
Appendix for “Deep Random Splines for Point
Process Intensity Estimation of Neural Population

Data”

Appendix 1: Parameterization for nonnegative splines of even degree

As mentioned on section 2.1, there is an alternative characterization of nonnegative polynomials of
even degree d = 2k on an interval [l, u) that is analogous to equation 1 of the manuscript, which says
that the polynomial p is nonnegative on the interval if and only if it can be written as:

p(t) = [t]>Q1[t] + (u− t)(t− l)[̃t]
>
Q2 [̃t]

where again, [t] = (1, t, t2, . . . , tk)> and Q1 is a (k + 1) × (k + 1) symmetric positive semidef-
inite matrix. In this case Q2 is now a k × k symmetric positive semidefinite matrix and
[̃t] = (1, t, t2, . . . , tk−1)>. Again, it follows that a piecewise polynomial of degree d with knots
t0, . . . , tI defined as p(i)(t) for t ∈ [ti−1, ti) for i = 1, . . . , I is nonnegative if and only if it can be
written as:

p(i)(t) = [t]>Q
(i)
1 [t] + (ti − t)(t− ti−1)[̃t]

>
Q

(i)
2 [̃t]

for i = 1, . . . , I , where each Q(i)
1 is a (k + 1)× (k + 1) symmetric positive semidefinite matrix and

each Q(i)
2 is a k × k symmetric positive semidefinite matrix.

Appendix 2: Projecting onto the space of smooth splines

As mentioned in section 2.2, mapping to Ψ = ∩s+1
j=0Cj can be achieved through the method of

alternating projections. As mentioned previously, projecting onto C0 can be easily done through
eigen-decomposition. We now go through the details on how to project onto the other Cj sets. We will
only cover C1, C2 and C3 for odd-degree splines as we used splines of degree 3 and smoothness 2, but
projecting onto Cj for j ≥ 4 for higher degree splines can be done in an analogous way. Projections
for even degree splines can also be derived in an analogous way.

Continuity projection for splines of odd degree

Suppose we are given (Q
(i)
1 , Q

(i)
2)Ii=1, which are (k + 1) × (k + 1) matrices (not necessarily in

Ψ), defining a piecewise polynomial as in equation 2 of the manuscript. Computing the projection
(X

(i)
∗ , Y

(i)
∗)Ii=1 of (Q

(i)
1 , Q

(i)
2)Ii=1 onto C1 can be done by solving the following optimization problem:

(X
(i)
∗ , Y

(i)
∗)Ii=1 = arg min

(X(i),Y (i))Ii=1

I∑
i=1

||X(i) −Q(i)
1 ||2F + ||Y (i) −Q(i)

2 ||2F

s.t. (ti − ti−1)[ti]
>Y (i)[ti] = (ti+1 − ti)[ti]>X(i+1)[ti], for i = 1, . . . , I − 1

where || · ||F denotes the Frobenius norm and each constraint is merely forcing the piecewise function
to be continuous at knot i for i = 1, . . . , I − 1. Note that this is a quadratic optimization problem

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

with linear constraints, and can be solved analytically. The corresponding Lagrangian is:

L((X(i), Y (i))Ii=1, λ) =

I∑
i=1

||X(i) −Q(i)
1 ||2F + ||Y (i) −Q(i)

2 ||2F

+

I−1∑
i=1

λi

(
(ti − ti−1)[ti]

>Y (i)[ti]− (ti+1 − ti)[ti]>X(i+1)[ti]
)

where λ = (λ1, . . . , λI−1)> ∈ RI−1. By solving the KKT conditions, it can be verified that:
X

(i)
∗ = Q

(i)
1 +

λ∗i−1

2 Ai−1 , for i = 1, . . . , I

Y
(i)
∗ = Q

(i)
2 −

ciλ
∗
i

2 Ai , for i = 1, . . . , I

λ∗i = 2
1+c2i

[ti]
>(ciQ

(i)
2 −Q

(i+1)
1)[ti]

([ti]>[ti])2
, for i = 1, . . . , I − 1

where ci = ti−ti−1

ti+1−ti for i = 1, . . . , I− 1, cI = 0, λ∗0 = 0, λ∗I = 0 and Ai = [ti][ti]
> for i = 0, . . . , I .

