
A Table of Symbols

In this section, for expository ease and reference, we aggregate all symbols used in the main paper and
give a brief description of their meaning and use. We note that each symbol is also defined explicitly
in the body of the paper; Table 1 is provided as a reference.

Symbol Summary
n Number of applicants/arms
A Set of all arms (e.g., the set of all applicants)
a An arm in A (e.g., an individual applicant)
K Size of the required cohort
MK(A) Decisions class or set of possible cohorts of size K
u(a) True utility of arm a where u(a) 2 [0, 1]
û(a) Empirical estimate of the utility of arm a
rad(a) Uncertainty bound around the empirical estimate of the utility û(a) of

arm a
w Submodular and monotone objective function for a cohort where w :

Rn ⇥ MK(A) ! R
Oracle Maximization oracle defined in Equation 1 and used by CACO
COracle Constrained maximization oracle used by BRUTAS
M⇤ Optimal cohort given the true utilities
�a The gap score of arm a defined in Equation 2
H The hardness of a problem defined in Equation 3
ji Cost of an arm pull at stage i
si Information gain of an arm pull at stage i
m Number of pulling stages (or interview stages)
Ki Number of arms moving onto the next stage (stage i+ 1)
Ai The active arms that move onto the next stage (stage i+ 1)
T (a) Total information gain for arm a
ũ(a) Worst case estimate of utility of arm a
Ãi Best cohort chosen by using the worst case estimates of utility
✏ We want to return a cohort with total utility bounded by w(M⇤) � ✏ for

Algorithm 1
� The probability that we are within ✏ of the best cohort for Algorithm 1
T̄i Budget constraint for round i
T̄ Total budget
T Total Cost for CACO
� Property of the �-sub-Gaussian tailed normal distribution
p The arm with the greatest uncertainty in CACO
K̃i Number of decisions to make in round i
T̃i,t Budget for BRUTAS in stage i, round t
Mi,t Best cohort chosen in BRUTAS stage i, round t, using empirical utilities
M̃i,t,a Pessimistic estimate in BRUTAS stage i, round t, for arm a
pi,t Arm which results in largest gap in BRUTAS stage i, round t
H̃ Hardness for BRUTAS
P (a) Probability of acceptance for an arm (candidate), estimated by Random

Forest Classifier
q Number of groups for submodular diversity function
P1, P2, . . . , Pq The groups for submodular diversity function

Table 1: List of symbols used in the main paper.
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B Proofs

In this section, we provide proofs for the theoretical results presented in the main paper. Appendix B.1
gives proofs for CACO, defined as Algorithm 1 in Section 3. Appendix B.2 gives proofs for BRUTAS,
defined as Algorithm 2 in Section 4.

B.1 CACO

Theorem 1 requires lemmas from Chen et al. [2014]. We restate the theorem here for clarity and then
proceed with the proof.
Theorem 1. Given any � 2 (0, 1), any ✏ 2 (0, 1), any decision classes Mi ✓ 2[n] for each stage
i 2 [m], any linear function w, and any expected rewards u 2 Rn, assume that the reward distribution
'a for each arm a 2 [n] has mean u(a) with a �-sub-Gaussian tail. Let M⇤

i = argmaxM2Mi
denote

the optimal set in stage i 2 [m]. Set radt(a) = �

q
2 log(
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� )/Ti,t(a) for all t > 0 and

a 2 [n]. Then, with probability at least 1� �, the CACO algorithm (Algorithm 1) returns the set Out
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Proof. Assume we are in some round i, and that we are at time ta where some arm a is going to be

pulled for the last time in round i. Set rad i,t(a) = �

r
2 log(4Ki�1 Cost3i,t /�)

Ti,t(a)
Using Lemma 13 from

Chen et al. [2014] we know that rad i,t � max
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Equation 8 holds since ji > ji�1 > · · · > j0. Given equations 7 and equation 8 we have,
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Solving for Ti(a) we have,
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We will show later on in the proof
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Summing up over equation 11 we have
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which proves theorem 1.

