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Abstract

Random geometric graphs are a popular choice for a latent points generative model
for networks. Their definition is based on a sample of n points X1, X2, · · · , Xn

on the Euclidean sphere Sd−1 which represents the latent positions of nodes of
the network. The connection probabilities between the nodes are determined by
an unknown function (referred to as the “link” function) evaluated at the distance
between the latent points. We introduce a spectral estimator of the pairwise distance
between latent points and we prove that its rate of convergence is the same as the
nonparametric estimation of a function on Sd−1, up to a logarithmic factor. In
addition, we provide an efficient spectral algorithm to compute this estimator
without any knowledge on the nonparametric link function. As a byproduct, our
method can also consistently estimate the dimension d of the latent space.

1 Introduction

Random geometric graph (RGG) models have received attention lately as alternative to some simpler
yet unrealistic models as the ubiquitous Erdös-Rényi model [12]. They are generative latent point
models for graphs, where it is assumed that each node has associated a latent point in a metric
space (usually the Euclidean unit sphere or the unit cube in Rd) and the connection probability
between two nodes depends on the position of their associated latent points. In many cases, the
connection probability depends only on the distance between the latent points and it is determined by
a one-dimensional “link” function.

Because of its geometric structure, this model is appealing for applications in wireless networks
modeling [18], social networks [17] and biological networks [15], to name a few. In many of these
real-world networks, the probability that a tie exists between two agents (nodes) depends on the
similarity of their profiles. In other words, the connection probability depends on some notion of
distance between the position of the agents in a metric space, which in the social network literature
has been called the social space.

In the classical RGG model, as introduced by Gilbert in [13], we consider n independent and
identically distributed latent points {Xi}ni=1 in Rd and the construct the graph with vertex set
V = {1, 2, · · · , n}, where the node i and j are connected if and only if the Euclidean distance
‖Xi −Xj‖d is smaller than a certain predefined threshold τ . The seminal reference on the classical
RGG model, from the probabilistic point of view, is the monograph [27]. Another good reference is
the survey paper [30]. In such a case, the “link” function, which we have not yet formally defined, is
the threshold function 1t≤τ (t). Otherwise stated, two points are connected only if their distance is
smaller than τ . In that case, all the randomness lies in the fact that we are sampling the latent points
with a certain distribution. We choose to maintain the name of random geometric graphs for more
general “link” functions.
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The angular version of the RGG model has also received attention. On that model, the latent points
are uniformly distributed on Sd−1 (the unit sphere on Rd), and two points are connected if their
angle is bellow a certain threshold. This model has been used in the context of sensor and wireless
networks [14]. In [9] the authors show that in when the size of the graph n is fixed and the dimension d
goes to infinity, the RGG model on the sphere is indistinguishable from the Erdös-Renyi model, in
the sense that the total variation distance between both graph distributions converges to zero. On
the other hand, in [5] the authors prove that in the dense case if d satisfy a bound with respect to n
(specifically, if d/n3 → 0) then we can distinguish between both models, by a counting the number
of triangles. The angular RGG model has also been used in the context of approximate graph coloring
[19].

We are interested in the problem of recovering the pairwise distances between the latent
points {Xi}ni=1 for geometric graphs on Sd−1 given a single observation of the network. We
limit ourselves to the case when the network is a simple graph. Furthermore, we will assume that
the dimension d is fixed and that the “link" function is not known. This problem and some of its
variants have been studied for different versions of the model and under a different set of hypothesis,
see for example the recent work [1] and the references therein. In that work the authors propose a
method for estimating the latent distances based on the graph theoretic distance between two nodes
(that is the length of the shortest path between the nodes). Independently, in [10] the authors develop
a similar method which has slightly less recovery error, but for a less general model. In both cases,
the authors consider the cube in Rd (or the whole Rd) but not the sphere. Our strategy is similar to
the one developed in [28], where they considered the latent point estimation problem in random dot
product graphs, which is a more restricted model compared to the one considered here. However,
they considered more general Euclidean spaces and latent points distributions other than the uniform.
Similar ideas has been used in the context of vertex classification for latent position graphs [29].

