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1 Appendix: Additional Synthetic Data Analysis

15000
»
2

() (®) C) O)

Figure 1: (a) Samples generated with a vanilla GAN (black); (b) GD reconstructions from 100 random
initializations; (c) Reconstruction error bar plot for the result in column (b); (d) Reconstructions recovered with
Alg. 1; (e) Reconstruction error bar plot for the results in column (d).

1000th iteration 5000th iteration 10000th iteration 50000th iteration

0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
iteration iteration iteration iteration

Figure 2: WGAN-GP’s loss in Z space and GD loss for reconstruction at 1000th, 5000th, 10000th and 50000th
epoch.

Sampling from a multi-modal distribution is challenging. Particularly if the modes are well separated
it is important to adequately explore the domain in order not to get stuck in a single mode. To observe
this we study the ability to sample from a multi-modal distribution on our synthetic data. We use
observation x, = x; = —1 which retains an ambiguous x2 = 0.5 or xo = —0.5. For this experiment,
we use the same 15k-th iteration generative model as employed in Fig. ??. Results for GD are shown
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Figure 3: Rows correspond to generators trained for a different number of epochs as indicated (left). The
columns illustrate: (a) Samples generated with a WGAN-GP (black); (b) GD reconstructions from 100 random
initializations; (c) Reconstruction error bar plot for the result in column (b); (d) Reconstructions recovered with
our proposed AIS based HMC algorithm; (e) Reconstruction error bar plot for the results in column (d).
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Figure 4: z state in Z space during the AIS procedure after the 100th, 3700th, 3800th, 3900th and 4000th AIS
loop.

in Fig.[T] (b,c) while AIS results are provided in Fig.[I](d, e). We observe GD gets stuck in bad modes.
In contrast, AIS finds the optimal modes.

Following Fig. 1, Fig. 2 and Fig. 3 in the main paper, we compare the performances of baselines and
our proposed AIS based HMC algorithm on WGAN-GP. The results illustrate the robustness of our
algorithm on a variety of GAN losses and advantages over the baselines.

The optimal solution of this experiment is (z1,22) = (1,0). Fig.[2|shows energy barriers which
challenge optimization w.r.t. z particularly for well trained generators. Fig. [3|shows that baselines get
stuck in a local optimum easily. In contrast, the reconstructions obtained by our proposed algorithm
overcome the energy barriers and find good solutions within 4,000 AIS loops. We observe that the
reconstruction accuracy (Fig.[3|(d, e)) increases with generator model improvements. Fig. @] shows
how 100 z samples move in Z-space and cross the barriers during the AIS procedure.
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Figure 5: Reconstructions errors over the number of progressive GAN training iterations. (a) MSSIM on LSUN
test data; (b) MSE on LSUN test data.

2 Appendix: Additional Real Data Examples

We show additional results for real data experiments. We observe our proposed algorithm to recover
masked images more accurately than baselines and to generate better high-resolution images given
low-resolution images.

We show masked CelebA (Fig.[6) and LSUN (Fig. [7) recovery results for baselines and our method,
given a Progressive GAN generator. Note that our algorithm is pretty robust to the position of
the = initialization, since the generated results are consistent in Fig.[6] In Fig.[8] we compare our
results with baselines on generating a 1024 x 1024 high-resolution image from a given 128 x 128
low-resolution image.

We also run both baselines and AIS on LSUN test data. The result is shown in Fig. El Howeyver, for
both CelebA and CelebA-HQ, Progressive GANS are trained on the whole dataset, we are unable to
do the experiments on these two datasets.
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Figure 6: Reconstructions on 128x 128 CelebA images for a trained progressive GAN at 10k-th iteration. (a)
Ground truth and masked (observed) images (top to bottom); (b) The result obtained by optimizing the best z
picked from 5,000 initializations (top to bottom); (c) Result generated by our algorithm.
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Figure 7: Reconstructions on 256 x 256 LSUN images for a trained progressive GAN at 10k-th iteration. (a)

Ground truth; (b) Masked (observed) images; (c) The result obtained whenn optimizing a single z; (d) The result
obtained by optimizing the best z picked from 5,000 initializations; (e) Result of our algorithm.
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Figure 8: Simple Super Resolution Task result from a 128 x 128 to a 1024 x 1024 image for a trained progressive
GAN at 19k-th iteration. (a) Ground truth; (b) The result obtained by optimizing a single z; (c) The result
obtained by optimizing the best z picked from 5,000 initializations; (d) Results of our algorithm.
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