Now we will go back to prove equation 11. If Ki�1 � 1
2Ti, then we see that Ti  2Ki�1 and

therefore equation 11 holds. Assume, then, that Ki�1 < 1
2Ti. Since Ti > Ki�1, we can write
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If C < 499 then equation 11 holds. Suppose then that C > 499. Using equation 10 and summing
equation 12 for all active arms a 2 Ai�1, we have
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where equation 14 follows from equation 13 and the assumption that Ki�1 < 1
2Ti; equation 15

follows since 136 + 54 log(2C) < C for all C > 499; and 16 is due to 13. Equation 16 is a
contradiction. Therefore C  499 and we have proved equation 11.
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B.2 BRUTAS

In order to prove Theorem 2, we first need a few lemmas.
Lemma 1. Let �(1), . . . ,�(n) be a permutation of �1, . . .�n (defined in Eq. (2)) such that �(1) 
. . .  �(n). Given a stage i 2 [m], and a phase t 2 [K̃i], we define random event ⌧i,t as follows

⌧i,t =

(
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�(n�
Pi�1

b=0 K̃b�t+1)

6

)
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Proof. In round i at phase t, arm a has been pulled T̄ (a) times. Therefore, by Hoeffding’s inequality,
we have
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By using the definition of T̃i,t, the quantity T̃i,t�2
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Now, using Eq. 20 and a union bound for all i 2 [m], all t 2 [K̃i], and all a 2 [n] \ (At,i [ Bt,i), we
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Lemma 2. Fix a stage i 2 [m], and a phase t 2 [K̃i], suppose that random event ⌧i,t occurs. For
any vector a 2 Rn, suppose that supp(a) \ (Ai,t [ Bi,t = ?, where supp(a) , {i|a(i) 6= 0} is the
support of vector a. Then, we have

|hũi,t,ai � hui,t,ai| <
�(n�

Pi�1
b=0 K̃i�t+1)

6
kak1

Proof. Suppose that ⌧i,t occurs. Then, we have
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where Eq. 22 follows from the assumption that a is supported on [n] \ (Ai,t [ Bi,t); Eq. 23 follows
from the definition of ⌧i,t (Eq. 17).

Lemma 3. Fix a stage i 2 [m], and a phase t 2 [K̃i]. Suppose that Ai,t ✓ M⇤ and Bi,t \ M⇤ = ?.
Let M be a set such that Ai,t ✓ M and Bi,t\M = ?. Let a and b be two sets satisfying a ✓ M \M⇤,
b ✓ M⇤ \ M , and a \ b = ?. Then, we have

Ai,t ✓ (M \ a [ b)

and
Bi,t \ (M \ a [ b) = ?

and
(a [ b) \ (Ai,t [ Bi,t) = ?.

Lemma 3 is due to Chen et al. [2014].

Lemma 4. Fix any stage i 2 [m], and any phase t 2 [K̃i] such that
Pi�1

b=0 K̃i + t > 0. Suppose that
event ⌧i,t occurs. Also assume that Ai,t ✓ M⇤ and Bi,t \M⇤ = ?. Let a 2 [n] \ (Ai,t [Bi,t) be an
active arm such that �(n�

Pi�1
b=0 Ki�t+1)  �a. Them, we have

ũi,t(Mi,t) � ũi,t(M̃i,t,a) >
2

3
�(n�

Pi�1
b=0 K̃i�t+1)

Lemma 4 is due to Chen et al. [2014].

Lemma 5. Fix any stage i 2 [m], and any phade t 2 [Ki] such that
Pi�1

b=0 Ki + t > 0. Suppose
that event ⌧i,t occurs. Also assume that Ai,t ✓ M⇤ and Bi,t \ M⇤ = ?. Suppose an active arm
a 2 [n] \ (Ai,t \ Bi,t) satisfies that a 2 (M⇤ \ ¬Mi,t) [ ( 6= M⇤ \ Mi,t). Then, we have

ũi,t(Mi,t) � ũi,t(M̃i,t,a)  1

3
�(n�

Pi�1
b=0 Ki�t+1)
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Lemma 5 is due to Chen et al. [2014].