We will use the notion of graphon function to formalize the concept of “link” function. Graphons are
central objects to the theory of dense graph limits. They were introduced by Lovász and Szegedy
in [25] and further developed in a series of papers, see [3],[4]. Formally, they are symmetric kernels
that take values in [0, 1], thus they will act as the “link” function for the latent points. The spectrum
of the graphon is defined as the spectrum of an associated integral operator, as in [24, Chap.7]. In this
paper, they will play the role of limit models for the adjacency matrix of a graph, when the size goes
to infinity. This is justified in light of the work of Koltchinskii and Giné [22] and Koltchinskii [21].
In particular, the adjacency matrix of the observed graph can be though as a finite perturbed version
of this operator, combining results from [22] and [2].

We will focus on the case of dense graphs on the sphere Sd−1 where the connection probability
depends only on the angle between two nodes. This allows us to use the harmonic analysis on the
sphere to have a nice characterization of the graphon spectrum, which has a very particular structure.
More specifically, the following two key elements holds: first of all, the basis of eigenfunctions is
fixed (do not depend on the particular graphon considered) and equal to the well-known spherical
harmonic polynomials. Secondly, the multiplicity of each eigenvalue is determined by a sequence of
integers that depends only on the dimension d of the sphere and is given by a known formula and the
associated eigenspaces are composed by spherical harmonics of the same polynomial degree.

The graphon eigenspace composed only with linear eigenfunctions (harmonic polynomials of degree
one) will play an important role in the latent distances matrix recovery as all the information we
need to reconstruct the distances matrix is contained in those eigenfunctions. We will prove that
it is possible to approximately recover this information from the observed adjacency matrix of the
graph under regularity conditions (of the Sobolev type) on the graphon and assuming an eigenvalue
gap condition (similar hypotheses are made in [6] in the context of matrix estimation and in [23] in
the context of manifold learning). We do this by proving that a suitable projection of the adjacency
matrix, onto a space generated by exactly d of its eigenvectors, approximates well the latent distances
matrix considering the mean squared error in the Frobenius norm. We give nonasymptotic bounds
for this quantity obtaining the same rate as the nonparametric rate of estimation of a function on the
sphere Sd−1, see [11, Chp.2] for example. Our approach includes the adaptation of some perturbation
theorems for matrix projections from the orthogonal to a “nearly” orthogonal case, which combined
with concentration inequalities for the spectrum gives a probabilistic finite sample bound, which is
novel to the best of our knowledge. More specifically, we prove concentration inequalities for the
sampled eigenfunctions of the integral operator associated to a geometric graphon, which are not
necessarily orthogonal as vectors in Rn. Our method shares some similarities with the celebrated
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USVT method, introduced by Chatterjee in [6], but in that case they obtained an estimator of the
probability matrix described in Section 2.2 and not of the population Gram matrix as our method. We
develop an efficient algorithm, which we call Harmonic EigenCluster(HEiC) to reconstruct the latent
positions from the data and illustrate its usefulness with synthetic data.

2 Preliminaries

2.1 Notation

We will considerRd with the Euclidean norm ‖·‖ and the Euclidean scalar product 〈 , 〉. We define the
sphere Sd−1 := {x ∈ Rd : ‖x‖ = 1}. For a set A ⊂ R its diameter diam(A) := supx,y∈A |x− y|
and if B ⊂ R the distance between A and B is dist(A,B) := infx∈A,y∈B |x− y|.We will use ‖ · ‖F
the Frobenius norm for matrices and ‖ ·‖op for the operator norm. The identity matrix in Rd×d will be
Idd. If X is a real valued random variable and α ∈ (0, 1), X ≤α C means that P(X ≤ C) ≥ 1− α.

