
Guided Meta-Policy Search

Russell Mendonca, Abhishek Gupta, Rosen Kralev, Pieter Abbeel, Sergey Levine, Chelsea Finn
Department of Electrical Engineering and Computer Science

University of California, Berkeley
{russellm, cbfinn}@berkeley.edu

{abhigupta, pabbeel, svlevine}@eecs.berkeley.edu
rdkralev@gmail.com

Abstract
Reinforcement learning (RL) algorithms have demonstrated promising results on
complex tasks, yet often require impractical numbers of samples since they learn
from scratch. Meta-RL aims to address this challenge by leveraging experience
from previous tasks so as to more quickly solve new tasks. However, in practice,
these algorithms generally also require large amounts of on-policy experience dur-
ing the meta-training process, making them impractical for use in many problems.
To this end, we propose to learn a reinforcement learning procedure in a federated
way, where individual off-policy learners can solve the individual meta-training
tasks, and then consolidate these solutions into a single meta-learner. Since the
central meta-learner learns by imitating the solutions to the individual tasks, it can
accommodate either the standard meta-RL problem setting, or a hybrid setting
where some or all tasks are provided with example demonstrations. The former
results in an approach that can leverage policies learned for previous tasks without
significant amounts of on-policy data during meta-training, whereas the latter is
particularly useful in cases where demonstrations are easy for a person to provide.
Across a number of continuous control meta-RL problems, we demonstrate signifi-
cant improvements in meta-RL sample efficiency in comparison to prior work as
well as the ability to scale to domains with visual observations.

1 Introduction
Meta-learning is a promising approach for using previous experience across a breadth of tasks to
significantly accelerate learning of new tasks. Meta-reinforcement learning considers this problem
specifically in the context of learning new behaviors through trial and error with only a few interactions
with the environment by building on previous experience. Building effective meta-RL algorithms
is critical towards building agents that are flexible, such as an agent being able to manipulate new
objects in new ways without learning from scratch for each new object and goal. Being able to reuse
prior experience in such a way is arguably a fundamental aspect of intelligence.

Enabling agents to adapt via meta-RL is particularly useful for acquiring behaviors in real-world
situations with diverse and dynamic environments. However, despite recent advances [7, 8, 17],
current meta-RL methods are often limited to simpler domains, such as relatively low-dimensional
continuous control tasks [8, 44] and navigation with discrete action commands [7, 24]. Optimization
stability and sample complexity are major challenges for the meta-training phase of these methods,
with some recent techniques requiring upto 250 million transitions for meta-learning in tabular
MDPs [7], which typically require a fraction of a second to solve in isolation.

We make the following observation in this work: while the goal of meta-reinforcement learning is
to acquire fast and efficient reinforcement learning procedures, those procedures themselves do not
need to be acquired through reinforcement learning directly. Instead, we can use a significantly more
stable and efficient algorithm for providing supervision at the meta-level. In this work we show that a
practical choice is to use supervised imitation learning. A meta-reinforcement learning algorithm

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

can receive more direct supervision during meta-training, in the form of expert actions, while still
optimizing for the ability to quickly learn tasks via reinforcement. Crucially, these expert policies
can themselves be produced automatically by standard reinforcement learning methods, such that no
additional assumptions on supervision are actually needed. They can also be acquired using very
efficient off-policy reinforcement learning algorithms which are otherwise challenging to use with
meta-reinforcement learning. When available, incorporating human-provided demonstrations can
enable even more efficient meta-training, particularly in domains where demonstrations are easy
to collect. At meta-test time, when faced with a new task, the method solves the same problem as
conventional meta-reinforcement learning: acquiring the new skill using only reward signals.

Our main contribution is a meta-RL method that learns fast reinforcement learning via supervised
imitation. We optimize for a set of parameters such that only one or a few gradient steps leads to
a policy that matches the expert’s actions. Since supervised imitation is stable and efficient, our
approach can gracefully scale to visual control domains and high-dimensional convolutional networks.
By using demonstrations during meta-training, there is less of a challenge with exploration in the
meta-optimization, making it possible to effectively learn how to learn in sparse reward environments.
While the combination of imitation and RL has been explored before [30, 20], the combination of
imitation and RL in a meta-learning context has not been considered previously. As we show in our
experiments, this combination is in fact extremely powerful: compared to meta-RL, our method can
meta-learn comparable adaptation skills with up to 10x fewer interaction episodes, making meta-RL
much more viable for real-world learning. Our experiments also show that, through our method, we
can adapt convolutional neural network policies to new goals through trial-and-error, with only a few
gradient descent steps, and adapt policies to sparse-reward manipulation tasks with a handful of trials.
We believe this is a significant step towards making meta-RL practical for use in complex real-world
environments.

