
A Appendix

A.1 Proof of Claim 1

Proof. Define the score S(t1, t2) = �B
d (t1)

0
�B

d (t2). The goal is to derive a uniform upper
bound for s(t1, t2) � K(t1, t2). By assumption S(t1, t2) is an unbiased estimator for K(t1, t2),
i.e. E[S(t1, t2)] = K(t1, t2). Due to the translation-invariant property of S and K, we let
�(t) ⌘ s(t1, t2) � K(t1, t2), where t ⌘ t1 � t2 for all t1, t2 2 [0, tmax]. Also we define
s(t1 � t2) := S(t1, t2). Therefore t 2 [�tmax, tmax], and we use t 2 T̃ as the shorthand nota-
tion. The LHS in (1) now becomes Pr

�
supt2T̃ |�(t)| � ✏

�
.

Note that T̃ ✓ [N�1
i=0 Ti with Ti =

⇥
� tmax + 2itmax

N ,�tmax + 2(i+1)tmax

N

⇤
for i = 1, . . . , N . So

[N�1
i=0 Ti is a finite cover of T̃ . Define ti = �tmax +

(2i+1)tmax

N , then for any t 2 Ti, i = 1, . . . , N
we have

���(t)
�� =

���(t)��(ti) +�(ti)
��

���(t)��(ti)

��+
���(ti)

��

 L�

��t� ti
��+

���(ti)
��

 L�
2tmax

N
+

���(ti)
��,

(7)

where L� = maxt2T̃

��r�(t)
�� (since � is differentiable) with the maximum achieved at t⇤. So we

may bound the two events separately.

For |�(ti)| we simply notice that trigeometric functions are bounded between [�1, 1], and therefore
�1 �B

d (t1)
0
�B

d (t2) 1. The Hoeffding’s inequality for bounded random variables immediately
gives us:

Pr
�
|�(ti)| >

✏

2

�
 2 exp

⇣
� d✏2

16

⌘
.

So applying the Hoeffding-type union bound to the finite cover gives

Pr
�
[N�1
i=0 |�(ti)| �

✏

2

�
 2N exp

⇣
� d✏2

16

⌘
(8)

For the other event we first apply Markov inequality and obtain:

Pr
�
L�

2tmax

N
� ✏

2

�
= Pr

�
L� � ✏N

4tmax

�
 4tmaxE[L2

�]

✏N
. (9)

Also, since E
⇥
s(t1 � t2)

⇤
= (t1 � t2), we have

E
⇥
L2
�

⇤
= E

��rs(t⇤)�r (t⇤)
��2 = E

��rs(t⇤)
��2 � E

��r (t⇤)
��2 E

��rs(t⇤)
��2 = �2

p, (10)

where �2
p is the second momentum with respect to p(!).

Combining (8), (9) and (8) gives us:

Pr
⇣
sup
t2T̃

|�(t)| � ✏
⌘
 2N exp

⇣
� d✏2

16

⌘
+

4tmax�2
p

✏N
. (11)

It is straightforward to examine that the RHS of (11) is a convex function of N and is minimized by
N⇤ = �p

q
2tmax

✏ exp
�
d✏2

32

�
. Plug N⇤ back to (11) and we obtain bound stated in Claim 1.

A.2 Proof of Proposition 1

Proof. We first define the kernel linear operator TK on L2(T) via TK(f)(t1) =R
T f(t1)K(t1, t2)dP(t2), where P is a non-negative measure over T = [0, tmax]. For notation

simplicity we do not explicitly index K with its frequency. The more complete statement of Mercer’s
Theorem is that under the conditions specified in Theorem 2,

TK(�j) = cj�j for j = 1, 2, . . . , (12)

12

which leads to the representation of the kernel as K(x, z) =
P1

i=1 ci�i(x)�i(z).

Therefore we only need to show the Fourier basis gives the eigenfunctions of the kernel linear operator
TK. Without loss of generality we assume the frequency is 2⇡, i.e. is a even periodic function on
[�1, 1] and extend to the real line by (t + 2k) = (t) for t 2 [�1, 1]. So now the kernel linear
operator is expressed by:

TK(f)(t1) =
Z 1

�1
 (t1 � t2)f(t2)dt2. (13)

Now we show that the eigenfunctions for the kernel linear operator are given by Fourier basis.
Suppose �2j(t) = cos(⇡jt) for j = 1, 2, . . ., we have

TK(�2j)(t1) =
Z 1

�1
 (t1 � t2) cos(2⇡t2)dt2

(a)
=

Z 1

�1
 (t3) cos

�
2⇡j(t1 + t3)

�
dt3 (with t3 = t1 � t2)

(b)
= cos(⇡jt1)

Z 1

�1
 (t3) cos(⇡jt3)dt3 � sin(⇡jt1)

