplicity, we sampled a fresh loss component of this form at each SGD iteration, which is sometimes
called the online setting. It is straightforward to derive that for this problem

µ = pd L = s L1 = s
√
s σ2 = β2s σ1 =

√
2s/πσ.

We set α = 0.01, β = 0.2, p1 = 0.9, pd = 0.001, and s = 16, we chose each entry of w∗ uniformly
from [−1/2, 1/2], and we set δ such that the low-precision numbers would range from −1 to 1.
Figure 2(a) shows the convergence of SGD and LP-SGD as the dimension d is changed, for both 8-bit
and 6-bit quantization. Notice that while changing d has an effect on the initial convergence rate for
both SGD and LP-SGD, it has no effect on the noise ball size, the eventual loss gap that the algorithm
converges to. Figure 2(b) measures this noise ball size more explicitly as the dimension is changed: it
reports the loss gap averaged across the second half of the iterates. Notice that as the dimension d is
changed, the average loss gap is almost unchanged, even for very low-precision methods for which
the precision does significantly affect the size of the noise ball. This validates our dimension-free
bounds, and shows that they can describe the actual dependence on d in at least one case.

2Previous work (1) used a decaying step size while ours uses a constant step size to achieve a better result.
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Figure 2: (a) Convergence of full-precision (fp) SGD and LP-SGD; (b)(c) Plots of the asymptotic
loss gap from (a) as a function of model size d and σ1.

Figure 2(c) validates our results in the opposite way: it looks at how this gap changes as our new
parameters σ1 and L1 change while d, µ, and σ are kept fixed. To do this, we fixed d = 1024 and
changed s across a range, setting β = 0.8/

√
s, which keeps σ2 constant as s is changed: this has the

effect of changing σ1 (and, as a side effect, L1 and L). We can see from figure 2(c) that changing σ1
in this way has a much greater effect on LP-SGD than on SGD. This validates our theoretical results,
and suggests that σ1 and L1 can effectively determine the effect of low-precision compute on SGD.

4 Non-linear Quantization
Up till now, most theoretical work in the area of low-precision machine learning has been on linear
quantization, where the distance between adjacent quantization points is a constant value δ. Another
option is non-linear quantization (NLQ), in which we quantize to a set of points that are non-uniformly
distributed. This approach has been shown to be effective for accelerating deep learning in some
settings [16]. In general, we can quantize to a set of points

D = {−qn, · · · ,−q1, q0, q1, · · · , qn−1},
and, just like with linear quantization, we can still use a quantization function Q(w) with randomized
rounding that rounds up or down to a number in D in such a way that E [Q(w)] = w for w ∈
[−qn, qn−1]. When we consider the quantization variance here, the natural dimension-dependent
bound would be

E[‖Q(w)− w‖22] ≤ d

4
max
i

(qi − qi−1)2.

This is still a tight bound since it holds with equality for a number in the middle of two adjacent
quantization points. However, when applied in the analysis of LP-SGD, this bound induces poor
performance and often under-represents the actual result.

Here we discuss a specific NLQ method and use it to introduce a tight bound on the quantization
variance. This method has been previously studied as logarithmic quantization or µ−law quantization,
and is defined recursively by

q0 = 0, qi+1 − qi = δ + ζqi (7)

where δ > 0 and ζ > 0 are fixed parameters. Note that this includes linear quantization as a special
case by setting ζ = 0. It turns out that we can prove a tight dimension-free bound on the quantization
variance of this scheme. First, we introduce the following definition.
Definition 1. An unbiased quantization function Q satisfies the dimension-free variance bound with
parameters δ, ζ, and η if for all w ∈ [−qn, qn−1] and all z ∈ D,

E[‖Q(w)− w‖22] ≤ δ ‖w − z‖1 + ζ ‖z‖2 · ‖w − z‖2 + η ‖w − z‖22 .

We can prove that our logarithmic quantization scheme satisfies this bound.
Lemma 1. The logarithmic quantization scheme (7) satisfies the dimension-free variance bound with
parameters δ, ζ, and η = ζ2

4(ζ+1) <
ζ
4 .

Notice that this bound becomes identical to the linear quantization bound (6) when ζ = 0, so this
result is a strict generalization of our results from the linear quantization case. With this setup, we
can apply NLQ to the low-precision training algorithms we have studied earlier in this paper.
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Theorem 3. Suppose that we run LP-SGD on a convex objective that satisfies Assumptions 1–4, and
using a quantization scheme that satisfies the dimension-free variance bound 1. If ζ < 1

κ , then

E [(f(w̄T )− f(w∗))] ≤
‖w0 − w∗‖22

2αT
+

(1 + η)ασ2 + δσ1 + ζσ ‖w∗‖2
2

+
(δL1 + ζL ‖w∗‖2 + ζσ)2

4µ

For non-convex objectives, we need to assume a bound for the iterates we deal with, that is,
Assumption 6. The scale of the iterates is bounded by some constant R0, i.e. ∀t, ‖wt‖2 6 R0.
Theorem 4. Suppose that we run LP-SGD on a non-convex objective thatsatisfies previous assump-
tions 1,4– 6, with constant step size α < 1

2(η+1)L and using a quantization scheme that satisfies the
dimension-free variance bound 1, then

E
[
‖∇f(w̄)‖22

]
6

2(f(w0)− f∗)
αT

+ ασ2
0L+ Lδσ1 +

1

2
(LζR0)2

If we fix the representable range R (the largest-magnitude values representable in the low-precision
format) and choose our quantization parameters optimally, we get the result that the number of bits
we need to achieve objective gap or expected gradient ε is log2O((Rσ/ε) · log (1 + σ1/σ)) and
log2O(LR/

√
ε · log (1 + σ1/

√
ε)) (as is shown in table 1). These bounds are notable because even

in the worst case where we do not have a bound on σ1 and must use σ1 ≤
√
d · σ, which recovers the

dimension term, the bounds still manage to “hide” it within a log term. This greatly decreases the
effect of the dimension, and suggests that NLQ may be a promising technique to use for low-precision
training at scale. Also note that, although the first bound holds only when ζ < 1

κ = µ
L , which to some

extent limits the acceleration of the strides in logarithmic quantization, the bound µ
L is independent

of σ and σ1, thus this effect of “pushing " σ1 into a log term is independent of the setting of ζ.
Floating point. Next, we look at another type of non-linear quantization that is of great practical
use: floating-point quantization (FPQ). Here, the quantization points are simply floating-point
numbers with some fixed number of exponential bits be and mantissa bits bm. Floating-point numbers
are represented in the form

(−1)sign bit · 2exponent−bias · (1.m1m2m3 . . .mbm) (8)

where “exponent” is a be-bit unsigned number, the mi are the bm bits of the mantissa, and “bias” is a
term that sets the range of the representable numbers by determining the range of the exponent. In
standard floating point numbers, the exponent ranges from [−2be−1+2, 2be−1−1], which corresponds
to a bias of 2be−1 − 1. To make our results more general, we also consider non-standard bias by
defining a scaling factor s = 2−(bias−standard bias); the standard bias setting corresponds to s = 1.
We also consider the case of denormal floating point numbers, which tries to address underflow by
replacing the 1 in (8) with a 0 for the smallest exponent value. Under these conditions, we can prove
that floating-point quantization satisfies the bound in Definition 1.
Lemma 2. The FPQ scheme using randomized rounding satisfies the dimension-free variance bound
with parameters δnormal, ζ, and η for normal FPQ and δdenormal, ζ, and η for denormal FPQ where

δnormal = 4s

22
be−1 , δdenormal = 8s

22
be−1+bm

, ζ = 2−bm , η = ζ2

4(ζ+1) .

This bound can be immediately combined with Theorem 3 to produce dimension-free bounds on the
convergence rate of low-precision floating-point SGD. If we are given a fixed number of total bits
b = be + bm, we can minimize this upper bound on the objective gap or the expected gradient to try
to predict the best way to allocate our bits between the exponent and the mantissa.
Theorem 5. When using normal FPQ for a convex objective, given b total bits, the optimal number
of exponential bits be such that the asymptotic upper bound on the objective gap given by Theorem 3
is minimized is in the interval between:

log2

[
2 log2

(
2(ln 2)sσ1

σ‖w∗‖2

)
+ 2b

]
and log2

[
2 log2

(
2(ln 2)sL1

L‖w∗‖2+σ

)
+ 2b

]
.

