
Appendix

A Notation

For any positive integer n, we use [n] to denote the set {1, 2, · · · , n}. For random variable X , let
E[X] denote the expectation of X (if this quantity exists).

For any vector x 2 Rn, we use kxk to denote its `2 norm.

We provide several definitions related to matrix A. Let det(A) denote the determinant of a square
matrix A. Let A> denote the transpose of A. Let A† denote the Moore-Penrose pseudoinverse of
A. Let A�1 denote the inverse of a full rank square matrix. Let kAkF denote the Frobenius norm
of matrix A. Let kAk denote the spectral norm of matrix A. Let �i(A) to denote the i-th largest
singular value of A.

We use 1f to denote the indicator function, which is 1 if f holds and 0 otherwise. Let Id 2 Rd⇥d

denote the identity matrix. We use �(z) to denote an activation function. We use D to denote a
Gaussian distribution N (0, Id). For integer k, we use Dk to denote N (0, Ik).

For any function f , we define eO(f) to be f · logO(1)(f). In addition to O(·) notation, for two
functions f, g, we use the shorthand f . g (resp. &) to indicate that f  Cg (resp. �) for an
absolute constant C. We use f h g to mean cf  g  Cf for constants c, C.

B Preliminaries

We state some useful facts in this section.

Fact B.1. Let A = [a1 a2 · · · ak]. Let diag(A) 2 Rk denote the vector where the i-th entry is
Ai,i, 8i 2 [k]. Let 1 2 Rk denote the vector that the i-th entry is 1, 8i 2 [k]. We have the following
properties,

(I)
kX

i=1

(a>
i
ei)

2 = k diag(A)k22,

(II)
kX

i=1

(a>
i
ai)

2 = kAk2
F
,

(III)
kX

i=1

kX

j=1

(a>
i
aj) = kA · 1k22,

(IV)
X

i 6=j

a>
i
aj = kA · 1k22 � kAk2

F
.

Proof. Using the definition, it is easy to see that (I), (II) and (III) are holding.

Proof of (IV), we have

X

i 6=j

a>
i
aj =

X

i,j

a>
i
aj �

kX

i=1

a>
i
ai = kA · 1k22 � kAk2

F
.

where the last step follows by (II) and (III).

Fact B.2. Let A = [a1 a2 · · · ak]. Let diag(A) 2 Rk denote the vector where the i-th entry is
Ai,i, 8i 2 [k]. Let 1 2 Rk denote the vector that the i-th entry is 1, 8i 2 [k]. We have the following
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properties,

(I)
X

i 6=j

a>
i
eie

>
i
aj = (diag(A)> · (A · 1))� k diag(A)k22,

(II)
X

i 6=j

a>
i
eje

>
j
aj = (diag(A)> · (A · 1))� k diag(A)k22,

(III)
X

i 6=j

a>
i
eia

>
j
ej = (diag(A)> · 1)2 � k diag(A)k22,

(IV)
X

i 6=j

a>
i
eja

>
j
ei = hA>, Ai � k diag(A)k22.

Proof. Proof of (I). We have

X

i 6=j

a>
i
eie

>
i
aj =

X

i,j

a>
i
eie

>
i
aj �

kX

i=1

a>
i
eie

>
i
ai

=
X

i,j

ai,ie
>
i
aj � k diag(A)k22

=
kX

i=1

ai,ie
>
i

kX

j=1

aj � k diag(A)k22

= (diag(A)> · (A · 1))� k diag(A)k22

Proof of (II). It is similar to (I).

Proof of (III). We have
X

i 6=j

a>
i
eia

>
j
ej =

X

i,j

a>
i
eia

>
j
ej �

X

i=1

a>
i
eia

>
i
ei

=
kX

i=1

a>
i
ei ·

kX

j=1

a>
j
ej �

kX

i=1

a>
i
eia

>
i
ei

=
kX

i=1

ai,i ·
kX

j=1

aj,j �
kX

i=1

ai,iai,i

= (diag(A)> · 1)2 � k diag(A)k22

Proof of (IV). We have
X

i 6=j

a>
i
eja

>
j
ei =

X

i 6=j

tr[a>
i
eja

>
j
ei]

=
X

i 6=j

tr[eja
>
j
eia

>
i
]

=
X

i 6=j

heja>j , aie>i i

=
X

i,j

heja>j , aie>i i �
kX

i=1

heia>i , aie>i i

= hA>, Ai � k diag(A)k22.

where the second step follows by tr[ABCD] = tr[BCDA], the third step follows by tr[AB] =
hA,B>i.
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C Proof Sketch

At high level the proofs for Theorem 3.2 and Theorem 3.4 include the following steps. 1) Show that
the population Hessian at the ground truth is positive definite. 2) Show that population Hessians
near the ground truth are also positive definite. 3) Employ matrix Bernstein inequality to bound the
population Hessian and the empirical Hessian.

We now formulate the Hessian. The Hessian of Eq. (3), r2f⌦(U, V ) 2 R(2kd)⇥(2kd), can be de-
composed into two types of blocks, (i 2 [k], j 2 [k]),

@2f⌦(U, V )

@ui@vj
,
@2f⌦(U, V )

@ui@uj

,

where ui(vj , resp.) is the i-th column of U (j-th column of V , resp.). Note that each of the above
second-order derivatives is a d⇥ d matrix.

The first type of blocks are given by:
@2f⌦(U, V )

@ui@vj
= bE

⌦

⇥
�0(u>

i
x)�0(v>

j
y)xy>�(v>

i
y)�(u>

j
x)
⇤
+ �ijbE

⌦

⇥
hx,y(U, V )�0(u>

i
x)�0(v>

i
y)xy>

⇤
,

where bE⌦[·] = 1
|⌦|
P

(x,y)2⌦[·], �ij = 1i=j , and

hx,y(U, V ) = �(U>x)>�(V >y)� �(U⇤>x)>�(V ⇤>y).

For sigmoid/tanh activation function, the second type of blocks are given by:
@2f⌦(U, V )

@ui@uj

= bE
⌦

⇥
�0(u>

i
x)�0(u>

j
x)xx>�(v>

i
y)�(v>

j
y)
⇤
+ �ijbE

⌦

⇥
hx,y(U, V )�00(u>

i
x)�(v>

i
y)xx>⇤ .

(7)
For ReLU/leaky ReLU activation function, the second type of blocks are given by:

@2f⌦(U, V )

@ui@uj

= bE
⌦

⇥
�0(u>

i
x)�0(u>

j
x)xx>�(v>

i
y)�(v>

j
y)
⇤
.

Note that the second term of Eq. (7) is missing here as (U, V ) are fixed, the number of samples is
finite and �00(z) = 0 almost everywhere.

In this section, we will discuss important lemmas/theorems for Step 1 in Appendix C.1 and Step 2,3
in Appendix C.3.

C.1 Positive definiteness of the population hessian

The corresponding population risk for Eq. (3) is given by:

fD(U, V ) =
1

2
E

(x,y)⇠D
[(�(U>x)>�(V >y)�A(x, y))2], (8)

where D := X ⇥ Y . For simplicity, we also assume X and Y are normal distributions.

Now we study the Hessian of the population risk at the ground truth. Let the Hessian of fD(U, V )
at the ground-truth (U, V ) = (U⇤, V ⇤) be H⇤ 2 R(2dk)⇥(2dk), which can be decomposed into the
following two types of blocks (i 2 [k], j 2 [k]),

@2fD(U⇤, V ⇤)

@ui@uj

= E
x,y

h
�0(u⇤>

i
x)�0(u⇤>

j
x)xx>�(v⇤>

i
y)�(v

⇤>
j

y)
i
,

@2fD(U⇤, V ⇤)

@ui@vj
= E

x,y

h
�0(u⇤>

i
x)�0(v⇤>

j
y)xy>�(v⇤>

i
y)�(u

⇤>
j

x)
i
.

To study the positive definiteness of H⇤, we characterize the minimal eigenvalue of H⇤ by a con-
strained optimization problem,

�min(H
⇤) = min

(a,b)2B
E
x,y

2

4
 

kX

i=1

�0(u⇤>
i

x)�(v⇤>
i

y)x>ai + �0(v⇤>
i

y)�(u⇤>
i

x)y>bi

!2
3

5 , (9)
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where (a, b) 2 B denotes that
P

k

i=1 kaik2 + kbik2 = 1. Obviously, �min(H⇤) � 0 due to the
squared loss and the realizable assumption. However, this is not sufficient for the local convexity
around the ground truth, which requires the positive (semi-)definiteness for the neighborhood around
the ground truth. In other words, we need to show that �min(H⇤) is strictly greater than 0, so that
we can characterize an area in which the Hessian still preserves positive definiteness (PD) despite
the deviation from the ground truth.