Z 1

�1
 (t3) sin(⇡jt3)dt3

(c)
= cj cos(⇡jt1),

(14)

where in (a) we use a change of variable and utilize the periodic property of and the cosine
function. In (b) we apply the sum formula of trigonometric functions, and in (c) we simply use the
fact that

R 1
�1 �(t3) sin(⇡jt3)dt3 = 0 because is an even function. Similar arguments show that

�2j+1(t) = sin(⇡jt) for j = 1, 2, . . . are also the eigenfunctions for TK. Since the Fourier basis
form a complete orthonormal basis of L2(T), according to the complete Mercer’s Theorem we see
that the eigenfunctions of K are exactly given by the Fourier basis.

A.3 Fourier series under truncation

In this part we briefly discuss the exponential decay for the eigenvalues cj and the uniform bound
on approximation error for truncated Fourier series mentioned in Section 5. Notice that Bochner’s
Theorem also applies to the periodic kernels (K(t1, t2) ⌘ (t1�t2)) stated in Mercer time embedding,
such that

 (t1 � t2) = �

Z
e�i(t1�t2)!p(!),

where � is the scaling constant such that p(!) is a probability measure. It has been shown that if
log p(!) ⇣ �!a� log(�) for some a > 1, then there is a constant b such that the Fourier coefficients
satisfy: cj ⇣ e�bj log j as j ! 1 [21].

As for the approximation error of truncated Fourier series, first we use Sd(t1 � t2) to denote the
partial sum of the Fourier series for (t1 � t2) up to the dth order. According to the Corollary I in
[9], if is `�Lipschitz, then we have the uniform convergence bound

�� (t1 � t2)� Sd(t1 � t2)
�� C` log d

d

for all t1, t2 2 T under some constant C.

The above classical results suggest the exponential decay of the Fourier coefficients as well as the
uniform convergence property of the truncated Fourier series and further validate the Mercer time
embedding.

A.4 Flow-based distribution learning

Here we briefly introduce the idea of constructing and sampling from an arbitrarily complex distribu-
tion from a known auxiliary distribution by a sequence of invertible transformations. It is motivated
by the basic change of variable theorem, which we state below.

13

Figure 3: Illustration of the distribution transformation flow.

Given an auxiliary random variable z following some know distribution q(z), suppose another random
variable x is constructed via a one-to-one mapping from z: x = f(z), then the density function of x
is given by:

p(x) = q(z)
���
dz

dx

��� = q
�
f�1(x)

����
df�1

dx

���. (15)

We can parameterize the one-to-one function f(.) with free parameters ✓ and optimize them over the
observed evidence such as by maximizing the log-likelihood. By stacking a sequence of Q one-to-one
mappings, i.e. x = fQ � fQ�1 � . . . f1(z), we can construct complicated density functions. It is easy
to show by chaining that p(x) is given by:

log p(x) = log q(z)�
QX

i=1

���
df�1

dzi

���. (16)

A sketched graphical illustration of the concept is shown in Figure 3.

Similarity, samples from the auxiliary distribution can be transformed to the unknown target dis-
tribution in the same manner, and the transformed samples are essentially parameterized by the
transformation mappings, i.e. the g✓(!i) in the second row of Table 1.

A.5 Dataset details

The Stach Overflow dataset contains 6,000 users and 480,000 events of awarding badges. Timestamps
are provided when a user is awarded a badge. There are 22 unique badges after filtering, and the
prediction of the next badge is treated as a classification task. Event sequences are generated with the
same procedures described in [12].

The MovieLens dataset, which is a benchmark for evaluating collaborative filtering algorithms,
consists of 60,40 users and 3,416 movies with a total of one million ratings. The implicit feedback of
rating actions characterizes user-movie interactions. Therefore the event sequence for each user is not
a complete observation for their watching records. To construct event sequences from observations,
we follow the same steps as described in [10], where for each user, the final rating is used for testing,
the second to last rating is used for validations, and the remaining sequence is used as the input
sequence.

In the Walmart.com dataset, there are about 72,000 users and about 1.7 million items with user-item
interactions characterized by search, view, add-to-cart and transaction (purchase). The product catalog
information is also available, which provides the name, brand and categories for each product. User
activity records are aggregated in term of online shopping sessions. So for each user session, we
construct event sequences using the same steps as the MovieLens dataset, in a sequence-to-sequence
fashion.

A.6 Training and model configuration

We select the number of blocks among {1,2,3} and the number of attention heads among {1,2,3,4}
for each dataset according to their validation performances. We do not experiment on using dropout
or regularizations unless otherwise specified. We use the default settings for MAF and NVP provided
by TensorFlow Probability 5 6 when learning the distribution for Bochner Inv CDF. Notice that we
have not carefully tuned the MAF and NVP for Bochner Inv CDF, since our major focus is to show
the validity of these approaches.