Theorem 6. When using denormal FPQ for a convex objective, given b total bits, the optimal number
of exponential bits be such that the asymptotic upper bound on the objective gap, as T → ∞ and
α→ 0, given by Theorem 3 is minimized is in the interval between:

log2

[
1− 2

ln 2W
(
eσ‖w∗‖2

8sσ1

)]
and log2

[
1− 2

ln 2W
(
e(L‖w∗‖2+σ)

8sL1

)]
where e denotes the base of the natural logarithm and W stands for the Lambert W function. In
cases where neither of these two values exists, the noise ball size increases as be, thus be = 2 would
be the optimal setting, which is equivalent to linear quantization.
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Figure 3: Plots of noise ball size vs. be when running SGD with 16 bits FPQ on synthetic data set
and MNIST. Note the use of two y-axes in Figure 3(b) to make the series fit in one figure.

Theorem 7. When using normal FPQ for a non-convex objective, given b total bits, the optimal
number of exponential bits be such that the asymptotic upper bound on the gradient, as T →∞ and
α→ 0, given by Theorem 4 is minimized, at:

log2

[
2

ln 2W
(

(ln 2)2sσ12
2b

LR2
0

)]
These theorems give us an idea of where the optimal setting of be lies such that the theoretical
asymptotic error or the expected gradient is minimized. When using normal FPQ, this optimal
assignment of be is O(log(b)), and for denormal FPQ the result is independent of b. Also, we found
that for de-normal FPQ used in non-convex objectives, the optimal setting of be is the solution to a
transcendental equation, which may not exist. This suggests that once the total number of bits grows
past a threshold, we should assign most of or all the extra bits to the mantissa.

Experiments For FPQ, we ran experiments on two different data sets. First, we ran LP-SGD on
the same synthetic data set that we used for linear regression. Here we used normal FPQ with 20
bits in total, and we get the result in Figure 3(a). In this diagram, we plotted the empirical noise ball
size, its theoretical upper bound, and the optimal interval for be as Theorem 5 predicts. As the figure
shows, our theorem accurately predicts the optimal setting of exponential bits, which is 5 in this case,
to minimize both the theoretical upper bound and the actual empirical result of the noise ball size,
despite the theoretical upper bound being loose.

Second, we ran LP-SGD on the MNIST dataset [10]. To set up the experiment, we normalized the
MNIST data to be in [0, 1] by dividing by 255, then subtracted out the mean for each features. We
ran multiclass logistic regression using an L2 regularization constant of 10−4 and a step size of
α = 10−4, running for 500 total epochs (passes through the dataset) to be sure we converged. For
this task, our (measured) problem parameters were L = 37.41, L1 = 685.27, σ = 2.38, σ1 = 29.11,
and d = 784. In Figure 3(b), we plotted the observed loss gap, averaged across the last ten epochs,
for LP-SGD using various 16-bit floating point formats. We also plot our theoretical bound on the
loss gap, and the predicted optimal number of exponential bits to use based on that bound. Our results
show that even though our bound is very loose for this task, it still predicts the right number of bits to
use with reasonable accuracy. This experiment also validates the use of IEEE standard half-precision
floating-point numbers, which have 5 exponential bits, for this sort of task.

5 Conclusion
In this paper, we present dimension-free bounds on the convergence of SGD when applied to low-
precision training. We point out the conditions under which such bounds hold, for both convex
and non-convex objectives. We further extend our results to non-linear methods of quantization:
logarithmic quantization and floating point quantization. We analyze the performance of SGD under
logarithmic quantization and demonstrate that NLQ is a promising method for reducing the number
of bits required in low-precision training. We also presented ways in which our theory could be used
to suggest how to allocate bits between exponent and mantissa when FPQ is used. We hope that our
work will encourage further investigation of non-linear quantization techniques.
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A Algorithm

In our work, we presented dimension-free bounds on the performance of low-precision SGD, here we
present the algorithm in detail.

Algorithm 1 LP-SGD: Low-Precision Stochastic Gradient Descent
given: n loss functions f̃i, number of epochs T , step size α, and initial iterate w0.
given: low-precision quantization function Q.
for t = 0 to T − 1 do

sample it uniformly from {1, 2, · · · , n},
quantize wt+1 ← Q

(
wt − α∇f̃it(wt)

)
end for
return wT

B Proof for results in Table 1

As mentioned in the caption of Table 1, here only we consider the convergence limit, that is, we
assume α → 0, T → ∞, and we compute the minimum number of bits b we would require in
order for the limit to be less than some small positive ε. Meanwhile, we denote the radius of the
representable range by R and we assume R = ‖w∗‖2 without loss of generality, as this is the worst
case for all our bounds that depend on ‖w∗‖2. Then in linear quantization, we have:

q2b−1−1 = δ ·
(
2b−1 − 1

)
≥ R

and in non-linear quantization, we need:

q2b−1−1 =
δ

ζ

(
(1 + ζ)(2

b−1−1) − 1
)
≥ R (9)

In the following proof we’ll take the equality for these two inequalities.

First, for convex objectives.

B.1 LP-SGD in previous work

In previous work Li et al. [17], we have

f(w̄T )− f(w∗) ≤ (1 + log(T + 1))G2

2µT
+
Gδ
√
d

2

here we re-denote G as σmax for concordance with our result. Here σ2
max is an upper bound on the

second moment of the stochastic gradient samples E
[
‖f̃(w)‖22

]
≤ σ2

max. Substitute δ with R
2b−1−1

and set the limit (as α→ 0 and T →∞) to be ≤ ε, and notice that 2b−1 − 1 > 2b−2, then we have:

σmaxR
√
d

2 (2b−1 − 1)
= O (ε) ⇒ b ≤ log2

(
σmaxR

√
d

ε

)
+ 1 = log2O

(
σmaxR

√
d

ε

)

B.2 LP-SGD in our work

In Theorem 1, we know that

E [f(w̃)− f(w∗)] ≤ 1

2αT
‖w0 − w∗‖22 +

ασ2 + δσ1
2

+
δ2κ21µ

4

Set the limit (as α→ 0 and T →∞) to be ≤ ε, then we need:

δσ1
2

= O (ε) ,
δ2κ21µ

4
= O (ε) .
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Then for sufficiently small ε, more explicitly, ε that satisfies L2
1

µσ2
1
O(ε) < 1, setting

δ = O
(
ε

σ1

)
will satisfy the requirements, and we will get

R

2b−1 − 1
= δ = O

(
ε

σ1

)
⇒ b = log2O

(
σ1R

ε

)
This is the expression that we wanted. Notice that even if we did not invoke small ε in the above
big-O analysis, we can set

δ = O
(

min

(
ε

σ1
,

√
εµ

L1

))
Then our number of bits would look like

b = log2O
(

max

(
σ1R

ε
,
RL1√
εµ

))
,

which shows explicitly that we have replaced the dimension factor with parameters of the loss
functions.

B.3 LP-SGD in our work using NLQ

In Theorem 3, we know that, if ζ < 1
κ , then

E [(f(w̃)− f(w∗))] ≤ 1

2αT
‖w0 − w∗‖22+

(1 + η)ασ2 + δσ1 + ζσ ‖w∗‖2
2

+
(δL1 + ζL ‖w∗‖2 + ζσ)2

4µ

Set the limit (as α→ 0 and T →∞) to be ≤ ε and replace ‖w∗‖2 with R; then we get

δσ1 + ζσR

2
+

(δL1 + ζLR+ ζσ)2

4µ
= O (ε) .

So, in addition to our requirement that ζ ≤ κ−1, it suffices to have

δσ1 = O (ε) , ζσR = O (ε) ,
δ2L2

1

µ
= O (ε) ,

ζ2(LR+ σ)2

µ
= O (ε) .

If we set

δ =
O (ε)

σ1
, ζ =

O (ε)

σR
,

then all our other requirements will be satisfied for sufficiently small ε. Specifically, we need ε to be
small enough that

κ

σR
O (ε) ≤ 1,

L2
1

σ2
1µ
O (ε) ≤ 1,

(LR+ σ)2

σ2R2µ
O (ε) ≤ 1.

As is standard in big-O analysis, we assume that ε is small enough that these requirements are
satisfied, in which case our assignment of δ and ζ, combined with the results of Theorem 3, is
sufficient to ensure an objective gap of ε. Next, starting from (9), the number of bits we need for
non-linear quantization must satisfy

(1 + ζ)(2
b−1−1) − 1 ≥ ζR

δ

which happens only when (
2b−1 − 1

)
log(1 + ζ) ≥ log

(
1 +

ζR

δ

)
.

