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Abstract

The medoid of a set of n points is the point in the set that minimizes the sum of
distances to other points. It can be determined exactly in O(n2) time by computing
the distances between all pairs of points. Previous works show that one can
significantly reduce the number of distance computations needed by adaptively
querying distances [1]. The resulting randomized algorithm is obtained by a direct
conversion of the computation problem to a multi-armed bandit statistical inference
problem. In this work, we show that we can better exploit the structure of the
underlying computation problem by modifying the traditional bandit sampling
strategy and using it in conjunction with a suitably chosen multi-armed bandit
algorithm. Four to five orders of magnitude gains over exact computation are
obtained on real data, in terms of both number of distance computations needed
and wall clock time. Theoretical results are obtained to quantify such gains in terms
of data parameters. Our code is publicly available online at https://github.
com/TavorB/Correlated-Sequential-Halving.

1 Introduction

In large datasets, one often wants to find a single element that is representative of the dataset as a
whole. While the mean, a point potentially outside the dataset, may suffice in some problems, it will
be uninformative when the data is sparse in some domain; taking the mean of an image dataset will
yield visually random noise [2]. In such instances the medoid is a more appropriate representative,
where the medoid is defined as the point in a dataset which minimizes the sum of distances to other
points. For one dimensional data under `1 distance, this is equivalent to the median. This has seen
use in algorithms such as k-medoid clustering due to its reduced sensitivity to outliers [3].

Formally, let x1, ..., xn ∈ U , where the underlying space U is equipped with some distance function
d : U × U 7→ R+. It is convenient to think of U = Rd and d(x, y) = ‖x− y‖2 for concreteness, but
other spaces and distance functions (which need not be symmetric or satisfy the triangle inequality)
can be substituted. The medoid of {xi}ni=1, assumed here to be unique, is defined as xi∗ where

i∗ = argmin
i∈[n]

θi : θi ,
1

n

n∑
j=1

d(xi, xj) (1)

Note that for non-adversarially constructed data, the medoid will almost certainly be unique. Unfortu-
nately, brute force computation of the medoid becomes infeasible for large datasets, e.g. RNA-Seq
datasets with n = 100k points [4].

This issue has been addressed in recent works by noting that in most problem instances solving for
the value of each θi exactly is unnecessary, as we are only interested in identifying xi∗ and not in
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computing every θi [1, 5, 6, 7]. This allows us to solve the problem by only estimating each θi,
such that we are able to distinguish with high probability whether it is the medoid. By turning this
computational problem into a statistical one of estimating the θi’s one can greatly decrease algorithmic
complexity and running time. The key insight here is that sampling a random J ∼ Unif([n]) and
computing d(xi, xJ) gives an unbiased estimate of θi. Clearly, as we sample and average over more
independently selected Jk

iid∼ Unif([n]), we will obtain a better estimate of θi. Estimating each θi to
the same degree of precision by computing θ̂i = 1

T

∑T
k=1 d(xi, xJk) yields an order of magnitude

improvement over exact computation, via an algorithm like RAND [7].

In a recent work [1] it was observed that this statistical estimation could be done much more efficiently
by adaptively allocating estimation budget to each of the θi in eq. (1). This is due to the observation
that we only need to estimate each θi to a necessary degree of accuracy, such that we are able to
say with high probability whether it is the medoid or not. By reducing to a stochastic multi-armed
bandit problem, where each arm corresponds to a θi, existing multi-armed bandit algorithms can be
leveraged leading to the algorithm Med-dit [1]. As can be seen in Fig. 1 adding adaptivity to the
statistical estimation problem yields another order of magnitude improvement.
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(a) RNA-Seq 20k dataset [4], `1 dist
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(b) 100k users from Netflix dataset [8], cosine dist

Figure 1: Empirical performance of exact computation, RAND, Med-dit and Correlated Sequential
Halving. The error probability is the probability of not returning the correct medoid.

1.1 Contribution

While adaptivity is already a drastic improvement, current schemes are still unable to process
large datasets efficiently; running Med-dit on datasets with n = 100k takes 1.5 hours. The main
contribution of this paper is a novel algorithm that is able to perform this same computation in 1
minute. Our algorithm achieves this by observing that we want to find the minimum element and not
the minimum value, and so our interest is only in the relative ordering of the θi, not their actual values.
In the simple case of trying to determine if θ1 > θ2, we are interested in estimating θ1 − θ2 rather
than θ1 or θ2 separately. One can imagine the first step is to take one sample for each, i.e. d(x1, xJ1)
to estimate θ1 and d(x2, xJ2) to estimate θ2, and compare the two estimates. In the direct bandit
reduction used in the design of Med-dit, J1 and J2 would be independently chosen, since successive
samples in the multi-armed bandit formulation are independent. In effect, we are trying to compare
θ1 and θ2, but not using a common reference point to estimate them. This can be problematic for
a sampling based algorithm, as it could be the case that θ1 < θ2, but the reference point xJ1 we
pick for estimating θ1 is on the periphery of the dataset as in Fig. 2a. This issue can fortunately be
remedied by using the same reference point for both x1 and x2 as in Fig. 2b. By using the same
reference point we are correlating the samples and intuitively reducing the variance of the estimator
for θ1 − θ2. Here, we are exploiting the structure of the underlying computation problem rather than
simply treating this as a standard multi-armed bandit statistical inference problem.