5https://www.tensorflow.org/api_docs/python/tf/contrib/distributions/bijectors/MaskedAutoregressiveFlow
6https://www.tensorflow.org/api_docs/python/tf/contrib/distributions/bijectors/RealNVP

14

Stack Overflow - For all the models that we implement, following the baseline settings reported in
[12], the hidden dimension for event representations is set to 32. The dimensions of time embeddings
are also set to be 32. In each self-attention block, we concatenate time embeddings to event
embeddings and project them to key, query and value spaces through linear projections, i.e.

Q = [Z,ZT]WQ, K = [Z,ZT]WK , V = [Z,ZT]WV ,

where Z and ZT are the entity and time embeddings, WQ, WK , WV are the projection matrices.
We find that using a larger hidden dimension with to many attention blocks quickly leads to over-fit
in this dataset, and using the single-head self-attention gives best performances. Therefore we end up
using only one self-attention block. The maximum length of the event sequence is set to be 100. For
the classification problem, we feed the output sequence embeddings into a fully connected layer to
predict the logits for each class and use the softmax function to compute cross-entropy loss.

MovieLens - We adopt the self-attention model architecture used by the baseline models [10] for
fair comparisons by replacing the positional encoding with our time embedding. To be specific, the
dimension for event representation is set to 50, the number of attention blocks is two and only one
head is used in each attention block. To be consistent with the positional encoding self-attention
baseline reported in [10], we set the dropout rate to 0.2 and the l2 regularization to 0. The maximum
length of the sequence is 200, and the batch size is 128. We also adopt the shared embeddings idea
for event representations [10], where we use the same set of parameters for the event embeddings
layers and the final softmax layers. Finally, the cross-entropy loss with negative sampling is used to
speed up the training process.

Walmart.com dataset - Given the massive number of items in the dataset, we first train a shallow
embeddings model to learn coarse item representations according to their context features and
use those embeddings as initialization for the product representations in our model [24]. The
dimension of item embedding and time embedding are set to 100. Each user action (search, view,
add-to-cart, transaction) is treated as a token and has a 50-dimensional vector representation that
is jointly optimized as part of the model. The action embedding is concatenated to the time-event
representations and together they give the time-event-action embedding. To capture time-event and
time-action interactions, we first project the joint embeddings onto query, key and value spaces also
with linear projections as we did on the Stack Overflow dataset. We find that using two attention
blocks and a single head give the best results. Since the task is to predict the next-view item in the
same session, we also use the cross-entropy loss with negative sampling.

During training, we apply the early stopping where we terminate the model training if the validation
performance has not increased for 10 epochs. When training models for predicting the next events,
we refer to the masked self-attention training procedure proposed in [20] to prevent information leak
while maintaining a fast training speed.

A.6.1 Initialization for time embedding methods

For the Bochner Normal method, we use the standard normal distribution as initial distribution
in all experiments. The parametric inverse CDF function for the Bochner Inv CDF is carried out
by a three-layer MLP under uniform initialization. For the Bochner Non-para method, since each
�i(t) = sin(!it) or �i(t) = cos(!it), they have a period of 2⇡/!i. Since we would like �i to
capture underlying temporal signals, the scale of the potential periodicity in the experimented dataset
should be taken into consideration. For instance, on the Stack Overflow dataset, it can take days or
weeks before the next event happens. Therefore, if the temporal signals were to have underlying
periods, it should be on the scale from several days to several weeks. For the Walmart.com dataset,
the next activities are often operated within minutes. Therefore the periods should range from seconds
to hours.

Therefore, in our experiments, we set the frequencies to cover a suitable range of period [⌧min, ⌧max]
where ⌧ ⌘ 1/!. With out loss of generality, the ⌧min and ⌧max are based on the minimum and
maximum time span between consecutive events observed in data. We find that using geometric
sequences that cover [⌧min, ⌧max] as initialization gives better results than random sampling and equal
spacing sampling. To be specific, we use the set of frequencies such that their corresponding periods
are given by

⌧i = ⌧min + (⌧max � ⌧min)
i/d i = 1, . . . , d.

Since the above argument also applies to Mercer time embedding method, we use the same initializa-
tion approach as well.

15

Figure 4: Training efficiency of the proposed Bochner non-para, the convolutional sequence em-
bedding method Caser and RNN-based method on the MovieLens dataset. On the y-axis is the
NDCG@10 on testing data.