2 Related Work

Our work builds upon prior work on meta-learning [39, 1, 47], where the goal is to learn how to
learn efficiently. We focus on the particular case of meta-reinforcement learning [39, 7, 48, 8, 24,
14]. Prior methods learned reinforcement learners represented by a recurrent or recursive neural
network [7, 48, 24, 41, 33], using gradient descent from a learned initialization [8, 14, 36], using
a learned critic that provides gradients to the policy [44, 17], or using a planner and an adaptable
model [5, 38]. In contrast, our approach aims to leverage supervised learning for meta-optimization
rather than relying on high-variance algorithms such as policy gradient. We decouple the problem of
obtaining expert trajectories for each task from the problem of learning a fast RL procedure. This
allows us to obtain expert trajectories using efficient, off-policy RL algorithms. Recent work has
used amortized probabilistic inference [34] to achieve data-efficient meta-training, however such
contextual methods cannot continually adapt to out of distribution test tasks. Further, the ability
of our method to utilize example demonstrations if available enables much better performance on
challenging sparse reward tasks. Our approach is also related to few-shot imitation [6, 11], in that
we leverage supervised learning for meta-optimization. However, in contrast to these methods, we
lean an automatic reinforcement learner, which can learn using only rewards and does not require
demonstrations for new tasks.

Our algorithm performs meta-learning by first individually solving the tasks with local learners,
and then consolidating them into a central meta-learner. This resembles methods like guided policy
search, which also use local learners [37, 29, 46, 28, 12]. However, while these prior methods aim to
learn a single policy that can solve all of the tasks, our approach instead aims to meta-learn a single
learner that can adapt to the training task distribution, and generalize to adapt to new tasks that were
not seen during training.

Prior methods have also sought to use demonstrations to make standard reinforcement learning more
efficient in the single-task setting [30, 20, 21, 45, 4, 42, 16, 43, 32, 26, 19, 40]. These methods aim to
learn a policy from demonstrations and rewards, using demonstrations to make the RL problem easier.
Our approach instead aims to leverage demonstrations to learn how to efficiently reinforcement learn
new tasks without demonstrations, learning new tasks only through trial-and-error. The version of our
algorithm where data is aggregated across iterations, is an extension of the DAgger algorithm [35]
into the meta-learning setting, and this allows us to provide theoretical guarantees on performance.

2

Figure 1: Overview of the guided meta-policy search algorithm: We learn a policy πθ which is capable of
fast adaptation to new tasks via reinforcement learning, by using reinforcement learning in the inner loop of
optimization and supervised learning in the meta-optimization. This algorithm either trains per-task experts π∗i or
assumes that they are provided by human demonstrations, and then uses this for meta-optimization. Importantly,
when faced with a new task we can simply perform standard reinforcement learning via policy gradient, and the
policy will quickly adapt to new tasks because of the meta-training.

3 Preliminaries
In this section, we introduce the meta-RL problem and overview model-agnostic meta-learning
(MAML) [8], which we build on in our work. We assume a distribution of tasks T ∼ p, where meta-
training tasks are drawn from p and meta-testing consists of learning held-out tasks sampled from p
through trial-and-error, by leveraging what was learned during meta-training. Formally, each task
T = {r(st,at), q(s1), q(st+1|st,at)} consists of a reward function r(st,at) → R, an initial state
distribution q(s1), and unknown dynamics q(st+1|st,at). The state space, action space, and horizon
H are shared across tasks. Meta-learning methods learn using experience from the meta-training
tasks, and are evaluated on their ability to learn new meta-test tasks. MAML in particular performs
meta-learning by optimizing for a deep network’s initial parameter setting such that one or a few
steps of gradient descent on a small dataset leads to good generalization. Then, after meta-training,
the learned parameters are fine-tuned on data from a new task.