Building on this idea, we correlate the random sampling in our reduction to statistical estimation
and design a new medoid algorithm, Correlated Sequential Halving. This algorithm is based on the
Sequential Halving algorithm in the multi-armed bandit literature [9]. We see in Fig. 1 that we are
able to gain another one to two orders of magnitude improvement, yielding an overall four to five
orders of magnitude improvement over exact computation. This is accomplished by exploiting the
fact that the underlying problem is computational rather than statistical.
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Figure 2: Toy 2D example

1.2 Theoretical Basis

We now provide high level insight into the theoretical basis for our observed improvement, later
formalized in Theorem 2.1. We assume without loss of generality that the points are sorted so that
θ1 < θ2 ≤ . . . ≤ θn, and define ∆i , θi − θ1 for i ∈ [n] \ {1}, where [n] is the set {1, 2, . . . , n}.
For visual clarity, we use the standard notation a∨ b , max(a, b) and a∧ b , min(a, b), and assume
a base of 2 for all logarithms.

Our proposed algorithm samples in a correlated manner as in Fig. 2b, and so we introduce new
notation to quantify this improvement. As formalized later, ρi is the improvement afforded by
correlated sampling in distinguishing arm i from arm 1. ρi can be thought of as the relative reduction in
variance, where a small ρi indicates that d(x1, xJ1)−d(xi, xJ1) concentrates1 faster than d(x1, xJ1)−
d(xi, xJ2) about −∆i for J1, J2 drawn independently from Unif([n]), shown graphically in Fig. 3.
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(a) Comparison of top 2 points (i=2)
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Figure 3: Correlated d(1, J1)− d(i, J1) vs Independent d(1, J1)− d(i, J2) sampling in RNA-Seq
20k dataset [4]. Averaged over the dataset, the independent samples have standard deviation

σ = 0.25, so for (a) ρi = .11, and (b) ρi = .25

In the standard bandit setting with independent sampling, one needs a number of samples proportional
to H2 = maxi≥2

i/∆2
i to determine the best arm [10]. Replacing the standard arm difficulty of

1/∆2
i with ρ2i/∆2

i , the difficulty accounting for correlation, we show that one can solve the problem
using a number of samples proportional to H̃2 = maxi≥2

iρ2(i)/∆2
(i), an analogous measure. Here

the permutation (·) indicates that the arms are sorted by decreasing ρi/∆i as opposed to just by 1/∆i.
These details are formalized in Theorem 2.1.

Our theoretical improvement incorporating correlation can thus be quantified as H2/H̃2. As we show
later in Fig. 5, in real datasets arms with small ∆i have similarly small ρi, indicating that correlation
yields a larger relative gain for previously difficult arms. Indeed, for the RNA-Seq 20k dataset we see
that the ratio is H2/H̃2 = 6.6. The Netflix 100k dataset is too large to perform this calculation on,
but for similar datasets like MNIST [11] this ratio is 4.8. We hasten to note that this ratio does not

1Throughout this work we talk about concentration in the sense of the empirical average of a random variable
concentrating about the true mean of that random variable.
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fully encapsulate the gains afforded by the correlation our algorithm uses, as only pairwise correlation
is considered in our analysis. This is discussed further in Appendix B

1.3 Related Works

Several algorithms have been proposed for the problem of medoid identification. An O(n3/22Θ(d))
algorithm called TRIMED was developed finding the true medoid of a dataset under certain assump-
tions on the distribution of the points near the medoid [5]. This algorithm cleverly carves away
non-medoid points, but unfortunately does not scale well with the dimensionality of the dataset. In
the use cases we consider the data is very high dimensional, often with d ≈ n. While this algorithm
works well for small d, it becomes infeasible to run when d > 20. A similar problem, where the
central vertex in a graph is desired, has also been analyzed. One proposed algorithm for this problem
is RAND, which selects a random subset of vertices of size k and measures the distance between
each vertex in the graph and every vertex in the subset [7]. This was later improved upon with the
advent of TOPRANK [6]. We build off of the algorithm Med-dit (Medoid-Bandit), which finds the
medoid in Õ(n) time under mild distributional assumptions [1].

More generally, the use of bandits in computational problems has gained recent interest. In addition
to medoid finding [1], other examples include Monte Carlo Tree Search for game playing AI [12],
hyper-parameter tuning [13], k-nearest neighbor, hierarchical clustering and mutual information
feature selection [14], approximate k-nearest neighbor [15], and Monte-Carlo multiple testing [16].
All of these works use a direct reduction of the computation problem to the multi-armed bandit
statistical inference problem. In contrast, the present work further exploits the fact that the inference
problem comes from a computational problem, which allows a more effective sampling strategy to
be devised. This idea of preserving the structure of the computation problem in the reduction to a
statistical estimation one has potentially broader impact and applicability to these other applications.