Challenges. As we mentioned previously there are activation functions that lead to redundancy in
parameters. Hence one challenge is to distill properties of the activation functions that preserve the
PD. Another challenge is the correlation introduced by U⇤ when it is non-orthogonal. So we first
study the minimal eigenvalue for orthogonal U⇤ and orthogonal V ⇤ and then link the non-orthogonal
case to the orthogonal case.

C.2 Warm up: orthogonal case

In this section, we consider the case when U⇤, V ⇤ are unitary matrices, i.e., U⇤>U⇤ = U⇤U⇤> = Id.
(d = k). This case is easier to analyze because the dependency between different elements of x or y
can be disentangled. And we are able to provide lower bound for the Hessian. Before we introduce
the lower bound, let’s first define the following quantities for an activation function �.

↵i,j := E
z⇠N (0,1)

[(�(z))izj ],

�i,j := E
z⇠N (0,1)

[(�0(z))izj ],

� := E
z⇠N (0,1)

[�(z)�0(z)z],

⇢ :=min{(↵2,0�2,0 � ↵2
1,0�

2
1,0 � �2

1,0↵
2
1,1), (↵2,0�2,2 � ↵2

1,0�
2
1,2 � �2)}.

(10)

We now present a lower bound for general activation functions including sigmoid and tanh.

Lemma C.1. Let (a, b) 2 B denote that
P

k

i=1 kaik2 + kbik2 = 1. Assume d = k and U⇤, V ⇤ are
unitary matrices, i.e., U⇤>U⇤ = U⇤U⇤> = V ⇤V ⇤> = V ⇤>V ⇤ = Id, then the minimal eigenvalue
of the population Hessian in Eq. (9) can be simplified as,

min
(a,b)2B

E
x,y

2

4
 

kX

i=1

�0(xi)�(yi)x
>ai + �0(yi)�(xi)y

>bi

!2
3

5 .

Let �, ⇢ be defined as in Eq. (10). If the activation function � satisfies �1,1 = 0, then �min(H⇤) � ⇢.

Since sigmoid and tanh have symmetric derivatives w.r.t. 0, they satisfy �1,1 = 0. Specifically, we
have ⇢ ⇡ 0.000658 for sigmoid and ⇢ ⇡ 0.0095 for tanh. Also for ReLU, �1,1 = 1/2, so ReLU
does not fit in this lemma. The full proof of Lemma C.1, the lower bound of the population Hessian
for ReLU and the extension to non-orthogonal cases can be found in Appendix D.

C.3 Error bound for the empirical Hessian near the ground truth

In the previous section, we have shown PD for the population Hessian at the ground truth for the
orthogonal cases. Based on that, we can characterize the landscape around the ground truth for the
empirical risk. In particular, we bound the difference between the empirical Hessian near the ground
truth and the population Hessian at the ground truth. The theorem below provides the error bound
w.r.t. the number of samples (n1, n2) and the number of observations |⌦| for both sigmoid and
ReLU activation functions.
Theorem C.2. For any ✏ > 0, if

n1 & ✏�2td log2 d, n2 & ✏�2td log2 d, |⌦| & ✏�2td log2 d,

then with probability at least 1� d�t, for sigmoid/tanh,
kr2f⌦(U, V )�r2fD(U

⇤, V ⇤)k . ✏+ kU � U⇤k+ kV � V ⇤k;
for ReLU,

kr2f⌦(U, V )�r2fD(U
⇤, V ⇤)k .

⇣
kV � V ⇤k1/2 + kU � U⇤k1/2 + ✏

⌘
(kU⇤k+ kV ⇤k)2.
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The key idea to prove this theorem is to use the population Hessian at (U, V ) as a bridge.

On one side, we bound the population Hessian at the ground truth and the population Hessian at
(U, V ). This would be easy if the second derivative of the activation function is Lipschitz, which
is the case of sigmoid and tanh. But ReLU doesn’t have this property. However, we can utilize the
condition that the parameters are close enough to the ground truth and the piece-wise linearity of
ReLU to bound this term.

On the other side, we bound the empirical Hessian and the population Hessian. A natural idea is to
apply matrix Bernstein inequality. However, there are two obstacles. First the Gaussian variables
are not uniformly bounded. Therefore, we instead use Lemma B.7 in [ZSJ+17], which is a loosely-
bounded version of matrix Bernstein inequality. The second obstacle is that each individual Hessian
calculated from one observation (x, y) is not independent from another observation (x0, y0), since
they may share the same feature x or y. The analyses for vanilla IMC and MC assume all the
items(users) are given and the observed entries are independently sampled from the whole matrix.
However, our observations are sampled from the joint distribution of X and Y .

To handle the dependency, our model assumes the following two-stage sampling rule. First, the
items/users are sampled from their distributions independently, then given the items and users, the
observations ⌦ are sampled uniformly with replacement. The key question here is how to combine
the error bounds from these two stages. Fortunately, we found special structures in the blocks of
Hessian which enables us to separate x, y for each block, and bound the errors in stage separately.
See Appendix E for details.

D Positive Definiteness of Population Hessian

D.1 Orthogonal case

We first study the orthogonal case, where d = k and U⇤, V ⇤ are unitary matrices, i.e., U⇤>U⇤ =
U⇤U⇤> = V ⇤V ⇤> = V ⇤>V ⇤ = Id.

D.1.1 Lower bound on minimum eigenvalue

Lemma D.1 (Restatement of Lemma C.1). Let (a, b) 2 B denote that
P

k

i=1 kaik2 + kbik2 = 1.
Assume d = k and U⇤, V ⇤ are unitary matrices, i.e., U⇤>U⇤ = U⇤U⇤> = V ⇤V ⇤> = V ⇤>V ⇤ =
Id, then the minimal eigenvalue of the population Hessian in Eq. (9) can be simplified as,

�min(H
⇤) = min

(a,b)2B
E
x,y

2

4
 

kX

i=1

�0(xi)�(yi)x
>ai + �0(yi)�(xi)y

>bi

!2
3

5 . (11)

Let �, ⇢ be defined as in Eq. (10). If the activation function � satisfies �1,1 = 0, then �min(H⇤) � ⇢.

Proof. In the orthogonal case, we can easily transform Eq. (9) to Eq. (11) since x, y are normal
distribution. Now we can decompose Eq. (11) into the following three terms.

E
x,y

2

4
 

kX

i=1

�0(xi)�(yi)x
>ai + �0(yi)�(xi)y

>bi

!2
3

5

= E
x,y

2

4
 

kX

i=1

�0(xi)�(yi)x
>ai

!2
3

5

| {z }
C

+ E
x,y

2

4
 

kX

i=1

�0(yi)�(xi)y
>bi

!2
3

5

+ 2 E
x,y

2

4
X

i,j

�0(xi)�(yi)x
>ai�

0(yj)�(xj)y
>bj

3

5

| {z }
D

.

Note that the first term is similar to the second term, so we just lower bound the first term and the
third term. Define A = [a1, a2, · · · , ak], B = [b1, b2, · · · , bk]. Let Ao be the off-diagonal part of A
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and Ad be the diagonal part of A, i.e., Ao + Ad = A. And let gA = diag(A) be the vector of the
diagonal elements of A. We will bound C and D in the following.

For C, we have

E
x,y

2

4
 

kX

i=1

�0(xi)�(yi)x
>ai

!2
3

5

=
kX

i=1

E
x,y

h�
�0(xi)�(yi)x

>ai
�2i

+
X

i 6=j

E
x,y

⇥
�0(xi)�(yi)x

>ai · �0(xj)�(yj)x
>aj

⇤

=
kX

i=1

↵2,0

⇥
(a>

i
ei)

2(�2,2 � �2,0) + �2,0kaik2
⇤

+
X

i 6=j

↵2
1,0

⇥
�2
1,0a

>
i
aj + (�1,2�1,0 � �2

1,0)(a
>
i
eie

>
i
aj + a>

i
eja

>
j
ej) + �2

1,1(a
>
i
eia

>
j
ej + a>

i
eja

>
j
ei)
⇤

= C1 + C2.

where the last step follows by

C1 =
kX

i=1

↵2,0

⇥
(a>

i
ei)

2(�2,2 � �2,0) + �2,0kaik2
⇤

C2 =
X

i 6=j

↵2
1,0

⇥
�2
1,0a

>
i
aj + (�1,2�1,0 � �2

1,0)(a
>
i
eie

>
i
aj + a>

i
eja

>
j
ej) + �2

1,1(a
>
i
eia

>
j
ej + a>

i
eja

>
j
ei)
⇤

First we can simplify C1 in the following sense,

C1 = ↵2,0(�2,2 � �2,0)
kX

i=1

(a>
i
ei)

2 + ↵2,0�2,0

kX

i=1

kaik22

= ↵2,0(�2,2 � �2,0)k diag(A)k22 + ↵2,0�2,0kAk2
F
,

where the last step follows by Fact B.1.