Since we know that 0 ≤ ζ < 1, it follows that log(1 + ζ) ≥ ζ/2. So in order for the above to be true,
it suffices to have (

2b−1 − 1
)
· ζ

2
≥ log

(
1 +

ζR

δ

)
.
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Since 2b−1 − 1 > 2b−2, it follows that it suffices to have

2b · ζ
8
≥ log

(
1 +

ζR

δ

)
.

And this will be true if

b = log2O
(

1

ζ
log

(
1 +

ζR

δ

))
.

Finally, using our assignment of δ and ζ gives us

b = log2O
(
σR

ε
log
(

1 +
σ1
σ

))
.

This is the expression that we wanted. Notice that even if we did not invoke small ε in the above
big-O analysis, we would still get a rate in which all of our `1-dependent terms are inside the double-
logarithm, because none of the requirements above that constrain ζ are `1-dependent. To be explicit,
to do this we would set δ and ζ to be

δ = O
(

min

(
ε

σ1
,

√
εµ

L1

))
, ζ = O

(
min

(
ε

σR
,

√
εµ

LR+ σ
,

1

κ

))
.

Then our number of bits would look like

b = log2O
(

max

(
σR

ε
,
LR+ σ
√
εµ

, κ

)
· log

(
1 +

ζR

δ

))
,

which shows explicitly that any `1-dependent terms are inside the double logarithm.

Next, for non-convex objectives.

B.4 LP-SGD in our work for non-convex objectives

In Theorem 2, we know that

E
[
‖∇f(w̄)‖22

]
6

2

2α− α2L

f(w0)− f(w∗)

T
+
ασ2

0L+ Lδσ1
2− αL

Set the limit (as α→ 0 and T →∞) to be ≤ ε, then we need:

Lδσ1
2

= O (ε)

thus

δ = O
(

ε

Lσ1

)
will satisfy the requirements, and we will get

R

2b−1 − 1
= δ = O

(
ε

Lσ1

)
⇒ b = log2O

(
LRσ1
ε

)
B.5 LP-SGD in our work using NLQ for non-convex objectives

In Theorem 4, we know that, if α < 1
2(η+1)L , then

E
[
‖∇f(w̄)‖22

]
6

2(f(w0)− f(w∗))

αT
+ ασ2

0L+ Lδσ1 +
1

2
(LζR0)2

Set the limit (as α→ 0 and T →∞) to be ≤ ε and replace R0 with R; then we need

Lδσ1 +
1

2
(LζR0)2 = O (ε)

it suffices to have
Lδσ1 = O (ε) , (LζR0)2 = O (ε)
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so we let

δ =
O (ε)

Lσ1
, ζ =

√
O (ε)

LR
,

then all our other requirements will be satisfied. Next, starting from (9), the number of bits we need
for non-linear quantization must satisfy

(1 + ζ)(2
b−1−1) − 1 ≥ ζR

δ

which happens only when (
2b−1 − 1

)
log(1 + ζ) ≥ log

(
1 +

ζR

δ

)
.

Since we know that 0 ≤ ζ < 1, it follows that log(1 + ζ) ≥ ζ/2. So in order for the above to be true,
it suffices to have (

2b−1 − 1
)
· ζ

2
≥ log

(
1 +

ζR

δ

)
.

Since 2b−1 − 1 > 2b−2, it follows that it suffices to have

2b · ζ
8
≥ log

(
1 +

ζR

δ

)
.

And this will be true if

b = log2O
(

1

ζ
log

(
1 +

ζR

δ

))
.

Finally, using our assignment of δ and ζ gives us

b = log2O
(
LR√
ε

log

(
1 +

σ1√
ε

))

C Proof for theorems

Before we prove the main theorems presented in the paper, we will prove the following lemmas that
will be useful later, as well as the lemmas we presented before.

The proof of lemma 1 can be extracted from the proof of lemma 5 that we will show later.

Proof of Lemma 2. Here we consider the positive case first, then symmetrically the negative case
also holds. First, for normal FPQ, the set of quantization points are:

D = {0} ∪
{
s ·
(

1 +
x

nm

)
· 2y | x = 0, 1, · · · , nm − 1, y = −ne

2
+ 2, · · · , ne

2
− 1

}
and we set the parameters for the nonlinear quantization bound to be:

δ = s · 2−
ne
2 +2 =

4s(√
2
)ne , ζ =

1

nm
, η =

ζ2

4(1 + ζ)
=

1

4nm(nm + 1)

For any w within representable range, we can assume it is in [qi, qi+1), then

E
[
[Q(w)− w]2

]
=

qi+1 − w
qi+1 − qi

· (w − qi)2 +
w − qi
qi+1 − qi

· (qi+1 − w)2

= (w − qi)(qi+1 − w)

So now we only need to prove that

∀v ∈ D, (w − qi)(qi+1 − w) ≤ δ · |w − v|+ζ · |v|·|w − v|+η · |w − v|2

First, we consider a special case where qi = 0. In this case, qi+1 = s · 1 · 2−
ne
2 +2 = δ. If v = 0, it is

obvious that
LHS = (w − qi)(qi+1 − w) = w(δ − w) ≤ δw ≤ RHS
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and similarly for v = δ,

LHS = (w − qi)(qi+1 − w) = w(δ − w) ≤ δ(δ − w) ≤ RHS

and for v > δ,
RHS ≥ δ(v − w) ≥ δ(δ − w) ≥ w(δ − w) = LHS

Next, we consider the case where qi 6= 0. In this case, we can assume qi = s ·
(

1 + x
nm

)
· 2y, then

qi+1 − qi = s · 2y ≤ 1
nm
qi = ζqi.

If v ≥ qi+1, denote y = qi+1 − w, then

LHS = (w − qi)(qi+1 − w) = y · (qi+1 − qi − y) = y · (ζqi − y)

RHS ≥ ζ · qi+1 · (qi+1 − w) = ζqi+1y ≥ ζqiy ≥ LHS

Secondly, if 0 ≤ v ≤ qi, denote y = w − qi, then

LHS = (w − qi)(qi+1 − w) = y · (qi+1 − qi − y) = y · (ζqi − y)

RHS = δ · (w − v) + ζ · v · (w − v) + η · (w − v)2

= − (ζ − η) · v2 + (−δ + ζw − 2ηw) · v + δw − δ2

observe that ζ − η > 0, so the right hand side is a concave function of v, thus it achieves minimum at
either v = 0 or v = qi. At v = qi:

RHS = δy + ζqiy + ηy2 ≥ ζqiy ≥ LHS

and at v = 0, since qi+1 ≤ (1 + ζ)qi and qi ≤ w,

RHS − LHS = δ · w + ζ · 0 · w + η · w2 − (w − qi)(qi+1 − w)

= (1 + η)w2 + (δ − qi − qi+1)w + qiqi+1

≥ (1 + η)w2 − (qi + qi+1) · w + qiqi+1

= (1 + η)w2 − [(2 + ζ)qiw + (qi+1 − (1 + ζ)qi)w] + [(1 + ζ)q2i + (qi+1 − (1 + ζ)qi)qi]

= (1 + η)w2 − (2 + ζ)qi · w + (1 + ζ)q2i + (qi+1 − (1 + ζ)qi)(qi − w)

≥ (1 + η)w2 − (2 + ζ)qi · w + (1 + ζ)q2i

which is a positive parabola. Recall that η = ζ2

4(ζ+1) = (ζ+2)2

4(ζ+1) − 1, thus the determinant is
(2 + ζ)2q2i − 4(1 + η)(1 + ζ)q2i = 0, therefore RHS − LHS ≥ 0.

Now we extend this conclusion to the case where v ≤ 0. In this case,

RHS = δ · (w − v) + ζ · (−v) · (w − v) + η · (w − v)2

since w, ζ, δ, η are all positive, this is apparently a decreasing function of v, thus it achieves minimum
at v = 0, which is what we have already proven.

So far, we’ve proven the lemma in the case of w ≥ 0, v ≥ 0 and w ≥ 0, v ≤ 0, and symmetrically
it holds for w ≤ 0, v ≤ 0 and w ≤ 0, v ≥ 0, which indicates that we can extend D to be a set
containing both positive and negative numbers.