2.2 Generative model

We describe the generative model for networks which is a generalization of the classical random
geometric graph model introduced by Gilbert in [13]. We base our definition on the W -random graph
model described in [24, Sec. 10.1]. The central objects will be graphon functions on the sphere,
which are symmetric measurable functions of the form W : Sd−1 × Sd−1 → [0, 1]. Throughout this
paper, we consider the measurable space (Sd−1, σ), where σ is the uniform measure on the sphere.
On Sd−1 × Sd−1 we consider the product measure σ × σ.

To generate a simple graph from a graphon function, we first sample n points {Xi}ni=1 independently
on the sphere Sd−1, according to the uniform measure σ. These are the so-called latent points.
Secondly, we construct the matrix of distances between these points, called the Gram matrix G∗ (we
will often call it population Gram matrix) defined by

G∗ij := 〈Xi, Xj〉

and the so-called probability matrix

Θij = ρnW (Xi, Xj)

which is also a n × n matrix. The function W gives the precise meaning for the “link” function,
because it determines the connection probability between Xi and Xj . The introduction of the scale
parameter 0 < ρn ≤ 1 allow us to control the edge density of the sampled graph given a function
W , see [20] for instance. The case ρn = 1 corresponds to the dense case (the parameter Θij do not
depend on n) and when ρn → 0 the graph will be sparser. Our main results will hold in the regime
ρn = Ω( logn

n ), which we call relatively sparse. Most of the time we will work with the normalized
version of the probability matrix Tn := 1

nΘ. If there exists a function f : [−1, 1]→ [0, 1] such that
W (x, y) = f(〈x, y〉) for all x, y ∈ Sd−1 we will say that W is a geometric graphon.

Finally, we define the random adjacency matrix T̂n, which is a n× n symmetric random matrix that
has independent entries (except for the symmetry constraint T̂n = T̂Tn ), conditional on the probability
matrix, with laws

n(T̂n)ij ∼ B(Θij)

where B(m) is the Bernoulli distribution with mean parameter m. Since the probability matrix
contains the mean parameters for the Bernoulli distributions that define the random adjacency matrix
it has been also called the parameter matrix [6]. Observe that the classical RGG model on the sphere
is a particular case of the described W -random graph model when W (x, y) = 1〈x,y〉≤τ . In that case,
since the entries of the probability matrix only have values in {0, 1}, the adjacency matrix and the
probability matrix are equal. Depending on the context, we use T̂n for the random matrix as described
above or for an instance of this random matrix, that is for the adjacency matrix of the observed graph.
This will be clear from the context.

It is worth noting that graphons can be, without loss of generality, defined in [0, 1]2. The previous
affirmation means that for any graphon there exists a graphon in [0, 1]2 that generates the same distri-
bution on graphs for any given number of nodes. However, in many cases the [0, 1]2 representation
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can be less revealing than other representations using a different underlying space. This is illustrated
in the case of the prefix attachment model in [24, example 11.41].

In the sequel we use the notation λ0, λ1, · · · , λn−1 for the eigenvalues of the normalized probability
matrix Tn. Similarly, we denote by λ̂0, λ̂1, · · · , λ̂n−1 the eigenvalues of the matrix T̂n. We recall that
Tn (resp. T̂n) and 1

ρn
Tn (resp. 1

ρn
T̂n ) have the same set of eigenvectors. We will denote by vj for

1 ≤ j ≤ n the eigenvector of Tn associated to λj , which is also the eigenvector of 1
ρn
Tn associated

to 1
ρn
λj . Similarly, we denote by v̂j to the eigenvector associated to the eigenvalue ρnλ̂j of T̂n.