We can rewrite C2 in the following sense
C2 = ↵2

1,0(�
2
1,0C2,1 + (�1,2�1,0 � �2

1,0) · (C2,2 + C2,3) + �2
1,1(C2,4 + C2,5)).

where
C2,1 =

X

i 6=j

a>
i
aj

C2,2 =
X

i 6=j

a>
i
eie

>
i
aj

C2,3 =
X

i 6=j

a>
i
eje

>
j
aj

C2,4 =
X

i 6=j

a>
i
eia

>
j
ej

C2,5 =
X

i 6=j

a>
i
eja

>
j
ei

Using Fact B.1, we have
C2,1 = kA · 1k22 � kAk2

F
.

Using Fact B.2, we have

C2,2 = (diag(A)> · (A · 1))� k diag(A)k22,
C2,3 = (diag(A)> · (A · 1))� k diag(A)k22,
C2,4 = (diag(A)> · 1)2 � k diag(A)k22,
C2,5 = hA>, Ai � k diag(A)k22.
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Thus,
C2 = ↵2

1,0(�
2
1,0(kA · 1k22 � kAk2

F
)

+ (�1,2�1,0 � �2
1,0)2 · (diag(A)> · (A · 1)� k diag(A)k22)

+ �2
1,1((diag(A)> · 1)2 + hA>, Ai � 2k diag(A)k22)).

We consider C1 + C2 by focusing different terms, for the kAk2
F

(from C1 and C2), we have
(↵2,0�2,0 � ↵2

1,0�
2
1,0)kAk2

F
.

For the term hA,A>i (from C2,5), we have
↵2
1,0�

2
1,1hA,A>i.

For the term k diag(A)k22 (from C1 and C2), we have
(↵2,0(�2,2 � �2,0)� 2↵2

1,0(�1,2�1,0 � �2
1,0)� 2↵1,0�

2
1,1)k diag(A)k22

For the term kA · 1k22 (from C2,1), we have
↵2
1,0�

2
1,0kA · 1k22.

For the term diag(A)> ·A · 1 (from C2,2 and C2,3), we have
2↵2

1,0(�1,2�1,0 � �2
1,0) diag(A)> ·A · 1.

For the term (diag(A)> · 1)2 (from C2,4), we have
↵2
1,0�

2
1,1(diag(A)> · 1)2.

Putting it all together, we have
C1 + C2 = (↵2,0�2,0 � ↵2

1,0�
2
1,0)kAk2

F
+ ↵2

1,0�
2
1,1hA,A>i

+ (↵2,0(�2,2 � �2,0)� 2↵2
1,0(�1,2�1,0 � �2

1,0)� 2↵2
1,0�

2
1,1) · k diag(A)k2

+ ↵2
1,0�

2
1,0kA · 1k2 + 2↵2

1,0(�1,2�1,0 � �2
1,0)(diag(A)> ·A · 1) + ↵2

1,0�
2
1,1(diag(A)> · 1)2

= (↵2,0�2,0 � ↵2
1,0�

2
1,0)(kAok2F + kgAk2) + ↵2

1,0�
2
1,1(hAo, A

>
o
i+ kgAk2)

+ (↵2,0�2,2 � ↵2,0�2,0 � 2↵2
1,0�1,2�1,0 + 2↵2

1,0�
2
1,0 � 2↵2

1,0�
2
1,1) · kgAk2

+ ↵2
1,0�

2
1,0(kgAk2 + kAo · 1k2 + 2g>

A
·Ao · 1)

+ 2↵2
1,0(�1,2�1,0 � �2

1,0)(g
>
A
·Ao · 1+ kgAk2) + ↵2

1,0�
2
1,1(g

>
A
· 1)2

= (↵2,0�2,0 � ↵2
1,0�

2
1,0)kAok2F + ↵2

1,0�
2
1,1hAo, A

>
o
i+ (↵2,0�2,2 � ↵2

1,0�
2
1,1) · kgAk2

+ ↵2
1,0�

2
1,0(kAo · 1k2) + 2↵2

1,0�1,2�1,0(g
>
A
·Ao · 1) + ↵2

1,0�
2
1,1(g

>
A
· 1)2.

By doing a series of equivalent transformations, we have removed the expectation and the formula
C becomes a form of A and the moments of �. These equivalent transforms are mainly based on the
fact that xi, xj , yi, yj for any i 6= j are independent on each other.

Similarly we can reformulate D,

E
x,y

2

4
X

i,j

�0(xi)�(yi)x
>ai�

0(yj)�(xj)y
>bj

3

5

=
X

i

E
x,y

⇥
�0(xi)�(yi)x

>ai�
0(yji)�(xi)y

>bi
⇤
+
X

i 6=j

E
x,y

⇥
�0(xi)�(yi)x

>ai�
0(yj)�(xj)y

>bj
⇤

=
X

i

�2a>
i
eib

>
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Combining the above results, we have

�min(H
⇤) = min

kAk2
F+kBk2
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(12)

The final output of the above formula has a clear form: most non-negative terms are extracted. A,B
are separated into the off-diagonal elements and off-diagonal elements and these two terms can be
dealt with independently. Now we consider the activation functions that satisfy �1,1 = 0, which
further simplifies the equation. Note that Sigmoid and tanh satisfy this condition.

Finally, for �1,1 = 0, we obtain

�min(H
⇤) = minPk
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.

For sigmoid, we have ⇢ = 0.000658; for tanh, we have ⇢ = 0.0095.

The following lemma will be used when transforming non-orthogonal cases to orthogonal cases.
Lemma D.2. For any A = [a1, a2, · · · , ak] 2 Rd⇥k, we have,
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Proof. Recall 1 2 Rd denote the all ones vector.
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Thus, we complete the proof.
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Now let’s show the PD of the population Hessian of Eq. (4) for the ReLU case. where u⇤(1) is the
first row of U⇤ and W 2 R(d�1)⇥k.
Lemma D.3. Consider the activation function to be ReLU. Assume k = d, U⇤, V ⇤ are unitary
matrices and u⇤

1,i 6= 0, 8i 2 [k]. Then the minimal eigenvalue of the corresponding population
Hessian of Eq. (4) is lower bounded,

�min(r2fReLU
D (W ⇤, V ⇤)) & min

i2[k]
{u⇤2

1,i},

where W ⇤ = U⇤
2:d,: is the last d� 1 rows of U⇤ and

fReLU
D (W,V ) := E

x,y

h
(�(W>x2:d + x1(u

⇤(1))>)>�(V >y)�A(x, y))2
i
, (13)

Proof. By fixing ui,1 = u⇤
i,1, 8i 2 [k], we can rewrite the minimal eigenvalue of the Hessian as

follows. For simplicity, we denote �min(H) := �min(r2fReLU
D (W ⇤, V ⇤)). First we observe that

�min(H) = minPk
i=1 kaik2+kbik2=1
ai,1=0,8i2[k]
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x)y>bi
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5 .

(14)
Without loss of generality, we assume V ⇤ = I . Set x = U⇤s, then we have

�min(H) = minPk
i=1 kaik2+kbik2=1
ai,1=0,8i2[k]
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>ai + �0(yi)�(xi)y

>bi

!2
3

5 ,

where u⇤(1) is the first row of U⇤ and the second equality is because we replace U⇤>ai by ai. In the
ReLU case, we have

↵1,0 = ↵1,1 = ↵2,0 = �1,0 = �1,1 = �1,1 = �2,0 = �2,2 = � = 1/2.

According to Eq. (12), we have

�min(H) � min
kAk2

F+kBk2
F=1,u⇤(1)A=0

C0(kAok2F + kBok2F + kAo +A>
o
k2
F
/2 + kBo +B>

o
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F
/2

+ kAo +B>
o
k2
F
+ kgA + gBk2

+ kAo1 + gA + gBk2 + kBo1 + gA + gBk2 + (g>
A
1 + g>

B
1)2),

where C0 is a universal constant. Now we show that there exists a positive number c0 such that
�min(H) � c0. If there is no such number, i.e., �min(H) = 0, then we have Ao = Bo = 0,
gA = �gB . By the assumption that u⇤

1,i 6= 0 and the condition u⇤(1)A = 0, we have gA = gB = 0,
which violates kAk2

F
+ kBk2

F
= 1. So �min(H) > 0. An exact value for c0 is postponed to

Theorem D.6, which gives the lower bound for the non-orthogonal case.