In the de-normal FPQ case, the set of quantization points are:

D =

{
s · x

nm
· 2−

ne
2 +3 | x = 0, 1, · · · , nm − 1

}
∪
{
s ·
(

1 +
x

nm

)
· 2y | x = 0, 1, · · · , nm − 1, y = −ne

2
+ 3, · · · , ne

2
− 1

}
and we set the parameters for the nonlinear quantization bound to be:

δ = s · 1

nm
· 2−

ne
2 +3 =

8

C
· sne(√

2
)ne , ζ =

1

nm
, η =

ζ2

4(1 + ζ)
=

1

4nm(nm + 1)

The proof for this case follows the exact same structure as the normal FPQ case.
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Lemma 3. Under condition of linear quantization when using low-precision representation (δ, b),
for any w, v ∈ Rd where Q(δ,b)(w) = w,

E
[∥∥Q(δ,b)(w + v)− w∗

∥∥2
2

]
≤ ‖(w + v)− w∗‖22 + δ ‖v‖1 .

where Q is the linear quantization function.

Proof of Lemma 3. (This proof follows the same structure as the proof for lemma 1 in [8]) First,
observe that this lemma holds if it holds for each dimension, so we only need to prove that for any
w, v ∈ R where Q(δ,b)(w) = w, i.e. w ∈ dom(δ, b),

E
[
(Q(δ,b)(w + v)− w∗)2

]
≤ (w + v − w∗)2 + δ|v|

then we can sum up all the dimensions to get the result.

Now we consider the problem in two situations. First, if w + v is within the range representable by
(δ, b), then E

[
Q(δ,b)(w + v)

]
= w + v. In this case,

E
[
(Q(δ,b)(w + v)− w∗)2

]
= E

[
[(Q(δ,b)(w + v)− (w + v))− ((w + v)− w∗)]2

]
= E

[
[Q(δ,b)(w + v)− (w + v)]2 − 2[Q(δ,b)(w + v)− (w + v)][(w + v)− w∗]

]
+ [(w + v)− w∗]2

= E
[
[Q(δ,b)(w + v)− (w + v)]2

]
− 2[(w + v)− (w + v)][(w + v)− w∗]

+ [(w + v)− w∗]2

= [(w + v)− w∗]2 + E
[
[Q(δ,b)(w + v)− (w + v)]2

]
Since (w + v) is within representable range, E

[
[Q(δ,b)(w + v)− (w + v)]2

]
is equivalent to

E
[
[Q(δ,∞)(v) + w − (w + v)]2

]
, which equals E

[
[Q(δ,∞)(v)− v]2

]
since Q(δ,b)(w) = w.

Now we only need to prove that E
[
[Q(δ,∞)(v)− v]2

]
≤ δ|v|. Observe that this trivially holds for

v = 0, and is symmetrical for positive and negative v. Without loss of generality we assume v > 0,
let z be the rounded-down quantization of v, then we have z ≥ 0. Then Q(δ,b)(v) will round to
z + δ (the rounded-up quantization of v) with probability v−z

δ , and it will round to z with probability
z+δ−v
δ . This quantization is unbiased because

E
[
Q(δ,∞)(w)

]
=
v − z
δ

(z + δ) +
z + δ − v

δ
z =

vz − z2 + vδ − zδ
δ

+
z2 + zδ − vz

δ
= v.

Thus, its variance will be

E
[
(Q(δ,∞)(v)− v)2

]
=
v − z
δ

(z + δ − v)2 +
z + δ − v

δ
(z − v)2

= (v − z)(z + δ − v)

(
z + δ − v

δ
+
v − z
δ

)
= δ(v − z)− (v − z)2

≤ δ(v − z) ≤ δv.
therefore

E
[
(Q(δ,b)(w + v)− w∗)2

]
≤ (w + v − w∗)2 + δ|v|

In the other case, when w + v is on the exterior of the representable region, the quantization function
Q(δ,b) just maps it to the nearest representable value. Since w∗ is in the interior of the representable
region, this operation will make w + v closer to w∗. Thus,

(Q(δ,b)(w + v)− w∗)2 ≤ (w + v − w∗)2,
and so it will certainly be the case that

E
[
(Q(δ,b)(w + v)− w∗)2

]
≤ (w + v − w∗)2 + δ|v|.

Now that we’ve proven the inequality for one dimension, we can sum up all d dimensions and get

E
[∥∥Q(δ,b)(w + v)− w∗

∥∥2
2

]
≤ ‖(w + v)− w∗‖22 + δ ‖v‖1 .
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For completeness, we also re-state the proof of following lemma 4, which was presented as equation
(8) in [13], and here we present the proof for this lemma used in [8].
Lemma 4. Under the standard condition of Lipschitz continuity, if i is sampled uniformly at random
from {1, . . . , N}, then for any w,

E
[
‖∇fi(w)−∇fi(w∗)‖22

]
≤ 2L (f(w)− f(w∗)) .

Proof of Lemma 4. For any i, define

gi(w) = fi(w)− fi(w∗)− (w − w∗)T∇fi(w∗).
Clearly, if i is sampled randomly as in the lemma statement, E [gi(w)] = f(w). But also, w∗ must
be the minimizer of gi, so for any w

gi(w
∗) ≤ min

η
gi(w − η∇gi(w))

≤ min
η

(
gi(w)− η ‖∇gi(w)‖22 +

η2L

2
‖∇gi(w)‖22

)
= gi(w)− 1

2L
‖∇gi(w)‖22 .

where the second inequality follows from the Lipschitz continuity property. Re-writing this in terms
of fi and averaging over all the i now proves the lemma statement.

Lemma 5. Under the condition of logarithmic quantization, for any w, v ∈ Rd where v ∈ Dd,

E
[
‖Q(w)− w∗‖22

]
≤ ‖w − w∗‖22 + δ ‖w − v‖1 + ζ ‖v‖2 ‖w − v‖2 + η ‖w − v‖22

where Q is the non-linear quantization function.

Note that the proof this lemma naturally extends to lemma 1, thus we omitted the proof for lemma 1
and just present the proof for lemma 5.

Proof of Lemma 5. Here we only consider the positive case first, where

D = {q0, q1, · · · , qn−1}
with [0, qn−1] being the representable range of D. As for the negative case, we will show later that it
holds symmetrically.

Observe that this lemma holds if it holds for each dimension, so we only need to prove that for any
w, v ∈ R where v ∈ D,

E
[
[Q(w)− w∗]2

]
≤ |w − w∗|2+δ · |w − v|+ζ · |v|·|w − v|+η · |w − v|2

then we can sum up all the dimensions and use Cauchy-Schwarz inequality to get the result.

Now we consider the problem in two situations.

First, if w is outside the representable range, the quantization function Q just maps it to the nearest
representable value. Since w∗ is in the interior of the representable range, this operation will make w
closer to w∗. Thus,

[Q(w)− w∗]2 ≤ (w − w∗)2,
and so it will certainly be the case that

E
[
[Q(w)− w∗]2

]
≤ |w − w∗|2+δ · |w − v|+ζ · |v|·|w − v|+η · |w − v|2

Second, if w is within the representable range, then E [Q(w)] = w. In this case,

E
[
[Q(w)− w∗]2

]
= E

[
[(Q(w)− w)− (w − w∗)]2

]
= E

[
[Q(w)− w]2 − 2[Q(w)− w](w − w∗)

]
+ (w − w∗)2

= E
[
[Q(w)− w]2

]
− 2(w − w)(w − w∗) + (w − w∗)2

= (w − w∗)2 + E
[
[Q(w)− w]2

]
17



Since w is within representable range, we can assume it is in [qi, qi+1), then

E
[
[Q(w)− w]2

]
=

qi+1 − w
qi+1 − qi

· (w − qi)2 +
w − qi
qi+1 − qi

· (qi+1 − w)2

= (w − qi)(qi+1 − w)

So now we only need to prove that

(w − qi)(qi+1 − w) ≤ δ · |w − v|+ζ · |v|·|w − v|+η · |w − v|2

Note that v ∈ D, so it is either v ≥ qi+1 or v ≤ qi.
Firstly, if v ≥ qi+1, denote y = qi+1 − w, then

LHS = (w − qi)(qi+1 − w) = y · (qi+1 − qi − y) = y · (δ + ζqi − y)

RHS = δ · (v − w) + ζ · v · (v − w) + η · (v − w)2

≥ δ · (qi+1 − w) + ζ · qi+1 · (qi+1 − w) + η · (qi+1 − w)2

= δy + ζqi+1y + ηy2

≥ δy + ζqiy − y2 = LHS

Secondly, if 0 ≤ v ≤ qi, denote y = w − qi, then

LHS = (w − qi)(qi+1 − w) = y · (qi+1 − qi − y) = y · (δ + ζqi − y)

RHS = δ · (w − v) + ζ · v · (w − v) + η · (w − v)2

= − (ζ − η) · v2 + (−δ + ζw − 2ηw) · v + δw − δ2

observe that ζ − η > 0, so the right hand side is a concave function of v, thus it achieves minimum at
either v = 0 or v = qi. At v = qi:

RHS = δy + ζqiy + ηy2 ≥ δy + ζqiy − y2 = LHS

and at v = 0:

RHS − LHS = δ · w + ζ · 0 · w + η · w2 − (w − qi)(qi+1 − w)

= (1 + η)w2 + (δ − qi − qi+1)w + qiqi+1

= (1 + η)w2 − (2 + ζ)qi · w + qiqi+1

≥ (1 + η)w2 − (2 + ζ)qi · w + (1 + ζ)q2i

which is a positive parabola. Recall that η = ζ2

4(ζ+1) = (ζ+2)2

4(ζ+1) − 1, thus the determinant is
(2 + ζ)2q2i − 4(1 + η)(1 + ζ)q2i = 0, therefore RHS − LHS ≥ 0.