Concretely, consider a supervised learning problem with a loss function denoted as L(θ,D), where
θ denotes the model parameters and D denotes the labeled data. During meta-training, a task T
is sampled, along with data from that task, which is randomly partitioned into two sets, Dtr and
Dval. MAML optimizes for a set of model parameters θ such that one or a few gradient steps on Dtr

produces good performance on Dval. Thus, using φT to denote the updated parameters, the MAML
objective is the following:

min
θ

∑
T
L(θ − α∇θL(θ,Dtr

T),Dval
T) = min

θ

∑
T
L(φT ,Dval

T).

where α is a step size that can be set as a hyperparameter or learned. Moving forward, we will refer
to the outer objective as the meta-objective. Subsequently, at meta-test time, K examples from a
new, held-out task Ttest are presented and we can run gradient descent starting from θ to infer model
parameters for the new task: φTtest = θ − α∇θL(θ,Dtr

Ttest
).

The MAML algorithm can also be applied to the meta-reinforcement learning setting, where each
dataset DTi consists of trajectories of the form s1,a1, ...,aH−1, sH and where the inner and outer
loss function corresponds to the negative expected reward:

LRL(φ,DTi) = −
1

|DTi |
∑

st,at∈DTi

ri(st,at) = −Est,at∼πφ,qTi

[
1

H

H∑
t=1

ri(st,at)

]
. (1)

Policy gradients [49] are used to estimate the gradient of this loss function. Thus, the algorithm
proceeds as follows: for each task Ti, first collect samples Dtr

Ti from the policy πθ, then compute
the updated parameters using the policy gradient evaluated on Dtr

Ti , then collect new samples Dval
Ti

via the updated policy parameters, and finally update the initial parameters θ by taking a gradient
step on the meta-objective. In the next section, we will introduce a new approach to meta-RL that
incorporates a more stable meta-optimization procedure that still converges to the same solution
under some regularity assumptions, and that can naturally leverage demonstrations or policies learned
for previous tasks if desired.

4 Guided Meta-Policy Search
Existing meta-RL algorithms generally perform meta-learning from scratch with on-policy methods.
This typically requires a large number of samples during meta-training. What if we instead formulate

3

meta-training as a data-driven process, where the agent had previously learned a variety of tasks
with standard multi-task reinforcement learning techniques, and now must use the data collected
from those tasks for meta-training? Can we use this experience or these policies in meaningful ways
during meta-training? Our goal is to develop an approach that can use these previously learned skills
to guide the meta-learning process. While we will still require on-policy data for inner loop sampling,
we will require considerably less of it than what we would need without using this prior experience.
Surprisingly, as we will show in our experiments, separating meta-training into two phases in this
way – a phase that individually solves the meta-training tasks and a second phase that uses them for
meta-learning – actually requires less total experience overall, as the individual tasks can be solved
using highly-efficient off-policy reinforcement learning methods that actually require less experience
taken together than a single meta-RL training phase. We can also improve sample efficiency during
meta-training even further by incorporating explicit demonstrations. In the rest of this section, we
describe our approach, analyze its theoretical properties, and discuss its practical implementation in
multiple real world scenarios.

4.1 Guided Meta-Policy Search Algorithm
In the first phase of the algorithm, task learning, we learn policies for each of the meta-training
tasks. While these policies solve the meta-training tasks, they do not accelerate learning of future
meta-test tasks. In Section 4.3, we describe how these policies are trained. Instead of learning
policies explicitly through reinforcement learning, we can also obtain expert demonstrations from
a human demonstrator, which can be used equivalently with the same algorithm. In the second
phase, meta-learning, we will learn to reinforcement learn using these policies as supervision at the
meta-level. In particular, we train for a set of initial parameters θ such that only one or a few steps of
gradient descent produces a policy that matches the policies learned in the first phase.

We will denote the optimal or near-optimal policies learned during the task-learning phase for each
meta-training task Ti as {π∗i }. We will refer to these individual policies as “experts,” because after
the first phase, they represent optimal or near-optimal solutions to each of the tasks. Our goal in the
meta-learning phase is to optimize the same meta-objective as the MAML algorithm, LRL(φi,Di),
where φi denotes the parameters of the policy adapted to task Ti via gradient descent. The inner
policy optimization will remain the same as the policy-gradient MAML algorithm; however, we will
optimize this meta-objective by leveraging the policies learned in the first phase. In particular, we
will base the outer objective on supervised imitation, or behavior cloning (BC), of expert actions. The
behavioral cloning loss function we use is LBC(φi,Di) , −

∑
(st,at)∈D log πφ(at | st).