D.2 Non-orthogonal Case

The restriction of orthogonality on U, V is too strong. We need to consider general non-orthogonal
cases. With Gaussian assumption, the non-orthogonal case can be transformed to the orthogonal
case according to the following relationship.
Lemma D.4. Let U 2 Rd⇥k be a full-column rank matrix. Let g : Rk ! [0,1). Define �(U) =

�k
1 (U)/(

Q
k

i=1 �i(U)). Let D denote the normal distribution. Then

E
x⇠Dd

⇥
g(U>x)

⇤
� 1

�(U)
E

z⇠Dk

[g(�k(U)z)] . (15)
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Remark This lemma transforms U>x, where the elements of x are mixed, to �k(U)z, where all
the elements are independently fed into g with the sacrifices of a condition number of U . Using
Lemma D.4, we are able to show the PD for non-orthogonal U⇤, V ⇤.

Proof. Let P 2 Rd⇥k be the orthonormal basis of U , and let W = [w1, w2, · · · , wk] = P>U 2
Rk⇥k.

E
x⇠Dd

[g(U>x)]

= E
z⇠Dk

[g(W>z)]
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Z
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2
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✓
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◆
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/2| det(W †)|/�k

1 (W
†)dt

=
1

�(W )

Z
(2⇡)�k/2g(�k(W )t)e�ktk2

/2dt

=
1

�(U)
E

z⇠Dk

[g(�k(U)z)],

where the third step follows by replacing z by z = W †>s, the fourth step follows by the fact that
kW †>sk  �1(W †)ksk, and the fifth step follows replacing s by s = 1

�1(W †) t.

Using Lemma D.4, we are able to provide the lower bound for the minimal eigenvalue for sigmoid
and tanh.

Theorem D.5. Assume �k(U⇤) = �k(V ⇤) = 1. Assume �1,1 defined in Eq. (10) is 0. Then the
minimal eigenvalue of Hessian defined in Eq. (9) can be lower bounded by,

�min(H
⇤) � ⇢

�(U⇤)�(V ⇤)max{(U⇤),(V ⇤)}

where

�(U) = �k

1 (U)/(⇧k

i=1�i(U)),(U) = �1(U)/�k(U).

Proof. Let P 2 Rd⇥k, Q 2 Rd⇥k be the orthonormal basis of U⇤, V ⇤ respectively. Let R 2
Rk⇥k, S 2 Rk⇥k satisfy that U⇤ = P ·R and V ⇤ = Q ·S. Let P? 2 Rd⇥(d�k), Q? 2 Rd⇥(d�k) be
the orthogonal complement of P,Q respectively. Set ai = P · si +P? · ti and bi = Q · pi +Q? · qi.
Then we can decompose the minimal eigenvalue problem into three terms.
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where we omit the terms containing a single independent Gaussian variable, whose expectation is
zero. Using Lemma D.4, we can lower bound the term C1 as follows,
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Without loss of generality, we assume �k(U⇤) = �k(V ⇤) = 1. Then according to Lemma D.1 and
Lemma D.2, we have

�min(H) � 1

�(U⇤)�(V ⇤)max{(U⇤),(V ⇤)}
·min{(↵2,0�2,0 � ↵2

1,0�
2
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1,0�
2
1,2 � �2)}.

Considering the definition of ⇢ in Eq. (10), we complete the proof.

For the ReLU case, we lower bound the minimal eigenvalue of the Hessian for non-orthogonal cases.
Theorem D.6. Consider the activation to be ReLU. Assume U⇤, V ⇤ are full-column-rank matrices
and u⇤

1,i 6= 0, 8i 2 [k]. Then the minimal eigenvalue of the Hessian of Eq. (13) is lower bounded,

�min(r2fReLU
D (W ⇤, V ⇤)) & 1
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1,i|}
(1 + ku⇤(1)k)max{kU⇤k, kV ⇤k}

◆2

,

where u⇤(1) is the first row of U⇤.
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Proof. Let P 2 Rd⇥k, Q 2 Rd⇥k be the orthonormal basis of U⇤, V ⇤ respectively. Let R 2
Rk⇥k, S 2 Rk⇥k satisfy that U⇤ = P ·R and V ⇤ = Q ·S. Let P? 2 Rd⇥(d�k), Q? 2 Rd⇥(d�k) be
the orthogonal complement of P,Q respectively. Set ai = P · si +P? · ti and bi = Q · pi +Q? · qi.
Similar to the proof of Theorem D.5, Lemma D.2 and Lemma D.3, we have the following.
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2 + 3(k bTk2
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F
)),

where bA = [R�1s1, R�1s2, · · · , R�1sk], bB = [S�1p1, S�1p2, · · · , S�1pk], bT = [t1, t2, · · · , tk],
bQ = [q1, q2, · · · , qk].
Similar to Eq. (14), we can find the minimal eigenvalue of the Hessian by the following constrained
minimization problem.

�min(H) = minPk
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which is lower bounded by the following formula.

min
bA, bB,bT , bP
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(16)

If we assume the minimum of the above formula is c1. We show that c1 > 0 by contradiction.
If c1 = 0, then bT = bQ = 0, bAo = bBo = 0, g bA = �g bB . Since bT = 0, we have e>1 PR bA =

e>1 U
⇤ bA = 0. Assuming (e>1 U
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Now we give a lower bound for c1. First we note,
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Also, as e>1 U⇤ bAo + (e>1 U
⇤)� g>bA + e>1 P? bT = 0, where � is the element-wise product, we have
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2. Now let’s return to the main part of objective function
Eq. (16).
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Therefore,
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E Positive Definiteness of the Empirical Hessian

For any (U, V ), the population Hessian can be decomposed into the following 2k ⇥ 2k blocks
(i 2 [k], j 2 [k]),

@2fD(U, V )

@ui@uj

= E
x,y

⇥
�0(u>

i
x)�0(u>

j
x)xx>�(v>

i
y)�(v>

j
y)
⇤

+ �ij E
x,y

⇥�
�(U>x)>�(V >y)� �(U⇤>x)>�(V ⇤>y)

�
�00(u>

i
x)�(v>

i
y)xx>⇤

@2fD(U, V )

@ui@vj
= E

x,y

⇥
�0(u>

i
x)�0(v>

j
y)xy>�(v>

i
y)�(u>

j
x)
⇤

+ �ij E
x,y

⇥�
�(U>x)>�(V >y)� �(U⇤>x)>�(V ⇤>y)

�
�0(u>

i
x)�0(v>

i
y)xy>

⇤
,

(17)
where �ij = 1 if i = j, otherwise �ij = 0. Similarly we can write the formula for @

2
fD(U,V )
@vi@vj

and
@
2
fD(U,V )
@vi@uj

.

Replacing Ex,y by 1
|⌦|
P

(x,y)2⌦ in the above formula, we can obtain the formula for the corre-
sponding empirical Hessian, r2f⌦(U, V ).

We now bound the difference between r2f⌦(U, V ) and r2fD(U⇤, V ⇤).
Theorem E.1 (Restatement of Theorem C.2). For any ✏ > 0, if

n1 & ✏�2td log2 d, n2 & ✏�2t log d, |⌦| & ✏�2td log2 d,
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then with probability 1� d�t, for sigmoid/tanh,
kr2f⌦(U, V )�r2fD(U

⇤, V ⇤)k . ✏+ kU � U⇤k+ kV � V ⇤k,
for ReLU,

kr2f⌦(U, V )�r2fD(U
⇤, V ⇤)k .

 ✓
kV � V ⇤k
�k(V ⇤)

◆1/2

+

✓
kU � U⇤k
�k(U⇤)

◆1/2

+ ✏

!
(kU⇤k+kV ⇤k)2.

Proof. Define H(U, V ) 2 R(2kd)⇥(2kd) as a symmetric matrix, whose blocks are represented as

Hui,uj = E
x,y

⇥
�0(u>

i
x)�0(u>

j
x)xx>�(v>

i
y)�(v>

j
y)
⇤
,

Hui,vj = E
x,y

⇥
�0(u>

i
x)�0(v>

j
y)xy>�(v>

i
y)�(u>

j
x)
⇤
.

(18)

where Hui,uj 2 Rd⇥d, Hui,vj 2 Rd⇥d correspond to @
2
fD(U,V )
@ui@uj

, @
2
fD(U,V )
@ui@vj

respectively.

We decompose the difference into
kr2f⌦(U, V )�r2fD(U

⇤, V ⇤)k  kr2f⌦(U, V )�H(U, V )k+ kH(U, V )�r2fD(U
⇤, V ⇤)k.