2 Correlated Sequential Halving

In previous works it was noted that sampling a random J ∼ Unif([n]) and computing d(xi, xJ) gives
an unbiased estimate of θi [1, 14]. This was where the problem was reduced to that of a multi-armed
bandit and solved with an Upper Confidence Bound (UCB) based algorithm [17]. In their analysis,
estimates of θi are generated as θ̂i = 1

|Ji|
∑
j∈Ji

d(xi, xj) for Ji ⊆ [n], and the analysis hinges on

showing that as we sample the arms more, θ̂1 < θ̂i ∀ i ∈ [n] with high probability 2. In a standard
UCB analysis this is done by showing that each θ̂i individually concentrates. However on closer
inspection, we see that this is not necessary; it is sufficient for the differences θ̂1 − θ̂i to concentrate
for all i ∈ [n].

Using our intuition from Fig. 2 we see that one way to get this difference to concentrate faster is by
sampling the same j for both arms 1 and i. We can see that if |J1| = |Ji|, one possible approach is
to set J1 = Ji = J . This allows us to simplify θ̂1 − θ̂i as

θ̂1 − θ̂i =
1

|J1|
∑
j∈J1

d(x1, xj)−
1

|Ji|
∑
j∈Ji

d(xi, xj) =
1

|J |
∑
j∈J

d(x1, xj)− d(xi, xj).

While UCB algorithms yield a serial process that samples one arm at a time, this observation suggests
that a different algorithm that pulls many arms at the same time would perform better, as then the
same reference j could be used. By estimating each points’ centrality θi independently, we are
ignoring the dependence of our estimators on the random reference points selected; using the same
set of reference points for estimating each θi reduces the variance in the choice of random reference
points. We show that a modified version of Sequential Halving [10] is much more amenable to this
type of analysis. At a high level this is due to the fact that Sequential Halving proceeds in stages
by sampling arms uniformly, eliminating the worse half of arms from consideration, and repeating.
This very naturally obeys this “correlated sampling” condition, as we can now use the same set of
reference points J for all arms under consideration in each round. We present the slightly modified

2In order to maintain the unbiasedness of the estimator given the sequential nature of UCB, reference points
are chosen with replacement in Med-dit, potentially yielding a multiset Ji. For the sake of clarity we ignore this
subtlety for Med-dit, as our algorithm samples without replacement.
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algorithm below, introducing correlation and capping the number of pulls per round, noting that the
main difference comes in the analysis rather than the algorithm itself.

Algorithm 1 Correlated Sequential Halving

1: Input: Sampling budget T , dataset {xi}ni=1
2: initialize S0 ← [n]
3: for r=0 to dlog ne − 1 do
4: select a set Jr of tr data point indices uniformly

at random without replacement from [n] where

tr =

{
1 ∨

⌊
T

|Sr|dlog ne

⌋}
∧ n

5: For each i ∈ Sr set θ̂(r)
i = 1

tr

∑
j∈Jr

d(xi, xj)
6: if tr = n then
7: Output arm in Sr with the smallest θ̂(r)

i
8: else
9: Let Sr+1 be the set of d|Sr|/2e arms in Sr with the smallest θ̂(r)

i
10: end if
11: end for
12: return arm in Sdlogne

Examining the random variables ∆̂i , d(x1, xJ)− d(xi, xJ) for J ∼ Unif([n]), we see that for any
fixed dataset all ∆̂i are bounded, as maxi,j∈[n] d(xi, xj) is finite. In particular, this means that all ∆̂i

are sub-Gaussian.

Definition 1. We define σ to be the minimum sub-Gaussian constant of d(xI , xJ) for I, J drawn
independently from Unif([n]). Additionally, for i ∈ [n] we define ρiσ to be the minimum sub-Gaussian
constant of d(x1, xJ)− d(xi, xJ), where σ is as above and ρi is an arm (point) dependent scaling,
as displayed in Figure 3.

This shifts the direction of the analysis, as where in previous works the sub-Gaussianity of d(x1, xJ)
was used [1], we now instead utilize the sub-Gaussianity of d(x1, xJ) − d(xi, xJ). Here ρi ≤ 1
indicates that the correlated sampling improves the concentration and by extension the algorithmic
performance.

A standard UCB algorithm is unable to algorithmically make use of these {ρi}. Even considering
batch UCB algorithms, in order to incorporate correlation the confidence bounds would need to be
calculated differently for each pair of arms depending on the number of j’s they’ve pulled in common
and the sub-Gaussian parameter of d(xi1 , xJ) − d(xi2 , xJ). It is unreasonable to assume this is
known for all pairs of points a priori, and so we restrict ourselves to an algorithm that only uses these
pairwise correlations implicitly in its analysis instead of explicitly in the algorithm. Below we state
the main theorem of the paper.