Gradients from supervised learning are lower variance, and hence more stable than reinforcement
learning gradients [27]. The specific implementation of the second phase proceeds as follows: we
first roll out each of the policies π∗i to collect a dataset of expert trajectories D∗i for each of the
meta-training tasks Ti. Using this initial dataset, we update our policy according to the following
meta-objective:

min
θ

∑
Ti

∑
Dval
i ∼D∗i

EDtr
i∼πθ

[
LBC(θ − α∇θLRL(θ,Dtr

i),Dval
i)
]
. (2)

We discuss how this objective can be efficiently optimized in Section 4.3. The result of this optimiza-
tion is a set of initial policy parameters θ that can adapt to a variety of tasks, to produce φi, in a way
that comes close to the expert policy’s actions. Note that, so far, we have not actually required query-
ing the expert beyond access to the initial rollouts; hence, this first step of our method is applicable to
problem domains where demonstrations are available in place of learned expert policies. However,
when we do have policies for the meta-training tasks, we can continue to improve. In particular, while
supervised learning provides stable, low-variance gradients, behavior cloning objectives are prone
to compounding errors. In the single task imitation learning setting, this issue can be addressed by
collecting additional data from the learned policy, and then labeling the visited states with optimal
actions from the expert policy, as in DAgger [35]. We can extend this idea to the meta-learning
setting by alternating between data aggregation into dataset D∗ and meta-policy optimization in Eq. 2.
Data aggregation entails (1) adapting the current policy parameters θ to each of the meta-training
tasks to produce {φi}, (2) rolling out the current adapted policies {πφi} to produce states {{st}i} for
each task, (3) querying the experts to produce supervised data D = {{(st, π∗i (st)}i}, and finally (4)
aggregating this data with the existing supervised data D∗ ← D∗

⋃
D. This meta-training algorithm

is summarized in Alg. 1, and analyzed in Section 4.2. When provided with new tasks at meta-test
time, we initialize πθ and run the policy gradient algorithm.

4

Algorithm 1 GMPS: Guided Meta-Policy Search

Require: Set of meta-training tasks {Ti}
1: Use RL to acquire π∗i for each meta-training task
Ti

2: Initialize D∗ = {D∗i } with roll-outs from each π∗i
3: Randomly initialize θ
4: while not done do
5: Optimize meta-objective in Eq. 2 w.r.t. θ using

Alg. 2 with aggregated data D∗
6: for each meta-training task Ti do
7: Collect Dtr

i as K roll-outs from πθ in task Ti
8: Compute task-adapted parameters with gradi-

ent descent: φi = θ − α∇θLRL(θ,Dtr
i)

9: Collect roll-outs from πφi , resulting in data
{(st,at)}

10: Aggregate D∗i ← D∗i
⋃
{(st, π∗i (st))}

11: end for
12: end while

Algorithm 2 Optimization of Meta Objective

Require: Set of meta-training tasks {Ti}
Require: Aggregated dataset D∗ := {D∗i }
Require: θ initial parameters

1: while not done do
2: Sample task Ti ∼ {Ti} {or minibatch of tasks}
3: Sample K roll-outs Dtr

i = {(s1,a1, ...sH)}
with πθ in Ti

4: θinit ← θ
5: for n = 1...NBC do
6: Evaluate∇θLRL(θ,Dtr

i) according to Eq. 3
with importance weights πθ(at|st)

πθinit
(at|st)

7: Compute adapted parameters with gradient
descent: φi = θ − α∇θLRL(θ,Dtr

i)
8: Sample expert trajectories Dval

i ∼ D∗i
9: Update θ ← θ − β∇θLBC(φi,Dval

i).
10: end for
11: end while

Our algorithm, which we call guided meta-policy search (GMPS), has appealing properties that
arise from decomposing the meta-learning problem explicitly into the task learning phase and the
meta-learning phase. This decomposition enables the use of previously learned policies or human-
provided demonstrations. We find that it also leads to increased stability of training. Lastly, the
decomposition makes it easy to leverage privileged information that may only be available during
meta-training such as shaped rewards, task information, low-level state information such as the
positions of objects [23]. In particular, this privileged information can be provided to the initial
policies as they are being learned and hidden from the meta-policy such that the meta-policy can
be applied in test settings where such information is not available. This technique makes it straight-
forward to learn vision-based policies, for example, as the bulk of learning can be done without
vision, while visual features are learned with supervised learning in the second phase. Our method
also inherits appealing properties from policy gradient MAML, such as the ability to continue to
learn as more and more experience is collected, in contrast to recurrent neural networks that cannot
be easily fine-tuned on new tasks.

