
A Architecture

Table 5: The general structure of MobileNetV1 vs. MobileNetV1-DNW for ImageNet experiments.
dwconv denotes depthwise convolutions, pwconv denotes pointwise convolution, FC denotes a fully
connected layer, d denotes width multiplier [12], c denotes the number of output channels, and
s denotes stride. When omitted assume that stride is 1. Batch-norm [14] and ReLU follow each
convolution in MobileNetV1. When training on CIFAR-10 [16] the first convolution has stride 1.

Stage Output MobilNetV1 MobileNetV1-DNW
0 112⇥ 112 3⇥ 3 conv, c = 32d , s = 2 g� = (3⇥ 3 conv, c = 32 , s = 2)

1 112⇥ 112 3⇥ 3 dwconv, c = 32d G1 with |V| = 32 + 64
3⇥ 3 pwconv, c = 64d |V0| = 32, |VE | = 64, |B| = 2

2 56⇥ 56 3⇥ 3 dwconv, c = 64d, s = 2 G2 with |V| = 64 + 2 ⇤ 128
3⇥ 3 pwconv, c = 128d |V0| = 64, |VE | = 128, |B| = 3
3⇥ 3 dwconv, c = 128d
3⇥ 3 pwconv, c = 128d

3 28⇥ 28 3⇥ 3 dwconv, c = 128d, s = 2 G3 with |V| = 128 + 2 ⇤ 256
3⇥ 3 pwconv, c = 256d |V0| = 128, |VE | = 256, |B| = 3
3⇥ 3 dwconv, c = 256d
3⇥ 3 pwconv, c = 256d

4 14⇥ 14 3⇥ 3 dwconv, c = 256d, s = 2 G4 with |V| = 256 + 6 ⇤ 512
3⇥ 3 pwconv, c = 512d |V0| = 256, |VE | = 512, |B| = 7

5⇥

⇢
3⇥ 3 dwconv, c = 512d
3⇥ 3 pwconv, c = 512d

5 7⇥ 7 3⇥ 3 dwconv, c = 512d, s = 2 G5 with |V| = 512 + 2 ⇤ 1024
3⇥ 3 pwconv, c = 1024d |V0| = 512, |VE | = 1024, |B| = 3
3⇥ 3 dwconv, c = 1024d
3⇥ 3 pwconv, c = 1024d

6 1000 7⇥ 7 pool, 1024d⇥ 1000 FC h = (7⇥ 7 pool, 1024⇥ 1000 FC)

B Targeted Dropout: Details, Regular vs. Unconstrained and Additional
Hyperparameters

The method of Targeted Dropout is as follows: choose the bottom � fraction of weights by magnitude
and apply dropout with probability ⇢. We use the same architecture as MobileNetV1-DNW (⇥0.225)
and fix � at each stage so that the network post pruning has the same number of edges per stage as
MobileNetV1-DNW (⇥0.225).

In the setting we consider, unconstrained targeted weight dropout outperforms the targeted weight
dropout presented in [10] (which we refer to as regular). Accordingly, the results we present in
Table 2 correspond to unconstrained targeted weight dropout. In regular targeted weight dropout,
dropout is applied to the bottom � fraction of incoming weights to each neuron. In unconstrained

targeted weight dropout, we apply dropout to the bottom � fraction of edges at a given spatial
resolution. Accordingly, neurons may die and have no incoming or outgoing edges. We compare
unconstrained and regular targeted dropout in Table 6.

12

Table 6: Comparing variants of targeted weight dropout using the architecture described in Table 5
and tested on CIFAR-10 shown as mean and std over 5 runs.

Model Accuracy Accuracy
(Unconstrained) (Regular)

TD ⇢ = 0.9 89.0± 0.2% 87.9± 0.5%
TD ⇢ = 0.95 89.2± 0.4% 87.9± 0.2%
TD ⇢ = 0.99 88.6± 0.2% 87.7± 0.3%
TD ⇢ = � 88.8± 0.2% 87.9± 0.2%

C A More General Case

We now consider the case where the hallucinated edge (i, `) replaces (j, k) 2 E .

As before we use w̃ to denote the weight w after the weight update rule w̃uv = wuv +
D
Zu,�↵ @L

@Iv

E
.

We assume that ↵ is small enough so that sign(w̃) = sign(w).

Claim: Assume L is Lipschitz continuous. There exists a learning rate ↵⇤ > 0 such that for
↵ 2 (0,↵⇤) the process of swapping (i, `) for (j, k) will decrease the loss when the state of the nodes
are fixed, there is no path from i to j, and |wi`| < |wjk| but |w̃i`| > |w̃jk|.