Now we can prove Theorem 2, restated below for clarity.
Theorem 2. Given any T̄is such that

P
i2[m] T̄i = T̄ > n, any decision class MK ✓ 2[n], any

linear function w, and any true expected rewards u 2 Rn, assume that reward distribution 'a for
each arm a 2 [n] has mean u(a) with a �-sub-Gaussian tail. Let �(1), . . . ,�(n) be a permutation
of �1, . . . ,�n (defined in Eq. 2) such that �(1)  . . .  �(n). Define H̃ , maxi2[n] i�

�2
(i) . Then,

Algorithm 2 uses at most T̄i samples per stage i 2 [m] and outputs a solution Out 2 MK [ {?}
such that
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where flog(n) ,Pn
i=1 i

�1, and M⇤ = argmaxM2MK
w(M).

Proof. First we show that the algorithm takes at most T̄i samples in every stage i 2 [m]. It is easy to
see that exactly one arm is pulled for T̃i, 1 times in stage i, one arm is pulled for T̃i, 2 times in stage
i, . . ., and one arm is pulled for T̃i, K̃i � 1 times in stage i. Therefore, the total number of samples
used by the algorithm in stage i 2 [m] is bounded by
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By Lemma 1, we know that the event ⌧ occurs with probability at least 1 �
n2 exp

⇣
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b=1 sb(T̄b�K̃b)/(ji flog(K̃i))
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⌘
. Therefore, we only need to prove that, under event ⌧ , the

algorithm outputs M⇤. Assume that the event ⌧ occurs in the rest of the proof.

We will use induction. Fix a stage i 2 [m] and phase t 2 [K̃i]. Suppose that the algorithm does not
make any error before stage i and phase t, i.e. Ai,t ✓ M⇤ and Bi,t \ M⇤ = ?. We will show that the
algorithm does not err at stage i, phase t.

At the beginning of phase t in stage i there are exactly
Pi�1

b=0 K̃i+ t� 1 inactive arms |Ai,t [Bi,t| =Pi�1
b=0 K̃i + t � 1. Therefore there must exist an active arm ei,t 2 [n] \ (Ai,t [ Bi,t) such that

�ei,t � �(n�
Pi�1

b=0 K̃i�t+1). Hence, by Lemma 4, we have

w̃i,t(Mi,t) � w̃i,t(Mi,t,ei,t) � 2

3
�(n�

Pi�1
b=0 K̃i�t+1). (26)

Notice that the algorithm makes an error in phase t in stage i if and only if it accepts an arm pi,t /2 M⇤
or rejects an arm pi,t 2 M⇤. On the other hand, arm pi,t is accepted when pi,t 2 Mi,t and is rejected
when pi,t /2 Mi,t. Therefore, the algorithm makes an error in phase t in stage i if and only if
pt 2 (M⇤ \ ¬Mi,t) [ (¬M⇤ \ Mi,t).

Suppose that pt 2 (M⇤ \ ¬Mi,t) [ (¬M⇤ \ Mi,t). Using Lemma 5, we see that

w̃i,t(Mi,t) � w̃i,t(M̃i,t,pi,t)  1

3
�(n�

Pi�1
b=0 K̃i�t+1). (27)

By combining Eq. 26 and Eq. 27, we see that

w̃i,t(Mi,t) � w̃i,t(M̃i,t,pi,t) (28)

 1

3
�(n�

Pi�1
b=0 K̃i�t+1) (29)

<
2

3
�(n�

Pi�1
b=0 K̃i�t+1) (30)

 w̃i,t(Mi,t) � w̃i,t(M̃i,t,ei,t) (31)
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Figure 6: Hardness (H) vs theoretical cost (T ) as user-specified parameters to the CACO algorithm.

However, Eq. 28 is contradictory to the definition of pi,t , argmaxe2[n]\(Ai,t[Bi,t) w̃i,t(Mi,t) �
w̃i,t(Mi,t,e). This proves that pt /2 (M⇤ \ ¬Mi,t) [ (¬M⇤ \ Mi,t). This means that the algorithm
does not err at phase t in stage i, or equivalently Ai,t+1 ✓ M⇤ and Bi,t+1 \ M⇤ = ?.

