
A Proof of Convergence for Divide-and-Conquer Algorithm

We claim the following:

(a) A+ ⊂ A−.
(b) v ∈ Rd defined as vA+ = ε, vV \A− = −ε and vA+\A− = wA+\A− is the unique global

optimizer of Eq. (3).
(c) t ∈ Rd defined so that tA+ = (s+)A+

, tV \A− = (s−)V \A− and tA−\A+
= sA−\A+

, is one
of the maximizers of Eq. (9).

The statement (a) is a consequence of the usual results on minimizing f(w) + 1
2‖w‖

2
2 and its

relationship with SFM. We are going to show (b) and (c) by showing that this is a primal/dual pair
with equal objectives.

We need to show that t ∈ B(F ). We have for any A ⊂ V , using submodularity twice,

t(A) = s+(A ∩A+) + t(A ∩ (A−\A+)) + s−(A ∩ (V \A−))

t(A) 6 F (A ∩A+) + F (A+ ∪ (A ∩ (A−\A+)))− F (A+) + s−(A ∩ (V \A−))

6 F (A ∩A−) + s−((A ∪A−)\A−)

6 F (A ∩A−) + F (A ∪A−)− s(A−)

= F (A ∩A−) + F (A ∪A−)− F (A−) 6 F (A).

For A = V , all inequalities above are equalities, and thus t ∈ B(F ).

We need to show thatw is feasible, i.e., thatwA+\A− has components in [−ε, ε]. This is a consequence
of classical results for minimizing f(w) + 1

2‖w‖
2
2 [4, Prop. 8.1]

We can then compute the Lovász extension values exactly and we then have a primal value equal to:

f(v) +

n∑
i=1

ψ(vi)

= f(v) +
1

2
‖v‖2

= εF (A+) + f
A+

A−
(wA+\A−) + εF (V )− εF (A−) +

1

2
‖wA+\A−‖

2 +
ε2

2
|A+|+

ε2

2
|V \A−|.

The dual value is equal to

−
n∑
i=1

ψ∗(−ti)

= −
∑
i∈A+

ψ∗(−ti)−
∑

i∈A−\A+

ψ∗(−ti)−
∑

i∈V \A−

ψ∗(−ti)

= −ε
∑
i∈A+

(|(s+)i| −
ε

2
) + f

A+

A−
(wA+\A−) +

1

2
‖wA+\A−‖

2 − ε
∑

i∈V \A−

(|(s−)i| −
ε

2
)

= εs+(A+) +
ε2

2
|A+|+ f

A+

A−
(wA+\A−) +

1

2
‖wA+\A−‖

2 + εs−(V \A−) +
ε2

2
|V \A−|,

which is thus equal to the primal value, hence optimality. Here we have used the fact that s+(A+) +
s−(V \A−) = F (V ) + F (A+)− F (A−). Indeed, s+ is the dual certificate for a SFM problem, and
has to satisfy s+(A+) = F (A+) [4, Prop. 10.3]. Similarly, s−(A−) = F (A−), which leads to
s+(A+) + s−(V \A−) = s+(A+) + s−(V )− s−(A−) = F (A+) + F (V )− F (A−).

Note that in the algorithm, there are some free choices for s+ and s−, and that we can take all of
them as subvector of the dual to the minimization of f(w) + ε

2‖w‖
2
2, but this is not the only choice.

B Proof of Prop. 2

We follow the proof of [4, Prop. 10.5], which corresponds to the case ε = +∞.
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From a feasible primal candidate, we can always build a dual candidate s (e.g., by taking any dual
maximizer). If we assume that for all α ∈ [−c, c], for c ∈ [0, ε] we have (F + ψ′(α))({w >
α})− (s+ ψ′(α))−(V ) > ηC/(2c), then we obtain that

ηC >
∫ c

−c
(F + ψ′(α))({w > α})− (s+ ψ′(α))−(V )dα > ηC,

which is a contradiction. Thus, we must at least one α ∈ [−c, c] such that (F + ψ′(α))({w >
α})− (s+ ψ′(α))−(V ) 6 ηC/(2c). This implies that

F ({w > α})− s−(V ) 6 ηC/(2c) + cn.

This means that at least one level set of w has a certified gap less than

ηD = inf
c∈[0,ε]

ηC/(2c) + cn

= inf
c∈[0,1]

ηC/(2εc) + cnε

= (2nε)× inf
c∈[0,1]

1

2
(c+

1

c

ηC

4nε2
)

6 (2nε)×
(√ ηC

4nε2
+

1

2

ηC

4nε2

)
=
√
ηCn/2 + ηC/(4ε)

using the identity infc∈[0,1]
1
2 (c+ a

c ) 6
√
a+ a/2. If a <= 1, take c =

√
a and the inf is less than√

a and thus less than
√
a+ a/2. If a >= 1, take c = 1 and the inf is less than 1/2 + a/2, which is

less than
√
a+ a/2 because 1/2 <

√
a
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