4.2 Convergence Analysis

Now that we have derived a meta-RL algorithm that leverages supervised learning for increased
stability, a natural question is: will the proposed algorithm converge to the same answer as the original
(less stable) MAML algorithm? Here, we prove that GMPS with data aggregation, described above,
will indeed obtain near-optimal cumulative reward when supplied with near-optimal experts. Our
proof follows a similar technique to prior work that analyzes the convergence of imitation algorithms
with aggregation [35, 18], but extends these results into the meta-learning setting. More specifically,
we can prove the following theorem, for task distribution p and horizon H .

Theorem 4.1 For GMPS, assuming reward-to-go bounded by δ, and training error bounded by
εθ∗, we can show that Ei∼p(T)[Eπθ+∇θEπθ [Ri]

[
∑H
t=1 ri(st,at)]] ≥ Ei∼p(T)[Eπ∗i [

∑H
t=1 ri(st,at)]]−

δ
√
εθ∗O(H), where π∗i are per-task expert policies.

The proof of this theorem requires us to assume that the inner policy update in Eq. 2 can bring the
learned policy to within a bounded error of each expert, which amounts to an assumption on the
universality of gradient-based meta-learning [10]. The theorem amounts to saying that GMPS can
achieve an expected reward that is within a bounded error of the optimal reward (i.e., the reward of
the individual experts), and the error is linear in H and

√
εθ∗. The analysis holds for GMPS when

each iteration generates samples by adapting the current meta-trained policy to each training task.
However, we find in practice that the the initial iteration, where data is simply sampled from per-task
experts π∗i , is quite stable and effective; hence, we use this in our experimental evaluation. For the
full proof of Theorem 4.1, see Appendix.

5

4.3 Algorithm Implementation
We next describe the full meta-RL algorithm in detail.

Expert Policy Optimization. The first phase of GMPS entails learning policies for each meta-
training task. The simplest approach is to learn a separate policy for each task from scratch. This
can already improve over standard meta-RL, since we can employ efficient off-policy reinforcement
learning algorithms. We can improve the efficiency of this approach by employing a contextual policy
to represent the experts, which simultaneously uses data from all of the tasks. We can express such a
policy as πθ(at|st, ω), where ω represents the task context. Crucially, the context only needs to be
known during meta-training – the end result of our algorithm, after the second phase, still uses raw
task rewards without knowledge of the context at meta-test time. In our experiments, we employ this
approach, together with soft-actor critic (SAC) [15], an efficient off-policy RL method.

For training the experts, we can also incorporate extra information during meta-training that is
unavailable at meta-test time, such as knowledge of the state or better shaped rewards, when available.
The former has been explored in single-task RL settings [23, 31], while the latter has been studied for
on-policy meta-RL settings [14].

Meta-Optimization Algorithm. In order to efficiently optimize the meta-objective in Eq. 2, we
adopt an approach similar to MAML. At each meta-iteration and for each task Ti, we first draw
samples Dtr

Ti from the policy πθ, then compute the updated policy parameters φTi using the Dtr
Ti , then

we update θ to optimize LBC, averaging over all tasks in the minibatch. This requires sampling from
πθ, so for efficient learning, we should minimize the number of meta-iterations.

We note that we can take multiple gradient steps on the behavior cloning meta-objective in each
meta-iteration, since this objective does not require on-policy samples. However, after the first
gradient step on the meta-objective modifies the pre-update parameters θ, we need to recompute
the adapted parameters φi starting from θ, and we would like to do so without collecting new data
from πθ. To achieve this, we use an importance-weighted policy gradient, with importance weights
πθ(at|st)
πθinit (at|st)

, where θinit denotes the policy parameters at the start of the meta-iteration. At the start
of a meta-iteration, we sample trajectories τ from the current policy with parameters denoted as
θ = θinit. Then, we take many off-policy gradient steps on θ. Each off-policy gradient step involves
recomputing the updated parameters φi using importance sampling:

φi = θ + αEτ∼πθ init

[
πθ(τ)

πθinit(τ)
∇θ log πθ(τ)Ai(τ)

]
(3)

where Ai is the estimated advantage function. Then, the off-policy gradient step is computed and
applied using the updated parameters using the behavioral cloning objective defined previously:
θ ← θ − β∇θLBC(φi,Dval

i). This optimization algorithm is summarized in Alg. 2.