Theorem 2.1. Assuming that T ≥ n log n and denoting the sub-Gaussian constants of d(x1, xJ)−
d(xi, xJ) as ρiσ for i ∈ [n] as in definition 1, Correlated Sequential Halving (Algorithm 1) correctly
identifies the medoid in at most T distance computations with probability at least

1− 3 log n exp

(
− T

16σ2 log n
· min
i≥ T

n log n

[
∆2

(i)

iρ2
(i)

])

which can be coarsely lower bounded as 1− 3 log n · exp

(
− T

16H̃2σ2 log n

)

where H̃2 = max
i≥2

iρ2
(i)

∆2
(i)

, (·) : [n] 7→ [n], (1) = 1,
∆(2)

ρ(2)
≤

∆(3)

ρ(3)
≤ · · · ≤

∆(n)

ρ(n)
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Above H̃2 is a natural measure of hardness for this problem analogous to H2 = maxi
i

∆2
i

in the
standard bandit case, and (·) orders the arms by difficulty in distinguishing from the best arm after
taking into account the ρi. We defer the proof of Thm. 2.1 and necessary lemmas to Appendix A for
readability.

2.1 Lower bounds

Ideally in such a bandit problem, we would like to provide a matching lower bound. We can naively
lower bound the sample complexity as Ω(n), but unfortunately no tighter results are known. A more
traditional bandit lower bound was recently proved for adaptive sampling in the approximate k-NN
case, but requires that the algorithm only interact with the data by sampling coordinates uniformly
at random [15]. This lower bound can be transferred to the medoid setting, however this constraint
becomes that an algorithm can only interact with the data by measuring the distance from a desired
point to another point selected uniformly at random. This unfortunately removes all the correlation
effects we analyze. For a more in depth discussion of the difficulty of providing a lower bound for
this problem and the higher order problem structure causing this, we refer the reader to Appendix B.

3 Simulation Results

Correlated Sequential Halving (corrSH) empirically performs much better than UCB type algorithms
on all datasets tested, reducing the number of comparisons needed by 2 orders of magnitude for the
RNA-Seq dataset and by 1 order of magnitude for the Netflix dataset to achieve comparable error
probabilities, as shown in Table 1. This yields a similarly drastic reduction in wall clock time which
contrasts most UCB based algorithms; usually, when implemented, the overhead needed to run UCB
makes it so that even though there is a significant reduction in number of pulls, the wall clock time
improvement is marginal [14].

dataset, metric n, d corrSH Med-dit Rand Exact Comp.

RNA-Seq 20k, `1 20k, 28k time 10.9 246 2131 40574
# pulls 2.43 121 (2.1%) 1000 (.1%) 20000

RNA-Seq 100k, `1 109k, 28k time 64.2 5819 10462 -
# pulls 2.10 420 1000 (.5%) 100000

Netflix 20k, cosine dist 20k, 18k time 6.82 593 70.2 139
# pulls 15.0 85.8 1000 (.6%) 20000

Netflix 100k, cosine dist 100k, 18k time 53.4 6495 959 -
# pulls 18.5 90.5 (6%) 1000 (3.6%) 100000

MNIST Zeros, `2 6424, 784 time 1.46 151 65.7 22.8
# pulls 47.9 91.2 (.1%) 1000 (65.2%) 6424

Table 1: Performance in average number of pulls per arm. Final percent error noted parenthetically if
nonzero. corrSH was run with varying budgets until it had no failures on the 1000 trials.

We note that in our simulations we only used 1 pull to initialize each arm for Med-dit for plotting
purposes where in reality one would use 16 or some larger constant, sacrificing a small additional
number of pulls for a roughly 10% reduction in wall clock time. In these plots we show a comparison
between Med-dit [1], Correlated Sequential Halving, and RAND [7], shown in Figures 1 and 4.

a) b) c) 

Figure 4: Number of pulls versus error probability for various datasets and distance metrics. (a)
Netflix 20k, cosine [8]. (b) RNA-Seq 100k, `1 [4] (c) MNIST, `2 [11]
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3.1 Simulation details

The 3 curves for the randomized algorithms previously discussed are generated in different ways. For
RAND and Med-dit the curves represent the empirical probability, averaged over 1000 trials, that
after nx pulls (x pulls per arm on average) the true medoid was the empirically best arm. RAND
was run with a budget of 1000 pulls per arm, and Med-dit was run with target error probability of
δ = 1/n. Since Correlated Sequential Halving behaves differently after x pulls per arm depending
on what its input budget was, it requires a different method of simulation; every solid dot in the plots
represents the average of 1000 trials at a fixed budget, and the dotted line connecting them is simply
interpolating the projected performance. In all cases the only variable across trials was the random
seed, which was varied across 0-999 for reproducibility. The value noted for Correlated Sequential
Halving in Table 1 is the minimum budget above which all simulated error probabilities were 0.