Now we extend this conclusion to the case where v ≤ 0. In this case,

RHS = δ · (w − v) + ζ · (−v) · (w − v) + η · (w − v)2

since w, ζ, δ, η are all positive, this is apparently a decreasing function of v, thus it achieves minimum
at v = 0, which is what we have already proven.

So far, we’ve proven the lemma in the case of w ≥ 0, v ≥ 0 and w ≥ 0, v ≤ 0, and symmetrically
it holds for w ≤ 0, v ≤ 0 and w ≤ 0, v ≥ 0, which indicates that we can extend D to be a set
containing both positive and negative numbers, and we can reset D to be

D = {−qn, · · · ,−q1, q0, q1, · · · , qn−1}

where
q0 = 0, qi+1 − qi = δ + ζqi

Now we have proven all the lemmas we need. Next, we make some small modifications to the
assumptions (weakening them) so that our theorems are shown in a more general sense. For
assumption 2, we change it to:
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Assumption 7. All the gradients of the loss functions fi are L1-Lipschitz continuous in the sense of
1-norm to p-norm, that is,

∀i ∈ {1, 2, · · ·n}, ∀x, y, ‖∇fi(x)−∇fi(y)‖1 ≤ L1 ||x− y||p

While in the body of the paper and in our experiments we choose p = 2 for simplicity, here we are
going to prove that a generalization of Theorem 1 holds for all real numbers p. We also need a similar
generalization of Assumption 3.
Assumption 8. The average of the loss functions f = 1

n

∑
i fi is µ1− strongly convex near the

optimal point in the sense of p-norm, that is,

∀w, µ1

2
||w − w∗||2p ≤ f(w)− f(w∗)

with p being any real number.

This assumption is essentially the same as the assumption for strong convexity that we stated before,
since in practice we would choose p = 2 and then µ1 and µ would be the same. But here we are
actually presenting our result in a stronger sense in that we can choose any real number p and the
proof goes the same.

Now we are ready to prove the theorems. Note that the result of the following proof contains µ1 since
we are proving a more general version of our theorems; substituting them with µ will lead to the
same result that we stated before.

Proof of Theorem 1. In low-precision SGD, we have:

ut+1 = wt − α∇f̃t(wt), wt+1 = Q(ut+1)

by lemma 3, we know that

E
[
‖wt+1 − w∗‖22

]
= E

[∥∥∥Q(wt − α∇f̃t(wt))− w∗
∥∥∥2
2

]
≤ E

[∥∥∥wt − α∇f̃t(wt)− w∗∥∥∥2
2

]
+ δE

[∥∥∥α∇f̃t(wt)∥∥∥
1

]
= E

[
‖wt − w∗‖22

]
− 2αE

[
(wt − w∗)T∇f̃t(wt)

]
+ α2E

[∥∥∥∇f̃t(wt)∥∥∥2
2

]
+ αδE

[∥∥∥∇f̃t(wt)∥∥∥
1

]
≤ E

[
‖wt − w∗‖22

]
− 2αE

[
(f(wt)− f(w∗)) +

µ

2
‖wt − w∗‖22

]
+ α2E

[∥∥∥∇f̃t(wt)∥∥∥2
2

]
+ αδE

[∥∥∥∇f̃t(wt)∥∥∥
1

]
= (1− αµ)E

[
‖wt − w∗‖22

]
+ α2E

[∥∥∥∇f̃t(wt)∥∥∥2
2

]
+ αδE

[∥∥∥∇f̃t(wt)∥∥∥
1

]
− 2αE [(f(wt)− f(w∗))]

where the second inequality holds due to the strongly convexity assumption. According to the
assumptions we had, we have:

E
[
‖∇fi(w)‖22

]
= E

[
‖∇fi(w)−∇fi(w∗) +∇fi(w∗)‖22

]
= E

[
‖∇fi(w)−∇fi(w∗)‖22 + 2(∇fi(w)−∇fi(w∗))T∇fi(w∗) + ‖∇fi(w∗)‖22

]
= E

[
‖∇fi(w)−∇fi(w∗)‖22 + ‖∇fi(w∗)‖22

]
≤ L2 ·E

[
‖w − w∗‖22

]
+ σ2

E [‖∇fi(w)‖1] = E [‖∇fi(w)−∇fi(w∗) +∇fi(w∗)‖1]

≤ E [‖∇fi(w)−∇fi(w∗)‖1 + ‖∇fi(w∗)‖1]

≤ L1 ·E [‖w − w∗‖2] + σ1
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where the last inequality holds due to assumption 2 where we let p = 2. Applying this result to the
previous formula and we will have:

E
[
‖wt+1 − w∗‖22

]
≤ (1− αµ)E

[
‖wt − w∗‖22

]
+ α2E

[∥∥∥∇f̃t(wt)∥∥∥2
2

]
+ αδE

[∥∥∥∇f̃t(wt)∥∥∥
1

]
− 2αE [(f(wt)− f(w∗))]

≤ (1− αµ+ α2L2)E
[
‖wt − w∗‖22

]
+ αδL1E [‖wt − w∗‖2]

− 2αE [(f(wt)− f(w∗))] + α2σ2 + αδσ1

Here we introduce a positive constant C that we’ll set later, and by basic inequality we get

αδL1E [‖wt − w∗‖2] ≤ CE [‖wt − w∗‖2]
2

+
α2δ2L2

1

4C
≤ CE

[
‖wt − w∗‖22

]
+
α2δ2L2

1

4C

thus

E
[
‖wt+1 − w∗‖22

]
≤ (1− αµ+ α2L2 + C)E

[
‖wt − w∗‖22

]
− 2αE [(f(wt)− f(w∗))]

+ α2σ2 + αδσ1 +
α2δ2L2

1

4C

one setting C to be αµ− α2L2, we will have:

2αE [(f(wt)− f(w∗))] ≤ E
[
‖wt − w∗‖22

]
−E

[
‖wt+1 − w∗‖22

]
+α2σ2+αδσ1+

α2δ2L2
1

4(αµ− α2L2)

since we can set α to be small enough such that αL2 ≤ µ
2 , then the result will become:

2αE [(f(wt)− f(w∗))] ≤ E
[
‖wt − w∗‖22

]
−E

[
‖wt+1 − w∗‖22

]
+ α2σ2 + αδσ1 +

αδ2L2
1

2µ

now we sum up this inequality from t = 0 to t = T − 1 and divide by 2αT , then we get:

1

T

T−1∑
t=o

E [(f(wt)− f(w∗))] ≤
‖w0 − w∗‖22 −E

[
‖wT − w∗‖22

]
2αT

+
ασ2 + δσ1

2
+
δ2L2

1

4µ

≤
‖w0 − w∗‖22

2αT
+
ασ2 + δσ1

2
+
δ2κ21µ

4

and since we sample w̃ uniformly from (wo, w1, · · · , wT−1), we get

E [(f(w̃)− f(w∗))] ≤ 1

2αT
‖w0 − w∗‖22 +

ασ2 + δσ1
2

+
δ2κ21µ

4

Proof of Theorem 2. In low-precision SGD:

ut+1 = wt − αt∇fit(wt), wt+1 = Q(ut+1)

thus

f(wt+1) = f(Q(ut+1))

= f(ut+1 + (Q(ut+1)− ut+1))