Hence we have Am,K̃m+1
✓ M⇤ and Bm,K̃m+1

✓ ¬M⇤ in the final phase of the final stage. Notice
that |Am,K̃m+1

|+ |Bm,K̃m+1
| = n and Am,K̃m+1

\Bm,K̃m+1
= ?. This means that Am,K̃m+1

= M⇤

and Bm,K̃m+1
= ¬M⇤. Therefore the algorithm outputs Out = Am,K̃m+1

= M⇤ after phase K̃m in
stage m.

C Visualization of CACO bound

Figure 6 shows how the theoretical bound defined in Theorem 1 changes as parameters change vs.
Hardness H defined in Equation 3.

D Experimental Setup

The machines used for the experiments had 32GB RAM, 8 Intel SandyBridge CPU cores, and were
initialized with Red Hat Enterprise Linux 7.3. A single run of SWAP over the graduate admissions
data takes about 1 minute depending on the parameters.

Parameter Range

� 0.3,0.2,0.1,0.075,0.05
✏ 0.3,0.2,0.1,0.075,0.05
� 0.1,0.2
j 6
s 7, . . . , 20

Table 2: Parameters for graduate admissions experiments

E Additional Experimental Results

In this section, we present additional experimental results for CACO and BRUTAS. Table 3 supports
the Gaussian simulation experiments of Section 5.1, spcefically, the comparison of CACO and
BRUTAS to two baseline pulling strategies.

Table 4 also supports the Gaussian simulation experiments from Section 5.1. Here, we vary � instead
of ✏, as was done in Figure 2 of the main paper. As expected, when � increases, the cost decreases.
However, the magnitude of the effect is smaller than the effect from decreasing ✏ or varying K1. This
is also expected, as discussed in the final paragraphs of Section 3, and shown in Figure 1.

Figure 7 shows that, as the standard deviation � of the Gaussian distribution from which rewards are
drawn increases, so too does the total cost of running CACO. The qualitative behavior shown in,
e.g., Figure 2 of the main paper remains: as information gain s increases, overall cost decreases; as s
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Algorithm Cost Utility

Random 2750 138.9 (5.1)
Uniform 2750 178.4 (0.2)
CACO 2609 231.0 (0.1)
BRUTAS 2750 244.0 (0.1)

Table 3: Comparing CACO and BRUTAS to the baseline of Uniform and Random

� Cost
K1 = 10 K1 = 13 K1 = 18 K1 = 29

0.050 552.475 605.250 839.525 1062.725
0.075 542.425 582.675 827.025 1040.700
0.100 537.175 587.900 820.575 1078.975
0.200 503.650 568.300 801.525 1012.550

Table 4: Cost for CACO over various �, for ✏ = 0.05,� = 0.20, s2 = 7

increases substantially, we see a saturation effect; and, as final cohort size K increases, overall cost
increses.

Figure 8 shows the behavior of CACO for different arm initializations, representing different utilities
and groupings. We chose 4 representative initializations. For most initializations, when K1 = 10,
higher values of s2 do not result in gains. This is because with K1 = 10 and K = 7, there are only
3 decisions to make on which arms to cut and the information gain from the initial pull of all arms
in stage 2 grants enough information, thus no additional pulls need to be made and cost is uniform
across s2. However, if the problem of selecting from the short list is hard enough, additional resources
must be spent to narrow the decisions down, as in the top left graph, where total costs decrease as s2
increases for K1 = 10 because additional pulls need to be made after the initial pulls of remaining
arms in stage 2. This reflects real life well: usually, the short list can be cut down with one additional
round of (more informative) interviews. However, in rare situations, some candidates are so close
to each other that additional assessments need to be made about them. Another interesting result is
that K1 = 10 is not always the most cost effective option. If many of the initial candidates are close
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Figure 7: Comparison of Cost over information gain (s) as � increases for CACO. Here, � = 0.05 and ✏ = 0.05.
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Figure 8: Comparison of Cost over information gain (s) for different sets of arms for CACO. Here, � = 0.075,
✏ = 0.05, � = 0.2.

together in utility, it will be hard to narrow it down to a final 10 based on resume review alone: more
candidates should be allowed to move onto the next round which has higher information gain. This
can be seen in the bottom right graph.