Remark 1. In theory it is much cleaner to discard samples from previous stages when constructing
the estimators in stage r to avoid dependence issues in the analysis. In practice we use these past
samples, that is we construct our estimator for arm i in stage r from all the samples seen of arm i so
far, rather than just the tr fresh ones.

Many different datasets and distance metrics were used to validate the performance of our algorithm.
The first dataset used was a single cell RNA-Seq one, which contains the gene expressions corre-
sponding to each cell in a tissue sample. A common first step in analyzing single cell RNA-Seq
datasets is clustering the data to discover sub classes of cells, where medoid finding is used as a
subroutine. Since millions of cells are sequenced and tens of thousands of gene expressions are
measured in such a process, this naturally gives us a large high dimensional dataset. Since the gene
expressions are normalized to a probability distribution for each cell, `1 distance is commonly used
for clustering [18]. We use the 10xGenomics dataset consisting of 27,998 gene-expressions over
1.3 million neuron cells from the cortex, hippocampus, and subventricular zone of a mouse brain
[4]. We test on two subsets of this dataset, a small one of 20,000 cells randomly subsampled, and a
larger one of 109,140 cells, the largest true cluster in the dataset. While we can exactly compute a
solution for the 20k dataset, it is computationally difficult to do so for the larger one, so we use the
most commonly returned point from our algorithms as ground truth (all 3 algorithms have the same
most frequently returned point).

Another dataset we used was the famous Netflix-prize dataset [8]. In such recommendation systems,
the objective is to cluster users with similar preferences. One challenge in such problems is that the
data is very sparse, with only .21% of the entries in the Netflix-prize dataset being nonzero. This
necessitates the use of normalized distance measures in clustering the dataset, like cosine distance,
as discussed in [2, Chapter 9]. This dataset consists of 17,769 movies and their ratings by 480,000
Netflix users. We again subsample this dataset, generating a small and large dataset of 20,000 and
100,000 users randomly subsampled. Ground truth is generated as before.

The final dataset we used was the zeros from the commonly used MNIST dataset [11]. This
dataset consists of centered images of handwritten digits. We subsample this, using only the images
corresponding to handwritten zeros, in order to truly have one cluster. We use `2 distance, as root
mean squared error (RMSE) is a frequently used metric for image reconstruction. Combining the
train and test datasets we get 6,424 images, and since each image is 28x28 pixels we get d = 784.
Since this is a smaller dataset, we are able to compute the ground truth exactly.

3.2 Discussion on {ρi}

For correlation to improve our algorithmic performance, we ideally want ρi � 1 and decaying with
∆i. Empirically this appears to be the case as seen in Fig. 5, where we plot ρi versus ∆i for the
RNA-Seq and MNIST datasets. 1

ρ2i
can be thought of as the multiplicative reduction in number of

pulls needed to differentiate that arm from the best arm, i.e. 1
ρi

= 10 roughly implies that we need a
factor of 100 fewer pulls to differentiate it from the best arm due to our “correlation”. Notably, for
arms that would normally require many pulls to differentiate from the best arm (small ∆i), ρi is also
small. Since algorithms spend the bulk of their time differentiating between the top few arms, this
translates into large practical gains.

One candidate explanation for the phenomena that small ∆i lead to small ρi is that the points
themselves are close in space. However, this intuition fails for high dimensional datasets as shown in

7
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(b) MNIST dataset [11]

Figure 5: 1/∆i vs. 1/ρi in real world dataset

Fig. 6. We do see empirically however that ρi decreases with ∆i, which drastically decreases the
number of comparisons needed as desired.

We can bound ρi if our distance function obeys the triangle inequality, as ∆̂i , d(xi, xJ)−d(x1, xJ)

is then a bounded random variable since |∆̂i| ≤ d(xi, x1). Combining this with the knowledge that
E∆̂i = ∆i we get ∆̂i is sub-Gaussian with parameter at most

ρiσ ≤
2d(xi, x1) + ∆i

2

Alternatively, if we assume that ∆̂i is normally distributed with variance ρ2
iσ

2, we are able to get a
tighter characterization of ρi:

ρ2
iσ

2 = Var(d(1, J)− d(i, J))

= E
[
(d(1, J)− d(i, J))

2
]
− (E [d(1, J)− d(i, J)])

2

≤ d(1, i)2 −∆2
i

We can clearly see that as d(1, i) → 0, ρi decreases, to 0 in the normal case. However in high
dimensional datasets d(1, i) is usually not small for almost any i. This is empirically shown in Fig. 6.
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(c) Netflix 20k, cosine distance

Figure 6: Distance from point i to the medoid, d(x1, xi) versus ∆i

While ρi can be small, it is not immediately clear that it is bounded above. However, since our
distances are bounded for any given dataset, we have that d(1, J) and d(i, J) are both σ-sub-Gaussian
for some σ, and so we can bound the sub-Gaussian parameter of d(1, J)− d(i, J) quantity using the
Orlicz norm.