= f(ut+1) + (Q(ut+1)− ut+1)
T ∇f(ut+1)

+
1

2
(Q(ut+1)− ut+1)

T [∇2f(ξt)
]

(Q(ut+1)− ut+1)

6 f(ut+1) + (Q(ut+1)− ut+1)
T ∇f(ut+1) +

1

2
L ‖Q(ut+1)− ut+1‖22
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Since E [Q(ut+1)] = ut+1, by taking the expectation, we get:

E [f(wt+1)] 6 E [f(ut+1)] + 0 +
1

2
LE

[
‖Q(ut+1)− ut+1‖22

]
= E [f(wt − αt∇fit(wt))] +

1

2
LE

[
‖Q(ut+1)− ut+1‖22

]
among which,

f(wt − αt∇fit(wt))

= f(wt)− αt∇f(wt)
T∇fit(wt) +

α2
t

2
∇fit(wt)T

[
∇2f(ξ′t)

]
∇fit(wt)

6 f(wt)− αt∇f(wt)
T∇fit(wt) +

α2
tL

2
‖∇fit(wt)‖

2
2

= f(wt)− αt∇f(wt)
T∇fit(wt) +

α2
tL

2
‖∇f(wt) + (∇fit(wt)−∇f(wt))‖22

since E [fit ] = f , by taking the expectation of previous terms we have:
E [f(wt − αt∇fit(wt))]

= E [f(wt)]− αtE
[
‖∇f(wt)‖22

]
+
α2
tL

2

{
E
[
‖∇f(wt)‖22 + ‖∇fit(wt)−∇f(wt)‖22

]}
= E [f(wt)]−

(
αt −

α2
tL

2

)
E
[
‖∇f(wt)‖22

]
+
α2
tL

2
E
[
‖∇fit(wt)−∇f(wt)‖22

]
meanwhile, according to previous lemma and assumption 4, we know that

E

[
1

2
L ‖Q(ut+1)− ut+1‖22

]
6

1

2
Lδ ·E [‖ut+1 − wt‖1]

=
1

2
LδE [‖αt∇fit(wt)‖1]

6
1

2
αtLδσ1

now according to the assumption of the variance of∇fit(wt) and substitute the results into previous
expression, we will get:

E [f(wt+1)] 6 E [f(wt − αt∇fit(wt))] +
1

2
αtLδσ1

6 E [f(wt)]−
(
αt −

α2
tL

2

)
E
[
‖∇f(wt)‖22

]
+
α2
tL

2
E
[
‖∇fit(wt)−∇f(wt)‖22

]
+

1

2
αtLδσ1

6 E [f(wt)]−
(
αt −

α2
tL

2

)
E
[
‖∇f(wt)‖22

]
+
α2
tσ

2
0L+ αtLδσ1

2

then we can sum the result from t = 0 to T − 1, and we have:
T−1∑
t=0

(
αt −

α2
tL

2

)
E
[
‖∇f(wt)‖22

]
6 f(w0)−E [f(wT )] + T · α

2
tσ

2
0L+ αtLδσ1

2

if we set αt = α and select w̄T uniformly at random from {w0, w1, . . . , wT−1}, we get:

E
[
‖∇f(w̄)‖22

]
=

1

T

T−1∑
t=0

E
[
‖∇f(wt)‖22

]
6

2

2α− α2L

{
f(w0)−E [f(wT )]

T
+
α2σ2

0L+ αLδσ1
2

}
6

2

2α− α2L

f(w0)− f∗

T
+
α2σ2

0L+ αLδσ1
2α− α2L

=
2

2α− α2L

f(w0)− f∗

T
+
ασ2

0L+ Lδσ1
2− αL
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Proof of Theorem 3 . In low-precision SGD, we have:
ut+1 = wt − α∇f̃t(wt), wt+1 = Q(ut+1)

by lemma 5, we know that

E
[
‖wt+1 − w∗‖22

]
= E

[∥∥∥Q(wt − α∇f̃t(wt))− w∗
∥∥∥2
2

]
≤ E

[∥∥∥wt − α∇f̃t(wt)− w∗∥∥∥2
2

]
+ δE

[∥∥∥α∇f̃t(wt)∥∥∥
1

]
+ ζE

[
‖wt‖2

∥∥∥α∇f̃t(wt)∥∥∥
2

]
+ ηE

[∥∥∥α∇f̃t(wt)∥∥∥2
2

]
≤ E

[
‖wt − w∗‖22

]
− 2αE

[
(wt − w∗)T∇f̃t(wt)

]
+ α2E

[∥∥∥∇f̃t(wt)∥∥∥2
2

]
+ αδE

[∥∥∥∇f̃t(wt)∥∥∥
1

]
+ ζE

[
(‖wt − w∗‖2 + ‖w∗‖2) · α

∥∥∥∇f̃t(wt)∥∥∥
2

]
+ ηα2E

[∥∥∥∇f̃t(wt)∥∥∥2
2

]
≤ E

[
‖wt − w∗‖22

]
− 2αE

[
(f(wt)− f(w∗)) +

µ

2
‖wt − w∗‖22

]
+ α2E

[∥∥∥∇f̃t(wt)∥∥∥2
2

]
+ αδE

[∥∥∥∇f̃t(wt)∥∥∥
1

]
+ αζE

[
(‖wt − w∗‖2 + ‖w∗‖2)

∥∥∥∇f̃t(wt)∥∥∥
2

]
+ ηα2E

[∥∥∥∇f̃t(wt)∥∥∥2
2

]
= (1− αµ)E

[
‖wt − w∗‖22

]
+ (1 + η)α2E

[∥∥∥∇f̃t(wt)∥∥∥2
2

]
− 2αE [(f(wt)− f(w∗))]

+ αζE
[
(‖wt − w∗‖2 + ‖w∗‖2)

∥∥∥∇f̃t(wt)∥∥∥
2

]
+ αδE

[∥∥∥∇f̃t(wt)∥∥∥
1

]
where the third inequality holds due to the strongly convexity assumption. According to the assump-
tions we had, we have:

E
[
‖∇fi(w)‖22

]
= E

[
‖∇fi(w)−∇fi(w∗) +∇fi(w∗)‖22

]
= E

[
‖∇fi(w)−∇fi(w∗)‖22 + 2(∇fi(w)−∇fi(w∗))T∇fi(w∗) + ‖∇fi(w∗)‖22

]
= E

[
‖∇fi(w)−∇fi(w∗)‖22 + ‖∇fi(w∗)‖22

]
≤ L2 ·E

[
‖w − w∗‖22

]
+ σ2

‖∇fi(w)‖2 = ‖∇fi(w)−∇fi(w∗) +∇fi(w∗)‖2
≤ ‖∇fi(w)−∇fi(w∗)‖2 + ‖∇fi(w∗)‖2
≤ L · ‖w − w∗‖2 + σ

‖∇fi(w)‖1 = ‖∇fi(w)−∇fi(w∗) +∇fi(w∗)‖1
≤ ‖∇fi(w)−∇fi(w∗)‖1 + ‖∇fi(w∗)‖1
≤ L1 · ‖w − w∗‖2 + σ1

where the last inequality holds due to assumption 2 where we let p = 2. Apply this result to the
previous formula, denote η′ = 1 + η, and then we will have:

E
[
‖wt+1 − w∗‖22

]
≤ (1− αµ)E

[
‖wt − w∗‖22

]
+ η′α2E

[∥∥∥∇f̃t(wt)∥∥∥2
2

]
− 2αE [(f(wt)− f(w∗))]

+ αζE
[
(‖wt − w∗‖2 + ‖w∗‖2)

∥∥∥∇f̃t(wt)∥∥∥
2

]
+ αδE

[∥∥∥∇f̃t(wt)∥∥∥
1

]
≤ (1− αµ+ η′α2L2)E

[
‖wt − w∗‖22

]
+ αδL1E [‖wt − w∗‖2] + η′α2σ2 + αδσ1

+ αζE [(‖wt − w∗‖2 + ‖w∗‖2)(L · ‖w − w∗‖2 + σ)]− 2αE [(f(wt)− f(w∗))]

= (1− αµ+ αζL+ η′α2L2)E
[
‖wt − w∗‖22

]
− 2αE [(f(wt)− f(w∗))]

+ (αδL1 + αζL ‖w∗‖2 + αζσ)E [‖wt − w∗‖2] + η′α2σ2 + αδσ1 + αζσ ‖w∗‖2

22



Here we introduce a positive constant C that we’ll set later, and by basic inequality we get