Combining Lemma E.2, E.14, we complete the proof.

Lemma E.2. For any ✏ > 0, if

n1 & ✏�2td log2 d, n2 & ✏�2t log d, |⌦| & ✏�2td log2 d,

then with probability 1� d�t, for sigmoid/tanh,
kr2f⌦(U, V )�H(U, V )k . ✏+ kU � U⇤k+ kV � V ⇤k,

for ReLU,
kr2f⌦(U, V )�H(U, V )k . ✏kU⇤kkV ⇤k.

Proof. We can bound kr2f⌦(U, V )�H(U, V )k if we bound each block.

We can show that if
n1 & ✏�2td log2 d, n2 & ✏�2t log d, |⌦| & ✏�2td log2 d,

then with probability 1� d�t,
������

0

@ E
x,y

� 1

|⌦|
X

(x,y)2⌦

1

A⇥�0(u>
i
x)�0(u>

j
x)xx>�(v>

i
y)�(v>

j
y)
⇤
������

. ✏kU⇤kpkV ⇤kp Lemma E.3
������

1

|⌦|
X

(x,y)2⌦

⇥�
�(U>x)>�(V >y)� �(U⇤>x)>�(V ⇤>y)

�
�00(u>

i
x)�(v>

i
y)xx>⇤

������

. kU � U⇤k+ kV � V ⇤k Lemma E.6
������

0

@ E
x,y

� 1

|⌦|
X

(x,y)2⌦

1

A⇥�0(u>
i
x)�0(v>

j
y)xy>�(v>

i
y)�(u>

j
x)
⇤
������

. ✏kU⇤kpkV ⇤kp Lemma E.7
������

1

|⌦|
X

(x,y)2⌦

⇥�
�(U>x)>�(V >y)� �(U⇤>x)>�(V ⇤>y)

�
�0(u>

i
x)�0(v>

i
y)xy>

⇤
������

. kU � U⇤k+ kV � V ⇤k, Lemma E.9
where p = 1 if � is ReLU, p = 0 if � is sigmoid/tanh.

Note that for ReLU activation, for any given U, V , the second term is 0 because �00(z) = 0 almost
everywhere.
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Lemma E.3. If

n1 & ✏�2td log2 d, n2 & ✏�2t log d, |⌦| & ✏�2td log2 d,

then with probability at least 1� d�t,
������

0

@ E
x,y

� 1

|⌦|
X

(x,y)2⌦

1

A⇥�0(u>
i
x)�0(u>

j
x)xx>�(v>

i
y)�(v>

j
y)
⇤
������
 ✏kvikpkvjkp

where p = 1 if � is ReLU, p = 0 if � is sigmoid/tanh.

Proof. Let B(x, y) = �0(u>
i
x)�0(u>

j
x)xx>�(v>

i
y)�(v>

j
y). By applying Lemma E.11 and Prop-

erty (I)� (III), (VI) in Lemma E.4 and Lemma E.5, we have for any ✏ > 0 if

n1 & ✏�2td log2 d, n2 & ✏�2t log d,

then with probability at least 1� d�2t,

������
E
x,y

[B(x, y)]� 1

|S|
X

(x,y)2S

B(x, y)

������
 ✏kvikpkvjkp. (19)

By applying Lemma E.12 and Property (I), (III)� (V) in Lemma E.4 and Lemma E.5, we have for
any ✏ > 0 if

n1 & ✏�1td log2 d, n2 & ✏�2t log d,

then
������
1

n1

X

l2[n1]

(�0(u>
i
xl)�

0(u>
j
xl))

2kxlk2xlx
>
l

������
. d,

and
������
1

n2

X

l2[n2]

(�(v>
i
yl)�(v

>
j
yl))

2

������
. kvik2pkvjk2p.

Therefore,

max

0

@

������
1

|S|
X

(x,y)2S

B(x, y)B(x, y)>

������
,

������
1

|S|
X

(x,y)2S

B(x, y)>B(x, y)

������

1

A . ✏dkvik2pkvjk2p.

(20)
We can apply Lemma E.13 and use Eq. (20) and Property (I) in Lemma E.4 and Lemma E.5 to
obtain the following result. If

|⌦| & ✏�2td log2 d,

then with probability at least 1� d�2t,
������

1

|S|
X

(x,y)2S

B(x, y)� 1

|⌦|
X

(x,y)2⌦

B(x, y)

������
. ✏kvikpkvjkp. (21)

Combining Eq. (19) and (21), we finish the proof.
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Lemma E.4. Define T (z) = �0(u>
i
z)�0(u>

j
z)zz>. If z ⇠ Z , Z = N (0, Id) and � is ReLU or

sigmoid/tanh, the following holds for T (z) and any t > 1,

(I) Pr
z⇠Z

[kT (z)k  5td log n] � 1� n�1d�t;

(II) max
kak=kbk=1

⇣
E

z⇠Z

h�
a>T (z)b

�2i⌘1/2 . 1;

(III) max
⇣��� E

z⇠Z
[T (z)T (z)>]

��� ,
��� E
z⇠Z

[T (z)>T (z)]
���
⌘
. d;

(IV) max
kak=1

⇣
E

z⇠Z

h�
a>T (z)T (z)>a

�2i⌘1/2 . d;

(V)
��� E
z⇠Z

[T (z)T (z)>T (z)T (z)>]
��� . d3;

(VI)
��� E
z⇠Z

[T (z)]
��� . 1.

Proof. Note that 0  �0(z)  1, therefore (I) can be proved by Proposition 1 of [HKZ12]. (II) �
(VI) can be proved by Hölder’s inequality.

Lemma E.5. Define T (z) = �(v>
i
z)�(v>

j
z). If z ⇠ Z , Z = N (0, Id) and � is ReLU or sig-

moid/tanh, the following holds for T (z) and any t > 1,

(I) Pr
z⇠Z

[kT (z)k  5tkvikpkvjkp log n] � 1� n�1d�t;

(II) max
kak=kbk=1

⇣
E

z⇠Z

h�
a>T (z)b

�2i⌘1/2 . kvikpkvjkp;

(III) max
⇣��� E

z⇠Z
[T (z)T (z)>]

��� ,
��� E
z⇠Z

[T (z)>T (z)]
���
⌘
. kvik2pkvjk2p;

(IV) max
kak=1

⇣
E

z⇠Z

h�
a>T (z)T (z)>a

�2i⌘1/2 . kvik2pkvjk2p;

(V)
��� E
z⇠Z

[T (z)T (z)>T (z)T (z)>]
��� . kvik4pkvjk4p;

(VI)
��� E
z⇠Z

[T (z)]
��� . kvjkpkvikp.

where p = 1 if � is ReLU, p = 0 if � is sigmoid/tanh.

Proof. Note that |�(z)|  |z|p, therefore (I) can be proved by Proposition 1 of [HKZ12]. (II)�(VI)
can be proved by Hölder’s inequality

Lemma E.6. If

n1 & ✏�2td log2 d, n2 & ✏�2t log d, |⌦| & ✏�2td log2 d,

then with probability at least 1� d�t,
������

1

|⌦|
X

(x,y)2⌦

⇥�
�(U>x)>�(V >y)� �(U⇤>x)>�(V ⇤>y)

�
�00(u>

i
x)�(v>

i
y)xx>⇤

������

. (kU � U⇤k+ kV � V ⇤k).

Proof. We consider the following formula first,
������

1

|⌦|
X

(x,y)2⌦

⇥�
(�(u>

j
x)� �(u⇤>

j
x))�(v⇤>

j
y)
�
�00(u>

i
x)�(v>

i
y)xx>⇤

������



������
1

|⌦|
X

(x,y)2⌦

⇥��(uj � u⇤
j
)>x

��xx>�(v⇤>
j

y)�(v>
i
y)
⇤
������
.
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Similar to Lemma E.3, we are able to show
������

1

|⌦|
X

(x,y)2⌦

⇥��(uj � u⇤
j
)>x

��xx>�(v⇤>
j

y)�(v>
i
y)
⇤
� E

(x,y)

⇥��(uj � u⇤
j
)>x

��xx>�(v⇤>
j

y)�(v>
i
y)
⇤
������

. kU � U⇤k.

Note that by Hölder’s inequality, we have,
���� E
(x,y)

⇥��(uj � u⇤
j
)>x

��xx>�(v⇤>
j

y)�(v>
i
y)
⇤���� . kU � U⇤k.

So we complete the proof.