ρ2
iσ

2 = ‖d(1, J)− d(i, J)‖2Ψ ≤ (‖d(1, J)‖Ψ + ‖d(i, J)‖Ψ)2 = 4σ2

While this appears to be worse at first glance, we are able to jointly bound P(θ̂i− θ̂1−∆i < −∆i) ≤
exp

(
− n∆2

i

2ρ2iσ
2

)
≤ exp

(
−n∆2

i

8σ2

)
by the control of ρi above. In the regular case, this bound is achieved

by separating the two and bounding the probability that either θ̂i < θi −∆i/2 or θ̂1 > θ1 + ∆i/2,
which yields an equivalent probability since we need θ̂i, θ̂1 to concentrate to half the original width.
Hence, even for data without significant correlation, attempting to correlate the noise will not increase
the number of pulls required when using this standard analysis method.
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3.3 Fixed Budget

In simulating Correlated Sequential Halving, we swept the budget over a range and reported the
smallest budget above which there were 0 errors in 1000 trials. One logical question given a fixed
budget algorithm like corrSH is then, for a given problem, what to set the budget to. This is an
important question for further investigation, as there does not seem to be an efficient way to estimate
H̃2. Before providing our doubling trick based solution, we would like to note that it is unclear
what to set the hyperparameters to for any of the aforementioned randomized algorithms. RAND
is similarly fixed budget, and for Med-dit, while setting δ = 1

n achieves vanishing error probability
theoretically, using this setting in practice for finite n yields an error rate of 6% for the Netflix 100k
dataset. Additionally, the fixed budget setting makes sense in the case of limited computed power or
time sensitive applications.

The approach we propose is a variant of the doubling trick, which is commonly used to convert fixed
budget or finite horizon algorithms to data dependent or anytime ones. Here this would translate
to running the algorithm with a certain budget T (say 3n), then doubling the budget to 6n and
rerunning the algorithm. If the two answers are the same, declare this the medoid and output it. If the
answers are different, double the budget again to 12n and compare. The odds that the same incorrect
arm is outputted both times is exceedingly small, as even with a budget that is too small, the most
likely output of this algorithm is the true medoid. This requires a budget of at most 8T to yield
approximately the same error probability as that of just running our algorithm with budget T .

4 Summary

We have presented a new algorithm, Correlated Sequential Halving, for computing the medoid of
a large dataset. We prove bounds on it’s performance, deviating from standard multi-armed bandit
analysis due to the correlation in the arms. We include experimental results to corroborate our
theoretical gains, showing the massive improvement to be gained from utilizing correlation in real
world datasets. There remains future practical work to be done in seeing if other computational or
statistical problems can benefit from this correlation trick. Additionally there are open theoretical
questions in proving lower bounds for this special query model, seeing if there is any larger view of
correlation beyond pairwise that is analytically tractable, and analyzing this generalized stochastic
bandits setting.

Acknowledgements

The authors gratefully acknowledge funding from the NSF GRFP, Alcatel-Lucent Stanford Graduate
Fellowship, NSF grant under CCF-1563098, and the Center for Science of Information (CSoI), an
NSF Science and Technology Center under grant agreement CCF-0939370.

9



References

[1] V. Bagaria, G. Kamath, V. Ntranos, M. Zhang, and D. Tse, “Medoids in almost-linear time via
multi-armed bandits,” in Proceedings of the Twenty-First International Conference on Artificial
Intelligence and Statistics, pp. 500–509, 2018.

[2] J. Leskovec, A. Rajaraman, and J. D. Ullman, Mining of massive datasets. Cambridge university
press, 2014.

[3] L. K. P. J. Rousseeuw, “Clustering by means of medoids,” 1987.
[4] 10xGenomics, “1.3 million brain cells from e18 mice,” 2017. available at https://support.

10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/1M_neurons.
[5] J. Newling and F. Fleuret, “A sub-quadratic exact medoid algorithm,” arXiv preprint

arXiv:1605.06950, 2016.
[6] K. Okamoto, W. Chen, and X.-Y. Li, “Ranking of closeness centrality for large-scale social

networks,” in International Workshop on Frontiers in Algorithmics, pp. 186–195, Springer,
2008.

[7] D. E. J. Wang, “Fast approximation of centrality,” Graph Algorithms and Applications, vol. 5,
no. 5, p. 39, 2006.

[8] J. Bennett, S. Lanning, et al., “The netflix prize,” in Proceedings of KDD cup and workshop,
vol. 2007, p. 35, New York, NY, USA., 2007.

[9] E. Kaufmann, O. Cappé, and A. Garivier, “On the complexity of best-arm identification in multi-
armed bandit models,” The Journal of Machine Learning Research, vol. 17, no. 1, pp. 1–42,
2016.

[10] Z. Karnin, T. Koren, and O. Somekh, “Almost optimal exploration in multi-armed bandits,” in
International Conference on Machine Learning, pp. 1238–1246, 2013.

[11] L. Yann, C. Cortes, and C. J. Burges, “The mnist database of handwritten digits,” 1998. available
at http://yann.lecun.com/exdb/mnist/.

[12] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,” in European conference on
machine learning, pp. 282–293, Springer, 2006.