Differentiability projection for splines of odd degree

Analogously, computing the projection (X
(i)
∗ , Y

(i)
∗)Ii=1 of (Q

(i)
1 , Q

(i)
2)Ii=1 onto C2 can be done by

solving the following optimization problem:

(X
(i)
∗ , Y

(i)
∗)Ii=1 = arg min

(X(i),Y (i))Ii=1

I∑
i=1

||X(i) −Q(i)
1 ||2F + ||Y (i) −Q(i)

2 ||2F

s.t. − [ti]
>X(i)[ti] + [ti]

>Y (i)[ti]

+ (ti − ti−1)[t′i]
>Y (i)[ti] + (ti − ti−1)[ti]

>Y (i)[t′i]

= −[ti]
>X(i+1)[ti] + (ti+1 − ti)[t′i]>X(i+1)[ti]

+ (ti+1 − ti)[ti]>X(i+1)[t′i] + [ti]
>Y (i+1)[ti], for i = 1, . . . , I − 1

where [t′] = (0, 1, 2t, 3t2, . . . , ktk−1)> and each constraint is now forcing the values of the left and
right derivatives of the piecewise function to match at knot i for i = 1, . . . , I − 1. Again, this is a
quadratic optimization problem with linear constraints. By writing the Lagrangian and solving the
KKT conditions, we get:{

X
(i)
∗ = Q

(i)
1 +

λ∗i
2 Ai −

λ∗i−i

2 (Ai−1 − (ti − ti−1)Mi−1) , for i = 1, . . . , I

Y
(i)
∗ = Q

(i)
2 −

λ∗i
2 (Ai + (ti − ti−1)Mi) +

λ∗i−1

2 Ai−1 , for i = 1, . . . , I

where Mi = [ti][t
′
i]
> + [t′i][ti]

> for i = 0, . . . , I and:

λ∗i−1

(
[ti]
>(Ai−1 −

ti − ti−1
2

Mi−1)[ti] + (ti − ti−1)[t′i]
>Ai−1[ti]

)
+ λ∗i

(
[ti]
>(−2Ai −

ti+1 − 2ti + ti−1
2

Mi)[ti]

+ (ti+1 − 2ti + ti−1 − (ti − ti−1)2 − (ti+1 − ti)2)[t′i]
>Mi[ti]

)
+ λ∗i+1

(
[ti]
>(Ai+1 +

ti+1 − ti
2

Mi+1)[ti]− (ti+1 − ti)[t′i]>Ai+1[ti]
)

= [ti]
>(Q

(i)
1 −Q

(i+1)
1 −Q(i)

2 +Q
(i+1)
2)[ti] + 2[t′i]

>((ti+1 − ti)Q(i+1)
1 − (ti − ti−1)Q

(i)
2)[ti]

for i = 1, . . . , I − 1 and again, λ∗0 = 0 and λ∗I = 0. This is a tridiagonal system of I − 1 linear
equations with I − 1 unknowns and can be solved efficiently in O(I) time with simplified Gaussian
elimination.

2

Second differentiability projection for splines of odd degree

Finally, computing the projection (X
(i)
∗ , Y

(i)
∗)Ii=1 of (Q

(i)
1 , Q

(i)
2)Ii=1 onto C2 can be done by solving

the following optimization problem:

(X
(i)
∗ , Y

(i)
∗)Ii=1 = arg min

(X(i),Y (i))Ii=1

I∑
i=1

||X(i) −Q(i)
1 ||2F + ||Y (i) −Q(i)

2 ||2F

s.t. − 2[t′i]
>X(i)[ti]− 2[ti]

>X(i)[t′i] + 2[t′i]
>Y (i)[ti] + 2[ti]

>Y (i)[t′i]

+ (ti − ti−1)[t′′i]>Y (i)[ti] + 2(ti − ti−1)[t′i]
>Y (i)[t′i] + (ti − ti−1)[ti]

>Y (i)[t′′i]

= −2[t′i]
>X(i+1)[ti]− 2[ti]

>X(i+1)[t′i] + (ti+1 − ti)[t′′i]>X(i+1)[ti]

+ 2(ti+1 − ti)[t′i]>X(i+1)[t′i] + (ti+1 − ti)[ti]>X(i+1)[t′′i] + 2[t′i]
>Y (i+1)[ti]

+ 2[ti]
>Y (i+1)[t′i]

where [t′′] = (0, 0, 2, 6t, . . . , k(k − 1)tk−2)> and each constraint is now forcing the values of the
left and right second derivatives of the piecewise function to match at knot i for i = 1, . . . , I − 1.
Again, this is a quadratic optimization problem with linear constraints. By writing the Lagrangian
and solving the KKT conditions, we get:{