Lemma E.7. If

n1 & ✏�2td log2 d, n2 & ✏�2t log d, |⌦| & ✏�2td log2 d,

then with probability at least 1� d�t,
������

0

@ E
x,y

� 1

|⌦|
X

(x,y)2⌦

1

A⇥�0(u>
i
x)�0(v>

j
y)xy>�(v>

i
y)�(u>

j
x)
⇤
������
. ✏kvikpkujkp.

Proof. Let B(x, y) = M(x)N(y), where M(x) = �0(u>
i
x)�(u>

j
x)x and N(y) =

�0(v>
j
y)�(v>

i
y)y>. By applying Lemma E.11 and Property (I) � (III), (VI) in Lemma E.8 , we

have for any ✏ > 0 if

n1 & ✏�2td log2 d, n2 & ✏�2td log2 d,

then with probability at least 1� d�2t,

������
E
x,y

B(x, y)� 1

|S|
X

(x,y)2S

B(x, y)

������
. ✏kujkpkvikp. (22)

By applying Lemma E.12 and Property (I), (IV)� (VI) in Lemma E.8, we have for any ✏ > 0 if

n1 & ✏�2td log2 d, n2 & ✏�2td log2 d,

then
������
1

n1

X

l2[n1]

M(xl)M(xl)
>

������
. kujk2p,

������
1

n2

X

l2[n2]

N(yl)
>N(yl)

������
. kvik2p.

By applying Lemma E.12 and Property (I), (IV), (VII), (VIII) in Lemma E.8, we have for any
✏ > 0 if

n1 & ✏�2td log2 d, n2 & ✏�2td log2 d,

then
������
1

n1

X

l2[n1]

M(xl)
>M(xl)

������
. dkujk2p,

������
1

n2

X

l2[n2]

N(yl)N(yl)
>

������
. dkvik2p.

Therefore,

max

0

@

������
1

|S|
X

(x,y)2S

B(x, y)B(x, y)>

������
,

������
1

|S|
X

(x,y)2S

B(x, y)>B(x, y)

������

1

A . ✏dkvik2pkujk2p

(23)
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We can apply Lemma E.13 and Eq. (23) and Property (I) in Lemma E.8 to obtain the following
result. If

|⌦| & ✏�2td log2 d,

then with probability at least 1� d�2t,
������

1

|S|
X

(x,y)2S

B(x, y)� 1

|⌦|
X

(x,y)2⌦

B(x, y)

������
 ✏kvikpkujkp. (24)

Combining Eq. (22) and (24), we finish the proof.

Lemma E.8. Define T (z) = �0(u>
i
z)�(u>

j
z)z. If z ⇠ Z , Z = N (0, Id) and � is ReLU or

sigmoid/tanh, the following holds for T (z) and any t > 1,

(I) Pr
z⇠Z

h
kT (z)k  5td1/2kujkp log n

i
� 1� n�1d�t;

(II)
��� E
z⇠Z

[T (z)]
��� . kujkp;

(III) max
kak=kbk=1

⇣
E

z⇠Z

h�
a>T (z)b

�2i⌘1/2 . kujkp;

(IV) max
n��� E

z⇠Z
[T (z)T (z)>]

��� ,
��� E
z⇠Z

[T (z)>T (z)]
���
o
. dkujk2p;

(V) max
kak=1

⇣
E

z⇠Z

h�
a>T (z)T (z)>a

�2i⌘1/2 . kujk2p;

(VI)
��� E
z⇠Z

[T (z)T (z)>T (z)T (z)>]
��� . dkujk4p;

(VII) max
kak=1

⇣
E

z⇠Z

h�
a>T (z)>T (z)a

�2i⌘1/2 . dkujk2p;

(VIII)
��� E
z⇠Z

[T (z)>T (z)T (z)>T (z)]
��� . d2kujk4p.

Proof. Note that 0  �0(z)  1,|�(z)|  |z|p, therefore (I) can be proved by Proposition 1 of
[HKZ12]. (II)� (VIII) can be proved by Hölder’s inequality.

Lemma E.9. If

n1 & td log2 d, n2 & t log d, |⌦| & td log2 d,

then with probability at least 1� d�t,
������

1

|⌦|
X

(x,y)2⌦

⇥�
�(U>x)>�(V >y)� �(U⇤>x)>�(V ⇤>y)

�
�0(u>

i
x)�0(v>

i
y)xy>

⇤
������

. kU � U⇤k+ kV � V ⇤k.

Proof. We consider the following formula first,
������

1

|⌦|
X

(x,y)2⌦

⇥�
(�(u>

j
x)� �(u⇤>

j
x))�(v⇤>

j
y)
�
�0(u>

i
x)�0(v>

i
y)xy>

⇤
������

Set M(x) = (�(u>
j
x)��(u⇤>

j
x))�0(u>

i
x)x and N(y) = �(v⇤>

j
y)�0(v>

i
y)y> and follow the proof

for Lemma E.7. Also note that � is Lipschitz, i.e., |�(u>
j
x)� �(u⇤>

j
x)|  |u>

j
x� u⇤>

j
x|. We can

show the following. If

n1 & td log2 d, n2 & t log d, |⌦| & td log2 d,
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then with probability at least 1� d�t,
������

0

@ 1

|⌦|
X

(x,y)2⌦

� E
x,y

1

A [M(x)N(y)]

������
. kuj � u⇤

j
k.

Note that by Hölder’s inequality, we have,

k E
x,y

[M(x)N(y)] k . kuj � u⇤
j
k.

So we complete the proof.

We provide a variation of Lemma B.7 in [ZSJ+17]. Note that the Lemma B.7 [ZSJ+17] requires
four properties, we simplify it into three properties.

Lemma E.10 (Matrix Bernstein for unbounded case (A modified version of bounded case, Theorem
6.1 in [Tro12], A variation of Lemma B.7 in [ZSJ+17])). Let B denote a distribution over Rd1⇥d2 .
Let d = d1 + d2. Let B1, B2, · · ·Bn be i.i.d. random matrices sampled from B. Let B = EB⇠B[B]
and bB = 1

n

P
n

i=1 Bi. For parameters m � 0, � 2 (0, 1), ⌫ > 0, L > 0, if the distribution B
satisfies the following four properties,

(I) Pr
B⇠B

[kBk  m] � 1� �;

(II) max
⇣��� E

B⇠B
[BB>]

��� ,
��� E
B⇠B

[B>B]
���
⌘
 ⌫;

(III) max
kak=kbk=1

⇣
E

B⇠B

h�
a>Bb

�2i⌘1/2  L.

Then we have for any ✏ > 0 and t � 1, if

n � (18t log d) · ((✏+ kBk)2 +m✏+ ⌫)/✏2 and �  (✏/(2L))2

with probability at least 1� d�2t � n�,
�����
1

n

nX

i=1

Bi � E
B⇠B

[B]

�����  ✏.

Proof. Define the event

⇠i = {kBik  m}, 8i 2 [n].

Define Mi = 1kBikmBi. Let M = EB⇠B[1kBkmB] and cM = 1
n

P
n

i=1 Mi. By triangle inequal-
ity, we have

k bB �Bk  k bB � cMk+ kcM �Mk+ kM �Bk. (25)

In the next a few paragraphs, we will upper bound the above three terms.

The first term in Eq. (25). For each i, let ⇠i denote the complementary set of ⇠i, i.e. ⇠i = [n]\⇠i.
Thus Pr[⇠i]  �. By a union bound over i 2 [n], with probability 1�n�, kBik  m for all i 2 [n].
Thus cM = bB.
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The second term in Eq. (25). For a matrix B sampled from B, we use ⇠ to denote the event that
⇠ = {kBk  m}. Then, we can upper bound kM �Bk in the following way,

kM �Bk

=
��� E
B⇠B

[1kBkm ·B]� E
B⇠B

[B]
���

=
��� E
B⇠B

h
B · 1

⇠

i���

= max
kak=kbk=1

E
B⇠B

h
a>Bb1

⇠

i

 max
kak=kbk=1

E
B⇠B

[(a>Bb)2]1/2 · E
B⇠B

h
1
⇠

i1/2
by Hölder’s inequality

 L E
B⇠B

h
1
⇠

i1/2
by Property (IV)

 L�1/2, by Pr[⇠]  �

 1

2
✏, by �  (✏/(2L))2,

which is

kM �Bk  ✏

2
.

Therefore, kMk  kBk+ ✏

2 .

The third term in Eq. (25). We can bound kcM �Mk by Matrix Bernstein’s inequality [Tro12].

We define Zi = Mi �M . Thus we have E
Bi⇠B

[Zi] = 0, kZik  2m, and

���� E
Bi⇠B

[ZiZ
>
i
]

���� =

���� E
Bi⇠B

[MiM
>
i
]�M ·M>

����  ⌫ + kMk2  ⌫ + kBk2 + ✏2 + ✏kBk.