[13] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar, “Hyperband: A novel
bandit-based approach to hyperparameter optimization,” arXiv preprint arXiv:1603.06560,
2016.

[14] V. Bagaria, G. M. Kamath, and D. N. Tse, “Adaptive monte-carlo optimization,” arXiv preprint
arXiv:1805.08321, 2018.

[15] D. LeJeune, R. Heckel, and R. Baraniuk, “Adaptive estimation for approximate k-nearest-
neighbor computations,” in Proceedings of Machine Learning Research, pp. 3099–3107, 2019.

[16] M. J. Zhang, J. Zou, and D. N. Tse, “Adaptive monte carlo multiple testing via multi-armed
bandits,” arXiv preprint arXiv:1902.00197, 2019.

[17] T. L. Lai and H. Robbins, “Asymptotically efficient adaptive allocation rules,” Advances in
applied mathematics, vol. 6, no. 1, pp. 4–22, 1985.

[18] V. Ntranos, G. M. Kamath, J. M. Zhang, L. Pachter, and D. N. Tse, “Fast and accurate single-cell
rna-seq analysis by clustering of transcript-compatibility counts,” Genome biology, vol. 17,
no. 1, p. 112, 2016.

10

https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/1M_neurons
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/1M_neurons
http://yann.lecun.com/exdb/mnist/


Appendices
A Proof of Theorem 2.1

We assume n is a power of 2 for readability, but the analysis holds for any n. We begin with the
following immediate consequence of Hoeffding’s inequality, remembering that |Jr| = tr:
Lemma A.1. Assume that the best arm was not eliminated prior to round r. Then for any arm i ∈ Sr

P
(
θ̂

(r)
1 > θ̂

(r)
i

)
= P

 1

|Jr|
∑
j∈Jr

d(x1, xj)− d(xi, xj) + ∆i > ∆i

 ≤ exp

(
−tr∆2

i

2ρ2
iσ

2

)
I{tr < n}

Where if tr = n we know that this probability is exactly 0 by definition of the medoid.

We now examine one round of Correlated Sequential Halving and bound the probability that the
algorithm eliminates the best arm at round r, recalling that

tr =

{
1 ∨

⌊
T

|Sr|dlog ne

⌋}
∧ n.

Lemma A.2. The probability that the medoid is eliminated in round r is at most

3 exp

(
− T

8σ2 log n
·

[
∆2

(ir)

irρ2
(ir)

])
I{tr < n}

for ir = |Sr|/4 = n
2r+2

Proof. The proof follows similarly to that of [10], modulo the interesting feature that if tr = n there
is no uncertainty. Additionally, the analysis differs in that here we are interested in giving the sample
complexity in terms of ∆(i)

ρ(i)
instead of ∆i, and so instead of removing arms i with low ∆i from

consideration as in [10], we remove arms with low ∆i

ρi
for the analysis.

Formally, define S′r as the set of arms in Sr excluding the ir = 1
4 |Sr| arms i with smallest ∆i

ρi
.

We define the random variable Nr as the number of arms in S′r whose empirical average in round r,
θ̂

(r)
i , is smaller than that of the optimal arm. We begin by showing that E[Nr] is small.

E[Nr] =
∑
j∈S′r

P
(
θ̂

(r)
i > θ̂

(r)
j

)

≤
∑
j∈S′r

exp

(
−
tr∆

2
j

2ρ2
jσ

2

)
I{tr < n}

≤
∑
j∈S′r

exp

(
−

T∆2
j

4ρ2
jσ

2|Sr| log n

)
I{tr < n}

≤ |S′r|max
j∈S′r

exp

(
−

T∆2
j

4ρ2
jσ

2|Sr| log n

)
I{tr < n}

= |S′r| exp

(
− T

16σ2 log n
· 1

ir
· min
j∈S′r

{
∆2
j

ρ2
j

})
I{tr < n}

≤ |S′r| exp

(
− T

16σ2 log n
· 1

ir
·min
i≥ir

{
∆2

(i)

ρ2
(i)

})
I{tr < n}

= |S′r| exp

(
− T

16σ2 log n
·

[
∆2

(ir)

irρ2
(ir)

])
I{tr < n}
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Where in the third line we assumed T ≥ n log n so that

tr =

⌊
T

|Sr|dlog ne

⌋
≥ T

2|Sr|dlog ne
Additionally, in the second to last line we used the fact that due to the removal of arms with small
∆(i)

ρ(i)
, for all arms j ∈ S′r where j = (i), we have that i ≥ ir.

We now see that in order for the best arm to be eliminated in round r at least |Sr|/2 arms must have
lower empirical averages in round r. This means that at least |Sr|/4 arms from S′r must outperform
the best arm, i.e. Nr ≥ |Sr|/4 = |S′r|/3.

We can then bound this probability with Markov’s inequality as below:

P

(
Nr ≥

1

3
|S′r|

)
≤ 3E[Nr]/|S′r| ≤ 3 exp

(
− T

16σ2 log n
·

[
∆2

(ir)

irρ2
(ir)

])
I{tr < n}.