X
(i)
∗ = Q

(i)
1 + λ∗iMi −

λ∗i−i

2 Bi−1 , for i = 1, . . . , I

Y
(i)
∗ = Q

(i)
2 −

λ∗i
2 Ei + λ∗i−1Mi−1 , for i = 1, . . . , I

where Bi−1 = 2Mi−1 − (ti − ti−1)([t′′i−1][ti−1]> + 2[t′i−1][t′i−1]> + [ti−1][t′′i−1]>) and Ei =

2Mi − (ti − ti−1)([t′′i][ti]
> + 2[t′i][t

′
i]
> + [ti][t

′′
i]>) for i = 1, . . . , I and:

λ∗i−1

(
[t′i]
>(2Bi−1 + 4Mi−1)[ti] + 2(ti − ti−1)[t′′i]>Mi−1[ti] + 2(ti − ti−1)[t′i]

>Mi−1[t′i]
)

+ λ∗i

(
[t′i]
>(−8Mi − 2Ei − 2Bi)[ti] + [t′′i]>((ti+1 − ti)Bi − (ti − ti−1)Ei)[ti]

+ [t′i]
>((ti+1 − ti)Bi − (ti − ti−1)Ei)[t

′
i]
)

+ λ∗i+1

(
[t′i]
>(Ei+1 + 4Mi+1)[ti]− 2(ti+1 − ti)[t′′i]>Mi+1[ti]− 2(ti+1 − ti)[t′i]>Mi+1[t′i]

)
= 4[t′i]

>(Q
(i)
1 −Q

(i+1)
1 −Q(i)

2 +Q
(i+1)
2)[ti] + 2[t′′i]>((ti+1 − ti)Q(i+1)

1 − (ti − ti−1)Q
(i)
2)[ti]

+ 2[t′i]
>((ti+1 − ti)Q(i+1)

1 − (ti − ti−1)Q
(i)
2)[t′i] , for i = 1, . . . , I − 1

where again, λ∗0 = 0 and λ∗I = 0. Again, this is a tridiagonal system of I − 1 linear equations with
I − 1 unknowns that can be solved efficiently.

Appendix 3: Architectural choices and training parameters

For our simulated data experiment, the state of each LSTM has 100 units, and f̃ is a feed-forward
neural network with ReLU activations and with 3 hidden layers, each one with 100 units. We apply
102 iterations of the method of alternating projections. For the feed-forward architecture in PfLDS,
we also used 3 hidden layers, each with 100 units. We used a mini-batch of size 2 and the learning
rate was 0.001. For the real data experiments we used the same choices, except the state of each
LSTM has 25 units and f̃ is a feed-forward network with ReLU activations and with 3 hidden layers,
each one with 10 units (we tried more complicated architectures but saw no improvement).

Appendix 4: Data Preprocessing

Reaching Data Preprocessing

We include only successful trials (i.e. when the primate reaches to the correct location) and use only
spikes occurring in a window of −100ms and 300ms from the time that movement starts. We also

3

reduce the total number of neurons as inference with our method requires one LSTM per neuron and
having too many neurons renders training slow. In order to do so, we use the following GLM:

yr ∼ Multinomial
(
C, softmax(K̃>r,·β)

)
where yr is the trial type of trial r, C = 40 is the number of trial types, K̃r,· ∈ RN is a vector
containing the (centered and standardized) number of spikes in trial r for each of the N = 223
neurons, and β ∈ RN×C are the GLM parameters. We train the GLM using group lasso [40], where
the groups are defined by neurons. That is, the GLM is trained through maximum likelihood with an
added penalty:

λ

N∑
n=1

||βn,·||22

where βn,· is the nth row of β. This makes it so that the coefficients in each group hit zero
simultaneously. A neuron n is removed if ||β̂n,·|| = 0. We use a regularization parameter λ such that
all but 20 neurons are removed. This provides a principled way of reducing the number of neurons
while making sure that the kept neurons are useful. As PfLDS does not require the use of LSTMs,
it can be run on the data without removing neurons. While doing this did increase performance of
PfLDS, it did so very marginally and our model still heavily outperformed PfLDS.

Cycling Data Preprocessing

Once again, we only keep successful trials (i.e. when the primate pedals in the correct direction and
speed) and reduce the total number of neurons N = 256 to 20 by using group lasso. Since each trial
has a different length, we extend every trial to have the same length as the longest trial. We add no
spikes to these extended time periods.

4