Similarly, we have
���� E
Bi⇠B

[Z>
i
Zi]

����  ⌫ + kBk2 + ✏2 + ✏kBk. Using matrix Bernstein’s inequality,

for any ✏ > 0,

Pr
B1,··· ,Bn⇠B

"
1

n

�����

nX

i=1

Zi

����� � ✏

#
 d exp

✓
� ✏2n/2

⌫ + kBk2 + ✏2 + ✏kBk+ 2m✏/3

◆
.

By choosing

n � (3t log d) · ⌫ + kBk2 + ✏2 + ✏kBk+ 2m✏/3

✏2/2
,

for t � 1, we have with probability at least 1� d�2t,
�����
1

n

nX

i=1

Mi �M

�����  ✏

2
.

Putting it all together, we have for ✏ > 0, if

n � (18t log d) · ((✏+ kBk)2 +m✏+ ⌫)/(✏2) and �  (✏/(2L))2

with probability at least 1� d�2t � n�,
�����
1

n

nX

i=1

Bi � E
B⇠B

[B]

�����  ✏.
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Lemma E.11 (Tail Bound for fully-observed rating matrix). Let {xi}i2[n1] be independent samples
from distribution X and {yj}j2[n2] be independent samples from distribution Y . Denote S :=
{(xi, yj)}i2[n1],j2[n2] as the collection of all the (xi, yj) pairs. Let B(x, y) be a random matrix
of x, y, which can be represented as the product of two matrices M(x), N(y), i.e., B(x, y) =
M(x)N(y). Let M = Ex M(x) and N = Ey N(y). Let dx be the sum of the two dimensions of
M(x) and dy be the sum of the two dimensions of N(y). Suppose both M(x) and N(y) satisfy the
following properties (z is a representative for x, y, and T (z) is a representative for M(x), N(y)),

(I) Pr
z⇠Z

[kT (z)k  mz] � 1� �z;

(II) max
kak=kbk=1

⇣
E

z⇠Z

h�
a>T (z)b

�2i⌘1/2  Lz;

(III) max
⇣��� E

z⇠Z
[T (z)T (z)>]

��� ,
��� E
z⇠Z

[T (z)>T (z)]
���
⌘
 ⌫z.

Then for any ✏1 > 0, ✏2 > 0 if

n1 � (18t log dx) · (⌫x + (kMk+ ✏1)
2 +mx✏1)/✏

2
1 and �x  (✏1/(2Lx))

2

n2 � (18t log dy) · (⌫y + (✏2 + kNk)2 +my✏2)/✏
2
2 and �y  (✏2/(2Ly))

2

with probability at least 1� d�2t
x

� d�2t
y

� n1�x � n2�y ,

������
E
x,y

B(x, y)� 1

|S|
X

(x,y)2S

B(x, y)

������
 ✏2kMk+ ✏1kNk+ ✏1✏2. (26)

Proof. First we note that,

1

|S|
X

(x,y)2S

B(x, y) =
1

n1n2

0

@
X

i2[n1]

M(xi)

1

A ·

0

@
X

j2[n2]

N(yj)

1

A ,

and
E
x,y

[B(x, y)] =
⇣
E
x
[M(x)]

⌘✓
E
y
[N(y)]

◆
.

Therefore, if we can bound kEx[M(x)]� 1
n1

P
i2[n1]

M(xi)k and the corresponding term for y, we
are able to prove this lemma.

By the conditions of M(x), the three conditions in Lemma E.10 are satisfied, which completes the
proof.

Lemma E.12 (Upper bound for the second-order moment). Let {zi}i2[n] be independent samples
from distribution Z . Let T (z) be a matrix of z. Let d be the sum of the two dimensions of T (z) and
T := E

z⇠Z
[T (z)T (z)>]. Suppose T (z) satisfies the following properties.

(I) Pr
z⇠Z

[kT (z)k  mz] � 1� �z;

(II) max
kak=1

⇣
E

z⇠Z

h�
a>T (z)T (z)>a

�2i⌘1/2  Lz;

(III)
��� E
z⇠Z

[T (z)T (z)>T (z)T (z)>]
���  ⌫z,

Then for any t > 1, if

n � (18t log d) · (⌫z + (kTk+ ✏)2 +m2
z
)/✏2 and �z  (✏/(2Lz))

2,
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we have with probability at least 1� d�2t � n�z ,
������
1

n

X

i2[n]

T (zi)T (zi)
>

������

��� E
z⇠Z

[T (z)T (z)>]
���+ ✏.

Proof. The proof directly follows by applying Lemma E.10.

Lemma E.13 (Tail Bound for partially-observed rating matrix). Given {xi}i2[n1] and {yj}j2[n2],
let’s denote S := {(xi, yj)}i2[n1],j2[n2] as the collection of all the (xi, yj) pairs. Let ⌦ also be
a collection of (xi, yj) pairs, where each pair is sampled from S independently and uniformly.
Let B(x, y) be a matrix of x, y. Let dB be the sum of the two dimensions of B(x, y). Define
BS = 1

|S|
P

(x,y)2S
B(x, y). Assume the following,

(I) kB(x, y)k  mB , 8(x, y) 2 S,

(II) max

0

@

������
1

|S|
X

(x,y)2S

B(x, y)B(x, y)>

������
,

������
1

|S|
X

(x,y)2S

B(x, y)>B(x, y)

������

1

A  ⌫B .

Then we have for any ✏ > 0 and t � 1, if

|⌦| � (18t log dB) · (⌫B + kBSk2 +mB✏)/✏
2,

with probability at least 1� d�2t
B

,
������
BS � 1

|⌦|
X

(x,y)2⌦

B(x, y)

������
 ✏.

Proof. Since each entry in ⌦ is sampled from S uniformly and independently, we have

E
⌦

2

4 1

|⌦|
X

(x,y)2⌦

B(x, y)

3

5 =
1

|S|
X

(x,y)2S

B(x, y).

Applying the matrix Bernstein inequality Theorem 6.1 in [Tro12], we prove this lemma.

Lemma E.14. For sigmoid/tanh activation function,

kH(U, V )�r2fD(U
⇤, V ⇤)k . (kV � V ⇤k+ kU � U⇤k),

where H(U, V ) is defined as in Eq. (18).

For ReLU activation function,

kH(U, V )�r2fD(U
⇤, V ⇤)k .

 ✓
kV � V ⇤k
�k(V ⇤)

◆1/2

kU⇤k+
✓
kU � U⇤k
�k(U⇤)

◆1/2

kV ⇤k
!
(kU⇤k+ kV ⇤k).

Proof. We can bound each block, i.e.,

E
x,y

⇥
�0(u>

i
x)�0(u>

j
x)xx>�(v>

i
y)�(v>

j
y)� �0(u⇤>

i
x)�0(u⇤>

j
x)xx>�(v⇤>

i
y)�(v⇤>

j
y)
⇤
. (27)

E
x,y

⇥
�0(u>

i
x)�0(v>

j
y)xy>�(v>

i
y)�(u>

j
x)� �0(u⇤>

i
x)�0(v⇤>

j
y)xy>�(v⇤>

i
y)�(u⇤>

j
x)
⇤
. (28)

For smooth activations, the bound for Eq. (27) follows by combining Lemma E.15 and Lemma E.16
and the bound for Eq. (28) follows Lemma E.18 and Lemma E.20. For ReLU activation, the bound
for Eq. (27) follows by combining Lemma E.15, Lemma E.17 and the bound for Eq. (28) follows
Lemma E.18 and Lemma E.19.
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Lemma E.15.
���� E
y⇠Dd

⇥
(�(v>

i
y)� �(v⇤>

i
y))�(v>

j
y)
⇤���� . kV ⇤kpkV � V ⇤k.

Proof. The proof follows the property of the activation function (�(z)  |z|p) and Hölder’s inequal-
ity.

Lemma E.16. When the activation function is smooth, we have
���� E
x⇠Dd

⇥
(�0(u>

i
x)� �0(u⇤>

i
x))�0(u>

l
x)xx>⇤

���� . kU � U⇤k.

Proof. The proof directly follows Eq. (12) in Lemma D.10 in [ZSJ+17].

Lemma E.17. When the activation function is piece-wise linear with e turning points, we have
���� E
x⇠Dd

⇥
(�0(u>

i
x)� �0(u⇤>

i
x))�0(u>

l
x)xx>⇤

���� . (ekU � U⇤k/�k(U
⇤))1/2.