We note that tr < n is a deterministic condition. Via some algebra, we obtain that

tr =

⌊
T

|Sr|dlog ne

⌋
≤ T

|Sr| log n
=

T2r

n log n

This means that if r < log
(
n2 logn
T

)
then tr < n. To this end we define rmax ,

⌊
log
(
n2 logn
T

)⌋
and irmax , n

2rmax ≥ T
n logn . With this in place, we are now able to easily prove Theorem 2.1

Proof. The algorithm clearly does not exceed its budget of T arm pulls (distance measurements).
Further, if the best arm survives the execution of all log n rounds then the algorithm succeeds as all
other arms must have been eliminated. Hence, by a union bound over the stages, our probability of
failure (the best arm being eliminated in any of the log n stages) is at most

3

logn∑
r=1

exp

(
− T

16σ2 log n
·

[
∆2

(ir)

irρ2
(ir)

])
I{tr < n}

≤ 3

logn∑
r=1

exp

(
− T

16σ2 log n
·

[
∆2

(ir)

irρ2
(ir)

])
I
{
r < log

(
n2 log n

T

)}

≤ 3 log n exp

(
− T

16σ2 log n
· min
r≤rmax

[
∆2

(ir)

irρ2
(ir)

])

≤ 3 log n exp

(
− T

16σ2 log n
· min
i≥irmax

[
∆2

(i)

iρ2
(i)

])

≤ 3 log n · exp

(
− T

16H̃2σ2 log n

)

We note that in cases where
ρ2(i)
∆2

(i)

is very large for small i, this last line is loose.

Remark 2. A standard analysis of this algorithm, ignoring arms with small ∆i to create S′r, would
yield hardness measure H ′2 = maxi

iρ2i
∆2

i
. However, we can see by pigeonhole principle that

max
i

iρ2
i

∆2
i

≥ max
i

iρ2
(i)

∆2
(i)
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Remark 3. While it is convenient to think of U = Rd and d(x, y) = ‖x − y‖2, we note that our
results are valid for arbitrary distance functions which may not be symmetric or obey the triangle
inequality, like Bregman divergences or squared Euclidean distance.

B Lower bounds

It seems very difficult to generate lower bounds for the sample complexity of the medoid problem
due to the higher order structure present.

B.1 Beyond pairwise correlation

Throughout this work we have discussed the benefits of correlating measurements. However, the only
way in which correlation figured into our analysis was in helping θ̂i − θ̂1 concentrate. Due to this
correlation we can show that the difference between estimators concentrates quickly, analyzing pairs
of estimators rather than just individual θ̂i. This leads to the natural question, can correlation help
beyond just pairs of estimators?

We answer this question in the affirmative. As a concrete example assume that {xi}ni=1 ∈ R2 are
evenly spaced around the unit circle, and x0 = (0, 0) is the medoid of {xi}ni=0. For a reference point
xJ drawn uniformly at random we define ∆̂i , d(xi, xJ)− d(x1, xJ).

Let xi = (1, 0), xk = (−1, 0). We have previously shown that ∆̂i, ∆̂k concentrate nicely. However,
in sequential halving, we are concerned with the probability that over half the estimators appear better
than the best estimator, i.e. ∆̂i < 0 for many i (more than n/2 for the first round). Many samples are
needed to argue that this is small if we assume that the events ∆̂i < 0 and ∆̂k < 0 are independent as
is currently being done, but we can clearly see that for i, k as given, P

(
{∆̂i < 0} ∩ {∆̂k < 0}

)
= 0

where the probability is taken with respect to the randomness in selecting a common reference point
xJ .

x1 x2x3

xJ

It is not clear what quantities we should be interested in when looking at all the estimators jointly, but
it is clear that there are additional benefits to correlation beyond simply the improved concentration
of differences of estimators.

B.2 Bandit lower bounds

Ideally in such a bandit problem we would like to provide a matching lower bound. This is made
difficult by the fact that we lack insight into which quantities are relevant in determining the hardness
of the problem. A more traditional bandit lower bound was recently proved for adaptive sampling
in the approximate k-NN case, but this lower bound requires the data points to be constrained,
i.e. [xi]j ∈ {±1/2}, and more importantly that the algorithm is only allowed to interact with the
data by sampling coordinates uniformly at random [15]. This second constraint on the algorithm
unfortunately removes all the structure we wish to analyze from the problem. The lower bound is
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proved using a change of measure argument, neatly presented in [9]. In the case we wish to analyze,
strategies are no longer limited to random sampling the data, i.e. for a given xi we can measure its
distance to a specific xj , we do not need to independently sample a reference point for each pull.

Currently, we do not know of any data dependent lower bound for this problem. A trivial lower bound
is Ω(n) distance computations, as we need to perform at least one distance computation for every
data point. However, we have as of yet been unable to provide any tighter lower bounds in terms of
the ρi’s or any larger scale structure as mentioned above.
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