(αδL1 + αζL ‖w∗‖2 + αζσ)E [‖wt − w∗‖2]

≤ CE [‖wt − w∗‖2]
2

+
(αδL1 + αζL ‖w∗‖2 + αζσ)2

4C

≤ CE
[
‖wt − w∗‖22

]
+
α2(δL1 + ζL ‖w∗‖2 + ζσ)2

4C

thus

E
[
‖wt+1 − w∗‖22

]
≤ (1− αµ+ αζL+ η′α2L2 + C)E

[
‖wt − w∗‖22

]
− 2αE [(f(wt)− f(w∗))]

+ η′α2σ2 + αδσ1 + αζσ ‖w∗‖2 +
α2(δL1 + ζL ‖w∗‖2 + ζσ)2

4C

one setting C to be αµ− αζL− η′α2L2, we will have:

2αE [(f(wt)− f(w∗))] ≤ E
[
‖wt − w∗‖22

]
−E

[
‖wt+1 − w∗‖22

]
+ η′α2σ2 + αδσ1 + αζσ ‖w∗‖2 +

α2(δL1 + ζL ‖w∗‖2 + ζσ)2

4(αµ− αζL− η′α2L2)

since we can set α to be small enough such that αµ− αζL− η′α2L2 ≥ 1
2αµ, then the result will

become:

2αE [(f(wt)− f(w∗))] ≤ E
[
‖wt − w∗‖22

]
−E

[
‖wt+1 − w∗‖22

]
+ η′α2σ2 + αδσ1 + αζσ ‖w∗‖2 +

α(δL1 + ζL ‖w∗‖2 + ζσ)2

2µ

now we sum up this inequality from t = 0 to t = T − 1 and divide by 2αT , then we get:

1

T

T−1∑
t=o

E [(f(wt)− f(w∗))]

≤
‖w0 − w∗‖22 −E

[
‖wT − w∗‖22

]
2αT

+
η′ασ2 + δσ1 + ζσ ‖w∗‖2

2
+

(δL1 + ζL ‖w∗‖2 + ζσ)2

4µ

≤
‖w0 − w∗‖22

2αT
+
η′ασ2 + δσ1 + ζσ ‖w∗‖2

2
+

(δL1 + ζL ‖w∗‖2 + ζσ)2

4µ

and since we sample w̃ uniformly from (wo, w1, · · · , wT−1), we get

E [(f(w̃)− f(w∗))] ≤ 1

2αT
‖w0 − w∗‖22+

η′ασ2 + δσ1 + ζσ ‖w∗‖2
2

+
(δL1 + ζL ‖w∗‖2 + ζσ)2

4µ

Proof of Theorem 4. In the case of non-linear quantization:

E
[
‖Q(ut+1)− ut+1‖22

]
≤ δE [‖ut+1 − wt‖1] + ζE [‖wt‖2 ‖ut+1 − wt‖2] + ηE

[
‖ut+1 − wt‖22

]
6 δE [‖αt∇fit(wt)‖1] + ζE [R0 ‖αt∇fit(wt)‖2] + ηE

[
‖αt∇fit(wt)‖

2
2

]
6 αtδσ1 + αtζR0E [‖∇fit(wt)‖2] + α2

t ηE
[
‖∇fit(wt)‖

2
2

]
similar to the analysis in convex case, we introduce a positive constant C that can be decided later,
and we have:

αtζR0 ‖∇fit(wt)‖2 6 Cα2
t ‖∇fit(wt)‖

2
2 +

(ζR0)2

4C
thus

E
[
‖Q(ut+1)− ut+1‖22

]
6 α2

t (η + C)E
[
‖∇fit(wt)‖

2
2

]
+ αtδσ1 +

(ζR0)2

4C
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substituting into previous results, denote η′ = η + 1, and we have:

E [f(wt+1)] 6 E [f(wt)]−
(
αt −

α2
tL

2

)
E
[
‖∇f(wt)‖22

]
+
α2
tσ

2
0L

2

+
1

2
LE

[
‖Q(ut+1)− ut+1‖22

]
6 E [f(wt)]−

(
αt −

(η′ + C)α2
tL

2

)
E
[
‖∇f(wt)‖22

]
+
α2
tσ

2
0L+ αtLδσ1

2
+
L(ζR0)2

8C

Next, we sum the result from t = 0 to T − 1, set αt = α and select w̄T uniformly at random from
{w0, w1, . . . , wT−1}, then we get:

E
[
‖∇f(w̄)‖22

]
=

1

T

T−1∑
t=0

E
[
‖∇f(wt)‖22

]
6

2

2α− (η′ + C)α2L

{
f(w0)−E [f(wT )]

T
+
α2σ2

0L+ αLδσ1
2

+
L(ζR0)2

8C

}
6

2

2α− (η′ + C)α2L

f(w0)− f∗

T
+

α2σ2
0L+ αLδσ1

2α− (η′ + C)α2L
+

L(ζR0)2

4C(2α− (η′ + C)α2L)

=
2

2α− (η′ + C)α2L

f(w0)− f∗

T
+

ασ2
0L+ Lδσ1

2− (η′ + C)αL
+

L(ζR0)2

4C(2α− (η′ + C)α2L)

One possible setting of C is C = 1
αL − η

′, then we get:

E
[
‖∇f(w̄)‖22

]
6

f(w0)− f∗
1
2αT

+ ασ2
0L+ Lδσ1 +

L(ζR0)2

4α 1−αη′L
αL

=
f(w0)− f∗

1
2αT

+ ασ2
0L+ Lδσ1 +

L2(ζR0)2

4(1− (η + 1)αL)

and if we set α small enough such that α < 1
2(η+1)L , then we get:

E
[
‖∇f(w̄)‖22

]
6

2(f(w0)− f∗)
αT

+ ασ2
0L+ Lδσ1 +

1

2
(LζR0)2

This is the result we stated in the theorem.

Next we show the reasonability of our choice of constant C in the process of proof. Alternatively, we
consider the optimal setting of C which minimizes the size of the noise ball (when T approaches
infinity), that is:

C = argmin

{
ασ2

0L+ Lδσ1
2− (η′ + C)αL

+
L(ζR0)2

4C(2α− (η′ + C)α2L)

}
= argmin

{
ασ2

0L+ Lδσ1
(2− η′αL)− αLC

+
L(ζR0)2/4α

C[(2− η′αL)− αLC]

}
denote

S =
C1

A−Bx
+

C2

x(A−Bx)

where
A = 2− η′αL, B = αL, C1 = ασ2

0L+ δσ1L, C2 = L(ζR0)2/4α

then the optimal setting of C can be solved by

∂S

∂x
=

BC1

(A−Bx)2
+
C2(2Bx−A)

x2(A−Bx)2
= 0
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the solution to this equation is

x =
−BC2 +

√
(BC2)2 +ABC1C2

BC1

=
C2

C1

√
1 +

AC1

BC2
− C2

C1

≈ C2

C1

(
1 +

AC1

2BC2

)
− C2

C1
=

A

2B
=

1

αL
− 1

2
η′

the approximation in the last step is based on the fact that the term inside the square root:

AC1

BC2
=

4(2− η′αL)(ασ0 + δσ1)

L(ζR0)2

is a small number. Meanwhile, since α is small, 1
αL is large, and η′ = 1 + η is small, we can see

that our choice of C = 1
αL − η

′ is close enough to the optimal setting 1
αL −

1
2η
′, thus is a reasonable

setting.