Proof.
���� E
x,y

⇥
(�0(u>

i
x)� �0(u⇤>

i
x))�0(u>

l
x)xx>⇤

����  max
kak=1

✓
E

x⇠Dd

⇥
|�0(u>

i
x)� �0(u⇤>

i
x)|�0(u>

l
x)(x>a)2

⇤◆
.

Let P be the orthogonal basis of span(ui, u⇤
i
, ul). Without loss of generality, we assume ui, u⇤

i
, ul

are independent, so P = span(ui, u⇤
i
, ul) is d-by-3. Let [qi q⇤

i
ql] = P>[ui u⇤

i
ul] 2 R3⇥3. Let

a = Pb+ P?c, where P? 2 Rd⇥(d�3) is the complementary matrix of P .

E
x⇠Dd

⇥
|�0(u>

i
x)� �0(u⇤>

i
x)||�0(u>

l
x)|(x>a)2

⇤

= E
x⇠Dd

⇥
|�0(u>

i
x)� �0(u⇤>

i
x)||�0(u>

l
x)|(x>(Pb+ P?c))

2
⇤

. E
x⇠Dd

⇥
|�0(u>

i
x)� �0(u⇤>

i
x)||�0(u>

l
x)|
�
(x>Pb)2 + (x>P?c)

2
�⇤

= E
x⇠Dd

⇥
|�0(u>

i
x)� �0(u⇤>

i
x)||�0(u>

l
x)|(x>Pb)2

⇤

+ E
x⇠Dd

⇥
|�0(u>

i
x)� �0(u⇤>

i
x)||�0(u>

l
x)|(x>P?c)

2
⇤

= E
z⇠D3

⇥
|�0(q>

i
z)� �0(q⇤>

i
z)||�0(q>

l
z)|(z>b)2
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+ E
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⇥
|�0(q>

i
z)� �0(q⇤>
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z)||�0(q>

l
z)|(y>c)2

⇤
, (29)

where the first step follows by a = Pb+ P?c, the last step follows by (a+ b)2  2a2 + 2b2.

We have e exceptional points which have �00(z) 6= 0. Let these e points be p1, p2, · · · , pe. Note that
if q>

i
z and q⇤>

i
z are not separated by any of these exceptional points, i.e., there exists no j 2 [e]

such that q>
i
z  pj  q⇤>

i
z or q⇤>

i
z  pj  q>

i
z, then we have �0(q>

i
z) = �0(q⇤>

i
z) since �00(s)

are zeros except for {pj}j=1,2,··· ,e. So we consider the probability that q>
i
z, q⇤>

i
z are separated by

any exception point. We use ⇠j to denote the event that q>
i
z, q⇤>

i
z are separated by an exceptional

point pj . By union bound, 1 �
P

e

j=1 Pr[⇠j ] is the probability that q>
i
z, q⇤>

i
z are not separated by
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any exceptional point. The first term of Equation (29) can be bounded as,

E
z⇠D3

⇥
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i
z)� �0(q⇤>
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z)||�0(q>

l
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kbk2,

where the first step follows by if q>
i
z, q⇤>

i
z are not separated by any exceptional point then

�0(q>
i
z) = �0(q⇤>

i
z) and the last step follows by Hölder’s inequality.

It remains to upper bound Prz⇠D3 [⇠j ]. First note that if q>
i
z, q⇤>

i
z are separated by an exceptional

point, pj , then |q⇤>
i

z � pj |  |q>
i
z � q⇤>
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i
kkzk. Therefore,
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.

Note that ( q
⇤>
i z

kzkkq⇤i k
+ 1)/2 follows Beta(1,1) distribution which is uniform distribution on [0, 1].
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,

where the first step is because we can view q
⇤>
i z

kzk and pj

kzk as two independent random variables: the
former is about the direction of z and the later is related to the magnitude of z. Thus, we have

E
z2D3
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i
z)� �0(q⇤>

i
z)||�0(q>

l
z)|(z>b)2] . (ekU � U⇤k/�k(U
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Similarly we have

E
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l
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Finally combining Eq. (30) and Eq. (31) completes the proof.

Lemma E.18. ���� E
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⇥
(�(u>
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x)x
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Proof. First, we can use the Lipschitz continuity of the activation function,
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where L�  1 is the Lipschitz constant of �. Then the proof follows Hölder’s inequality.

Lemma E.19. When the activation function is ReLU,
���� E
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Proof.
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Similar to Lemma E.17, we can show that
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Lemma E.20. When the activation function is sigmoid/tanh,
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E.1 Local Linear Convergence

Given Theorem 3.2, we are now able to show local linear convergence of gradient descent for sig-
moid and tanh activation function.
Theorem E.21 (Restatement of Theorem 3.3). Let [U c, V c] be the parameters in the c-th iteration.
Assuming kU c�U⇤k+kV c�V ⇤k . 1/(�2), then given a fresh sample set, ⌦, that is independent
of [U c, V c] and satisfies the conditions in Theorem 3.2, the next iterate using one step of gradient
descent, i.e., [U c+1, V c+1] = [U c, V c]� ⌘rf⌦(U c, V c), satisfies

kU c+1 � U⇤k2
F
+ kV c+1 � V ⇤k2

F
 (1�Ml/Mu)(kU c � U⇤k2

F
+ kV c � V ⇤k2

F
)

with probability 1 � d�t, where ⌘ = ⇥(1/Mu) is the step size and Ml & 1/(�2) is the lower
bound on the eigenvalues of the Hessian and Mu . 1 is the upper bound on the eigenvalues of the
Hessian.

Proof. In order to show the linear convergence of gradient descent, we first show that the Hessian
along the line between [U c, V c] and [U⇤, V ⇤] are positive definite w.h.p..

The idea is essentially building a d�1/2��2�1-net for the line between the current iterate and
the optimal. In particular, we set d1/2 points {[Ua, V a]}a=1,2,··· ,d1/2 that are equally distributed
between [U c, V c] and [U⇤, V ⇤]. Therefore, kUa+1 � Uak+ kV a+1 � V ak . d�1/2��2�1

Using Lemma E.22, we can show that for any [U, V ], if there exists a value of a such that kU �
Uak+ kV � V ak . d�1/2��2�1, then

kr2f⌦(U, V )�r2f⌦(U
a, V a)k . ��2�1.

Therefore, for every point [U, V ] in the line between [U c, V c] and [U⇤, V ⇤], we can find a fixed point
in {[Ua, V a]}a=1,2,··· ,d1/2 , such that kU�Uak+kV �V ak . d�1/2��2�1. Now applying union
bound for all a, we have that w.p. 1 � d�t, for every point [U, V ] in the line between [U c, V c] and
[U⇤, V ⇤],

MlI � r2f⌦(U, V ) � Mu,

where Ml = ⌦(��2�1) and Mu = O(1). Note that the upper bound of the Hessian is due to the
fact that � and �0 are bounded.
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Given the positive definiteness of the Hessian along the line between the current iterate and the
optimal, we are ready to show the linear convergence. First we set the stepsize for the gradient
descent update as ⌘ = 1/Mu and use notation W := [U, V ] to simplify the writing.

kW c+1 �W ⇤k2
F
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◆
.

By the result provided above, we have

MlI � H � MuI. (32)

Now we upper bound the norm of the gradient,
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Therefore,
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Lemma E.22. Let the activation function be tan/sigmoid. For given Ua, V a and r > 0, if

n1 & ✏�2td log2 d, n2 & ✏�2t log d, |⌦| & ✏�2td log2 d,

then with probability 1� d�t,

sup
kU�Uak+kV�V akr

kr2f⌦(U, V )�r2f⌦(U
a, V a)k . d1/2 · r

Proof. We consider each block of the Hessian as defined in Eq (17). In particular, we show that if

n1 & ✏�2td log2 d, n2 & ✏�2t log d, |⌦| & ✏�2td log2 d,
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then with probability 1� d�t,����
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by Lemma E.26

Lemma E.23. If
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Let’s consider the first term in the above formula. The other terms are similar.������
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which is because both �0(·) and �(·) are bounded and Lipschitz continuous. Applying the un-
bounded matrix Bernstein Inequality Lemma E.10, we can bound
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Since both �0(·) and �(·) are bounded and Lipschitz continuous, we can easily extend the above
inequality to other cases and finish the proof.

Lemma E.24. If
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Proof. Since for sigmoid/tanh, �,�0,�00 are all Lipschitz continuous and bounded, the proof of this
lemma resembles the proof for Lemma E.23.
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Lemma E.26. If
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Proof. Since for sigmoid/tanh, �,�0,�00 are all Lipschitz continuous and bounded, the proof of this
lemma resembles the proof for Lemma E.25.

40