5 Experimental Evaluation
We evaluate GMPS separately as a meta-reinforcement algorithm, and for learning fast RL pro-
cedures from multi-task demonstration data. We consider the following questions: As a meta-RL
algorithm, (1) can GMPS meta-learn more efficiently than prior meta-RL methods? For learning
from demonstrations, (2) does using imitation learning in the outer loop of optimization enable
us to overcome challenges in exploration, and learn from sparse rewards?, and further (3) can we
effectively meta-learn CNN policies that can quickly adapt to vision-based tasks?

To answer these questions, we consider multiple continuous control domains shown in Fig. 2.

5.1 Experimental Setup
Sawyer Manipulation Tasks. The tasks involving the 7-DoF Sawyer arm are performed with
3D position control of a parallel jaw gripper (four DoF total, including open/close). The Sawyer
environments include:
• Pushing, full state: The tasks involve pushing a block with a fixed initial position to a target location

sampled from a 20 cm × 10 cm region. The target location within this region is not observed and
must be implicitly inferred through trial-and-error. The ‘full state’ observations include the 3D
position of the end effector and of the block.

• Pushing, vision: Same as above, except the policy receives images instead of block positions.
• Door opening: The task distribution involves opening a door to a target angle sampled uniformly

from 0 to 60 degrees. The target angle is not present in the observations, and must be implicitly

6

Figure 2: Illustration of pushing (left),
door opening (center) and legged locomo-
tion (right) used in our experiments, with
the goal regions specified in green for push-
ing and locomotion.

Figure 3: Meta-training efficiency on full state pushing and dense
reward locomotion. All methods reach similar asymptotic perfor-
mance, but GMPS requires significantly fewer samples.

inferred through trial-and-error. The ‘full state’ observations include the 3D end effector position
of the arm, the state of the gripper, and the current position and angle of the door.

Quadrupedal Legged Locomotion. This environment uses the ant environment in OpenAI gym [3].
The ask distribution comprises goal positions sampled uniformly from the edge of a circle with radius
2 m, between 0 and 90 degrees. We consider dense rewards when evaluating GMPS as a meta-RL
algorithm, and challenging sparse rewards setting when evaluating GMPS with demonstrations.

Further details such as the reward functions for all environments, network architectures, and hyperpa-
rameters swept over are in the appendix. Videos of our results are available online 1.

5.2 Meta-Reinforcement Learning

We first evaluate the sample efficiency of GMPS as a meta-RL algorithm, measuring performance
as a function of the total number of samples used during meta-training. We compare to a recent
inference based off-policy method (PEARL) [34] and the policy gradient version of model-agnostic
meta-learning (MAML) [8], that uses REINFORCE in the inner loop and TRPO in the outer loop.
We also compare to RL2 [7], and to a single policy that is trained across all meta-training tasks (we
refer to this comparison as MultiTask). At meta-training time (but not meta-test time), we assume
access to the task context, i.e. information that completely specifies the task: the target location for
the pushing and locomotion experiments. We train a policy conditioned on the target position with
soft actor-critic (SAC) to obtain expert trajectories which are used by GMPS. The samples used to
train this expert policy with SAC are included in our evaluation. At meta-test time, when adapting to
new validation tasks, we only have access to the reward, which necessitates meta-learning without
providing the task contexts to the policy.

Figure 4: Test-time extrapolation for dense reward ant locomotion.
The test tasks involve navigating to the red goals indicated (right).
GMPS gets better average return across tasks (left).

From the meta-learning curves in
Fig. 3, we see similar performance
compared to PEARL, and 4x improve-
ment for sawyer object pushing and
about 12x improvement for legged lo-
comotion over MAML in terms of the
number of samples required. We also
see that GMPS performs substantially
better than PEARL when evaluated
on test tasks which are not in the train-
ing distribution for legged locomotion
(Fig. 4). This is because PEARL cannot generate useful contexts for out of distribution tasks, while
GMPS uses policy gradient to adapt, which enables it to continuously make progress.

Hence, the combination of (1) an off-policy RL algorithm such as SAC for obtaining per-task experts,
and (2) the ability to take multiple off-policy supervised gradient steps w.r.t. the experts in the
outer loop, enables us to obtain significant overall sample efficiency gains as compared to on-policy
meta-RL algorithm such as MAML, while also showing much better extrapolation than data-efficient
contextual methods like PEARL. These sample efficiency gains are important since they bring us
significantly closer to having a robust meta-reinforcement learning algorithm which can be run on
physical robots with practical time scales and sample complexity.

1 The website is at https://sites.google.com/berkeley.edu/guided-metapolicy-search/home

7