Proof of Theorem 5. In the normal FPQ case, the set of quantization points are:

D = {0} ∪
{
s ·
(

1 +
x

nm

)
· 2y | x = 0, 1, · · · , nm − 1, y = −ne

2
+ 2, · · · , ne

2
− 1

}
then the parameters for the nonlinear quantization bound can be computed as:

δ = s · 2−
ne
2 +2 =

4s(√
2
)ne , ζ =

1

nm
, η =

ζ2

4(1 + ζ)
=

1

4nm(nm + 1)

For NLQ-SGD, the noise ball size according to theorem 3 is:

δσ1 + ζσ ‖w∗‖2
2

+
(δL1 + ζL ‖w∗‖2 + ζσ)2

4µ

Denote this as 1
2A+ 1

4µB
2. When b is large, δ, ζ, η are small, then the dominating term for the noise

ball is

A = δσ1 + ζσ ‖w∗‖2 = 4sσ1
1(√
2
)ne + σ ‖w∗‖2

1

nm
= 4sσ1

1(√
2
)ne + σ ‖w∗‖2

ne
C

let the derivative over ne to be 0 and we get:

∂A

∂ne
= −2(ln 2)sσ1

1(√
2
)ne + σ ‖w∗‖2

1

C
= 0,

(√
2
)ne

=
2(ln 2)sσ1C

σ ‖w∗‖2

ne = 2 log2

(
2(ln 2)sσ1C

σ ‖w∗‖2

)
, be = log2

(
2b+ 2 log2

(
2(ln 2)sσ1
σ ‖w∗‖2

))
And when b is small, δ, ζ, η are large and the dominating term for the noise ball is

B = δL1+ζL ‖w∗‖2+ζσ = 4sL1
1(√
2
)ne +(L ‖w∗‖2+σ)

1

nm
= 4sL1

1(√
2
)ne +(L ‖w∗‖2+σ)

ne
C

let the derivative of ne to be 0 and we get:

∂B

∂ne
= −2(ln 2)sL1

1(√
2
)ne + (L ‖w∗‖2 + σ)

1

C
= 0,

(√
2
)ne

=
2(ln 2)sL1C

L ‖w∗‖2 + σ

ne = 2 log2

(
2(ln 2)sL1C

L ‖w∗‖2 + σ

)
, be = log2

(
2b+ 2 log2

(
2(ln 2)sL1

L ‖w∗‖2 + σ

))
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For b such that neither the terms dominates the result, we know the noise ball size is:

1

2
A+

1

4µ
B2 =

δσ1 + ζσ ‖w∗‖2
2

+
(δL1 + ζL ‖w∗‖2 + ζσ)2

4µ

then the derivative of ne is:

∂

∂ne

(
1

2
A+

1

4µ
B2

)
=

1

2

∂A

∂ne
+
B

2µ

∂B

∂ne

and since both ∂A
∂ne

and ∂B
∂ne

are increasing functions and we know that:

∂A

∂ne

∣∣∣∣∣
ne=2 log2

(
2(ln 2)sσ1C

σ‖w∗‖2

) = 0,
∂B

∂ne

∣∣∣∣∣
ne=2 log2

(
2(ln 2)sL1C

L‖w∗‖2+σ

) = 0

then we know the solution of ∂
∂ne

(
1
2A+ 1

4µB
2
)

= 0 is in the interval between 2 log2

(
2(ln 2)sσ1C
σ‖w∗‖2

)
and 2 log2

(
2(ln 2)sL1C
L‖w∗‖2+σ

)
.

Proof of Theorem 6. In the denormal FPQ case, the set of quantization points are:

D =

{
s · x

nm
· 2−

ne
2 +3 | x = 0, 1, · · · , nm − 1

}
∪
{
s ·
(

1 +
x

nm

)
· 2y | x = 0, 1, · · · , nm − 1, y = −ne

2
+ 3, · · · , ne

2
− 1

}
then the parameters for the nonlinear quantization bound is:

δ = s · 1

nm
· 2−

ne
2 +3 =

8

C
· sne(√

2
)ne , ζ =

1

nm
, η =

ζ2

4(1 + ζ)
=

1

4nm(nm + 1)

For NLQ-SGD, the noise ball size according to theorem 3 is:

δσ1 + ζσ ‖w∗‖2
2

+
(δL1 + ζL ‖w∗‖2 + ζσ)2

4µ

Denote this as 1
2A+ 1

4µB
2. When b is large, δ, ζ, η are small and the dominating term for the noise

ball is

A = δσ1 + ζσ ‖w∗‖2 =
8sσ1
C

ne(√
2
)ne + σ ‖w∗‖2

1

nm
=

8sσ1
C

ne(√
2
)ne + σ ‖w∗‖2

ne
C

let the derivative over ne to be 0 and we get:

∂A

∂ne
=

8sσ1
C

1− (ln
√

2)ne(√
2
)ne + σ ‖w∗‖2

1

C
= 0

denote V (x) = x · ex, and Lambert W function W (y) = V −1(y), y ≥ − 1
e . then we need

∂A

∂ne
=

8sσ1
C

1− (ln
√

2)ne(√
2
)ne + σ ‖w∗‖2

1

C
=

8sσ1
eC

V (1− (ln
√

2)ne) + σ ‖w∗‖2
1

C
= 0

thus we have:

ne = 1− 2

ln 2
W

(
eσ ‖w∗‖2

8sσ1

)
, be = log2

[
1− 2

ln 2
W

(
eσ ‖w∗‖2

8sσ1

)]
And when b is small, δ, ζ, η are large and the dominating term for the noise ball is

B = δL1 + ζL ‖w∗‖2 + ζσ =
8sL1

C
· ne(√

2
)ne + (L ‖w∗‖2 + σ)

ne
C
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let the derivative of ne to be 0 and we get:

∂B

∂ne
=

8sL1

C

1− (ln
√

2)ne(√
2
)ne +(L ‖w∗‖2+σ)

1

C
=

8sL1

eC
V (1−(ln

√
2)ne)+(L ‖w∗‖2+σ)

1

C
= 0

thus we have:

ne = 1− 2

ln 2
W

(
e(L ‖w∗‖2 + σ)

8sL1

)
be = 2 log2

[
1− 2

ln 2
W

(
e(L ‖w∗‖2 + σ)

8sL1

)]
For b such that neither the terms dominates the result, we know the noise ball size is:

1

2
A+

1

4µ
B2 =

δσ1 + ζσ ‖w∗‖2
2

+
(δL1 + ζL ‖w∗‖2 + ζσ)2

4µ

then the derivative of ne is:

∂

∂ne

(
1

2
A+

1

4µ
B2

)
=

1

2

∂A

∂ne
+
B

2µ

∂B

∂ne

and since both ∂A
∂ne

and ∂B
∂ne

are increasing functions and we know that:

∂A

∂ne

∣∣∣∣∣
ne=1− 2

ln 2W
(
eσ‖w∗‖2

8sσ1

) = 0,
∂B

∂ne

∣∣∣∣∣
ne=1− 2

ln 2W
(
e(L‖w∗‖2+σ)

8sL1

) = 0

then we know the solution of ∂
∂ne

(
1
2A+ 1

4µB
2
)

= 0 is in the interval between 1− 2
ln 2W

(
eσ‖w∗‖2

8sσ1

)
and 1− 2

ln 2W
(
e(L‖w∗‖2+σ)

8sL1

)
.

Proof of Theorem 7. In normal floating point quantization, we know that

δnormal =
4s

22be−1 , ζ = 2−bm , η =
ζ2

4(ζ + 1)
.

same as before, denote ne = 2be , nm = 2bm , C = 2b = 2be+bm , then

δnormal =
4s(√
2
)ne , ζ =

1

nm
=
ne
C
, η =

1

4nm(nm + 1)

and the noise ball size we wish to minimize (as T →∞, α→ 0), according to Theorem 4 is:

Lδσ1 +
1

2
(LζR0)2

denote this result as S, then

S =
4sLσ1(√

2
)ne +

L2R2
0n

2
e

2C2
,
∂S

∂ne
= −2(ln 2)sLσ1(√

2
)ne +

L2R2
0

C2
ne

the noise ball is minimized when ∂S
∂ne

= 0, that is:

ne

(√
2
)ne

=
2(ln 2)sσ1C

2

LR2
0

, (
1

2
ln 2 · ne)e

1
2 ln 2·ne =

(ln 2)2sσ1C
2

LR2
0

let V (x) = x · ex, and Lambert W function is W (y) = V −1(y), y ≥ − 1
e , then the solution is

ne =
2

ln 2
W

(
(ln 2)2sσ1C

2

LR2
0

)
=

2

ln 2
W

(
(ln 2)2sσ122b

LR2
0

)
thus

be = log2 ne = log2

[
2

ln 2
W

(
(ln 2)2sσ122b

LR2
0

)]
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For de-normal FPQ on non-convex objectives,

S =
8sLσ1ne

C
(√

2
)ne +

L2R2
0n

2
e

2C2
,
∂S

∂ne
=

8sσ1L

C

1− (ln
√

2)ne(√
2
)ne +

L2R2
0

C2
ne

let ∂S
∂ne

= 0, then we have:

ne

(√
2
)ne

+
8sσ1C

LR2
0

(
1− (ln

√
2)ne

)
= 0

this is a transcendental equation, which does not have an analytical solution, or does not have solutions
at all. If there does exist a solution, we can solve it numerically and use it as the optimal setting of
exponent bits.
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