F Limitations

This experiment uses real data but is still a simulation. The classifier is not a true predictor of utility
of an applicant. Indeed, finding an estimate of utility for an applicant is a nontrivial task. Additionally,
the data that we are using incorporates human bias in admission decisions, and reviewer scores. This
means that the classifier—and therefore the algorithms—may produce a biased cohort. Training a
human committee or using quantitative methods to (attempt to) mitigate the impact of human bias
in review scoring is important future work. Similarly, CACO and BRUTAS require an objective
function to run; recent advances in human value judgment aggregation [Freedman et al., 2018;
Noothigattu et al., 2018] could find use in this decision-making framework. Additionally, although
we were able to empirically show that both CACO and BRUTAS perform well using a submodular
function wDIV, there are no theoretical guarantees for submodular functions.

G Structured Interviews for Graduate Admissions

The goal of the interview is to help judge whether the applicant should be granted admission. The
interviewer asks questions to provide insight into the applicant’s academic capabilities, research
experience, perseverance, communication skills, and leadership abilities, among others.

Some example questions include:

• Describe a time when you have faced a difficult academic challenge or hurdle that you
successfully navigated. What was the challenge and how did you handle it?

• What research experience have you had? What problem did you work on? What was most
challenging? What did you learn most from the experience?

• Have you had any experiences where you were playing a leadership or mentoring role for
others?

• What are your goals for graduate school? What do you want to do when you graduate?
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Experiment Cost wTOP wDIV wDIV

over Gender over Region of Origin

Actual – ~2,000 60.9 10.1 17.9

RANDOM
lower 1,359 40.2 (0.3) 9.7 (0.2) 16.9 (0.3)
~equivalent 2,277 43.6 (0.5) 9.9 (0.1) 17.2 (0.2)
higher 11,556 72.9 (4.9) 11.5 (0.1) 18.1 (3.5)

UNIFORM
lower 1,359 49.7 (0.3) 9.8 (0.1) 17.7 (0.1)
~equivalent 2,277 54.7 (0.3) 9.9 (0.2) 18.3 (0.4)
higher 11,556 79.5 (3.2) 11.9 (0.3) 19.6 (0.6)

SWAP
lower 1,400 1,500 58.7 (0.5) 10.1 (0.1) 19.0 (0.1)
~equivalent 1,900–2,000 60.2 (0.4) 10.5 (0.1) 19.1 (0.1)
higher 2,500–2,700 61.5 (0.5) 10.8 (0.2) 19.3 (0.1)

CACO
lower 1,400–1,460 61.1 (0.1) 10.1 (0.2) 18.9 (0.1)
~equivalent 1,950–1,990 78.7 (0.2) 10.7 (0.1) 19.4 (0.2)
higher 2,500–2,700 80.1 (0.4) 12.0 (0.3) 19.8 (0.3)

BRUTAS
lower 1,649 61.2 (0.2) 10.6 (0.1) 19.1 (0.2)
~equivalent 2,038 79.3 (0.3) 10.7 (0.1) 19.8 (0.3)
higher 2,510 80.2 (0.3) 12.0 (0.2) 19.9 (0.2)

Table 5: Utility vs Cost over five different algorithms (RANDOM, UNIFORM, SWAP, CACO, BRUTAS) and
the actual admissions decisions made at our university. (Since CACO is a probabilistic method, the cost is
given over a range of values.) For each of the algorithms, we give results assuming a cost/budget lower, roughly
equivalent, and higher than that used by the real admissions committee. Both CACO and BRUTAS produce
equivalent cohorts to the actual admissions process with lower cost, or produce high quality cohorts than the
actual admissions process with equivalent cost. Our extension of SWAP to this multi-tiered setting also performs
well relative to RANDOM and UNIFORM, but performs worse than both CACO and BRUTAS across the board.

• What concerns do you have about the program? What will your biggest challenge be? Is
there anything else we should discuss?

The interviewer fills out an answer and score sheet during the interview. Each interviewer follows the
same questions and is provided with the same answer and score sheet. This allows for consistency
across interviews.
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