Proof. Let Ak,A` be value of Ik and I` after the update rule if (j, k) is replaced with (i, `). Let Bk

and B` be the state of Ik and I` after the update rule if we do not allow for swapping. Ak,A`, Bk

and B` are then given by

Ak =
X

(u,k)2E, u 6=j

w̃ukZu, Bk = w̃jkZj +
X

(u,k)2E, u 6=j

w̃ukZu (14)

A` = w̃i`Zi +
X

(u,`)2E, u 6=i

w̃u`Zu, B` =
X

(u,`)2E, u 6=i

w̃u`Zu. (15)

Additionally, let gk = �↵ @L
@Ik

and g` = �↵ @L
@I`

be the direction in which the loss most steeply
descends with respect to Ik and I`. By Lemma 1 (Section D of the Appendix) it suffices to show that

hAk � Ik, gki+ hA` � I`, g`i � hBk � Ik, gki+ hB` � I`, g`i (16)

which simplifies to

w̃i` hZi, g`i � w̃jk hZj , gki (17)
() w̃i`(w̃i` � wi`) � w̃jk(w̃jk � wjk). (18)

We are now in the equivalent setting as equation 6 and may complete the proof as before.

In practice there may be a path from i and j the state of the nodes will never be the fixed due to
stochasticity of mini-batches and updates to the rest of the parameters in the network. However, as the
graph grows large the state of one node will have little effect on the state of another, even if there is a
path between them. The proofs are done in an idealized case and the empirical results demonstrate
that the method works in practice.

D Lemma 1

Here we show that for sufficiently small ↵,
⌧
�1,�↵

@L

@Iv

�
>

⌧
�2,�↵

@L

@Iv

�
(19)

implies that
L (Iv + ↵�1) < L (Iv + ↵�2) . (20)

13

Note that for brevity we have written the loss as a function of Iv. By taking a Taylor expansion we
find that

L (Iv + ↵�) (21)

= L (Iv) +

⌧
↵�,

@L

@Iv

�
+O(↵2) (22)

(23)
and so for sufficiently small ↵

L (Iv)� L (Iv + ↵�) ⇡

⌧
�,�↵

@L

@Iv

�
(24)

which completes the lemma.

An equivalent argument holds for two dimensions.
⌧
�1,�↵

@L

@Iv

�
+

⌧
⇠1,�↵

@L

@Iu

�
>

⌧
�2,�↵

@L

@Iv

�
+

⌧
⇠2,�↵

@L

@Iu

�
(25)

implies that
L (Iv + ↵�1, Iu + ↵⇠1) < L (Iv + ↵�2, Iu + ↵⇠2) . (26)

By taking a Taylor expansion we find that
L (Iv + ↵�, Iu + ↵⇠) (27)

= L (Iv, Iu) +

⌧
↵�,

@L

@Iv

�
+

⌧
↵⇠,

@L

@Iu

�
+O(↵2) (28)

(29)
and so for sufficiently small ↵

L (Iv, Iu)� L (Iv + ↵�, Iu + ↵⇠) ⇡

⌧
�,�↵

@L

@Iv

�
+

⌧
⇠,�↵

@L

@Iu

�
. (30)

E Effect of ✓v on wuv

One concern is that convolution or batch normalization [14] in f✓v would make it difficult to choose
edges by magnitude. Consider the case where a convolutional kernel is scaled up arbitrarily in
magnitude. Even if the incoming edges were important, their magnitudes would likely be small. As a
consequence, they would not be chosen.

Here we argue that this is unlikely to occur. When batch normalization [14] is present, the “energy"
of the incoming weights are conserved. A formal treatment of this statement is provided by Thoerem
3 of [31].

F Reformulation as a Straight-Through Estimator

We now reformulate the update rule as a straight-through estimator [1, 15]. We are equivalently
computing the input to node v as

Iv =
X

u2V
h(wuv)Zu (31)

where h(wuv) = wuv1{|wuv|>⌧} in the forward pass. Even though h has gradient 0 when |wuv| ⌧ ,
we would still like a mechanism for updating wuv in the backward pass. Here we may use the “straight-
through" estimator [1], and let h be the identity in the backward pass (i.e. we go straight-through h).
Then Iv =

P
u2V wuvZu in the backward pass and we then compute

@Iv
@wuv

= Zu (32)

which, when using the chain rule and a standard SGD update, aligns with our update rule (line 10 in
Algorithm 1). This is exactly how we implement the update rule in PyTorch [24].

14

	Introduction
	Discovering Neural Wirings
	Static Neural Graph
	Discovering a k-Edge neural graph
	Dynamic Neural Graph
	Implementation details for Large Scale Experiments

	Experiments
	Small Scale Experiments For Static and Dynamic Neural Graphs
	ImageNet Classification
	Related Methods
	Training Sparse Neural Networks

	Conclusion
	Architecture
	Targeted Dropout: Details, Regular vs. Unconstrained and Additional Hyperparameters
	A More General Case
	Lemma 1
	Effect of v on wuv
	Reformulation as a Straight-Through Estimator