A.6.2 Training efficiency

The Adam optimizer is used for all models. We set the learning rate to 0.001 and set the exponential
decay rate for second moment statistics to 0.98. The training is stopped if the validation metric stops
increasing in 10 consecutive epochs. We use NDCG@10 for the proprietary Walmart.com dataset
and MovieLens dataset, and accuracy for Stack Overflow data as the monitoring metric. The final
metrics are computed on the hold-out test data using model checkpoints saved during training that
has the best validation performances. All models are trained in TensorFlow(1.13) on a single Nvidia
V100 GPU.

The training efficiency evaluations are provided in Figure 4. While it takes 9.2 seconds to train each
epoch for the convolutional model Caser and up to 17.7 seconds for RNN-based model, it takes only
1.5 seconds for the proposed Bochner non-para method. Also, the test NDCG@10 reaches 0.55
within 100 seconds, while the convolutional model and RNN model reaches the same performance
after 600 seconds. The training efficiency for Mercer time embedding is similar to the reported
Bochner non-para.

A.7 Sensitivity analysis

Figure 5: Sensitivity analysis for embedding dimensions on MovieLens data

We provide sensitivity analysis on time embedding dimensions for the experiments on MovieLens

and the proprietary Walmart.com dataset. We focus on the Bochner non-para and Mercer time
embedding, which we find to have the best performances. The results are plotted in Figure 5 and
6. For the recommendation outcomes on MovieLens dataset, we see that for both time embedding
methods, the performances increase first and then stabilize as the dimension gets higher. On the
proprietary dataset, the performance keeps increasing with larger time embedding dimensions. Firstly,
the results suggest both time embedding methods have consistent performances on the two datasets.
Secondly, we comment that the difference in data volumes might have caused the different trends

16

Figure 6: Sensitivity analysis for embedding dimensions on Walmart.com data

on the two datasets. The Walmart.com dataset is much larger than the MovieLens dataset, and the
temporal and time-event interaction patterns are more complicated than that of MovieLens. Therefore
both time embedding methods keep learning with larger time embedding dimensions.

In a nutshell, the sensitivity analysis suggests that the proposed Bochner non-para and Mercer time
embedding give stable and consistent performances on the two datasets.

A.8 Cases study for attention weights

In this section, we present two user-event interaction sequences sampled from the Walmart.com

dataset and show how the attention weights progress with respect to the occurrence time of the next
event (Figure 7 and 8). The sequence of user activities starts from the top to bottom. Each activity
consists of the type of user behavior and the product.

Figure 7: Dynamics of attention weights on each event-action pair with respect to the next event’s
occurrence time, for a real-world customer online shopping sequence in home furniture.

In Figure 7, it is evident that right after the final event, actions such as view and search have high
attention weights, as they reflect the most immediate interests. As for the transaction activity,
the attention on transaction-sofa pair gradually rise from zero as time elapsed. The attention of
view-coffee table pair increases over time as well. The patterns captured by our model are highly
reasonable in e-commerce settings: 1. customers’ short-term behaviors are more relevant to what
they recently searched and viewed; 2. the long-term behaviors are affected by the actual purchases,
and the products that they searched/viewed but haven’t yet purchased. The attention weight dynamics
reflected in Figure 8 also show similar patterns.

A.9 Visualization of time embeddings and time kernel functions

In Figure 9, we plot the time embeddings functions �(t) and the corresponding kernel function
K(t1, t2). Firstly, we observe that the kernel functions approximated by either Bochner time embed-
ding or Mercer time embedding are PSD and translation-invariant (since the non-zero elements are
distributed on fringes that are parallel to the diagonal in the lower panels of Figure 9). Secondly,

17

Figure 8: Dynamics of attention weights on each event-action pair with respect to the next event’s
occurrence time, for a real-world user online shopping sequence in TV and related electronics.

the visualizations show that the time embedding functions �(t) do capture temporal patterns, be-
cause otherwise the values in the �(t) matrices would be randomly distributed, as opposed to the
recognizable patterns in the upper panels of Figure 9.

Figure 9: Visualization of the learned Bochner non-para and Mercer time embedding functions
� (upper panel) and corresponding time kernel function K (lower panel). For the Mercer time
embeddings, we sample three periodic kernels K! and visualize them with their corresponding time
embedding functions.

A.10 Reference implementation

The reference code for our implementations is provided in the supplementary material.

18

	Introduction
	Related Work
	Preliminaries
	Bochner Time Embedding
	Mercer Time Embedding
	Time-event Interaction
	Experiment and Result
	Data Sets
	Baselines and Model configurations
	Experimental results

	Conlusion
	Appendix
	Proof of Claim 1
	Proof of Proposition 1
	Fourier series under truncation
	Flow-based distribution learning
	Dataset details
	Training and model configuration
	Initialization for time embedding methods
	Training efficiency

	Sensitivity analysis
	Cases study for attention weights
	Visualization of time embeddings and time kernel functions
	Reference implementation