Our main result is that we can recover the Gram matrix using the eigenvectors of T̂n as follows

Theorem 1 (Informal statement). There exists a constant c1 > 0 that depends only on the dimension
d such that the following is true. Given a graphon W on the sphere such that W (x, y) = f(〈x, y〉)
with f : [−1, 1] → [0, 1] unknown, which satisfies an eigenvalue gap condition and has Sobolev
regularity s, there exists a subset of the eigenvectors of T̂n, such that Ĝ := 1

c1
V̂ V̂ T converges to the

population Gram matrix G∗ := 1
n (〈Xi, Xj〉)i,j at rate n

−s
2s+d−1 (up to a log factor). This estimate

V̂ V̂ T can be found in linear time given the spectral decomposition of T̂n.

We will say that a geometric graphon W (x, y) = f(〈x, y〉) on Sd−1 has regularity s if f belongs the
weighted Sobolev space Zsγ([−1, 1]) with weight function wγ(t) = (1− t)γ− 1

2 , as defined in [26].
In order to make the statement of 1 rigorous, we need to precise the eigenvalue gap condition and
define the graphon eigensystem.

2.3 Geometric graphon eigensystem

Here we gather some asymptotic and concentration properties for the eigenvalues and eigenfunctions
of the matrices T̂n, Tn and the operator TW , which allows us to recover the Gram matrix from data.
The key fact is that the eigenvalues (resp. eigenvectors) of the matrix 1

ρn
T̂n and 1

ρn
Tn converge to

the eigenvalues (resp. sampled eigenfunctions) of the integral operator TW : L2(Sd−1)→ L2(Sd−1)

TW g(x) =

∫
Sd−1

g(y)W (x, y)dσ(y)

which is compact [16, Sec.6, example 1] and self-adjoint (which follows directly from the symmetry
of W ). Then by a classic theorem in functional analysis [16, Sec.6, Thm. 1.8] its spectrum is a
discrete set {λ∗k}k∈N ⊂ R and its only accumulation point is zero. In consequence, we can see the
spectra of T̂n, Tn and TW (which we denote λ(T̂n), λ(Tn) and λ(TW ) resp.) as elements of the space
C0 of infinite sequences that converge to 0 (where we complete the finite sequences with zeros). It is
worth noting that in the case of geometric graphons with regularity s (in the Sobolev sense defined
above) the rate of convergence of λ(TW ) is determined by the regularity parameter s. We have the
following:

• The spectrum of λ( 1
ρn
Tn) converges to λ(TW ) (almost surely) in the δ2 metric, defined as

follows

δ2(x, y) = inf
p∈P

√∑
i∈N

(xi − yp(i))2

where P is the set of all permutations of the non-negative integers. This is proved in [22].
In [8] they prove the following

δ2

(
λ(

1

ρn
Tn), λ(TW )

)
≤α/4 C

( log n

n

) s
2s+d−1

(1)

• Matrices T̂n approach to matrix Tn in operator norm as n gets larger. Applying [2, Cor.3.3]
to the centered matrix Y = T̂n − Tn we get

E(‖T̂n − Tn‖op) .
D0

n
+
D∗0
√

log n

n
(2)
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where . denotes inequality up to constant factors, D0 = max0≤i≤n
∑n
j=1 Yij(1−Yij) and

D∗0 = maxij |Yij |. We clearly have that D0 = O(nρn) and D∗0 ≤ 1, which implies that

E‖T̂n − Tn‖op . max
{ ρn√

n
,

√
log n

n

}
We see that this inequality do not improve if ρn is smaller than in the relatively sparse case,
that is ρn = Ω( logn

n ). We prove that, as a corollary of the results in [2], we have

1

ρn
‖T̂n − Tn‖op ≤α/4 C max

{ 1
√
ρnn

,

√
log n

ρnn

}
(3)

An analogous bound can be obtained for the Frobenius norm replacing T̂n with T̂ usvt
n the

USVT estimator defined in [6]. For our main results, Proposition 3 and Theorem 4 the
operator norm bound will suffice.

A remarkable fact in the case of geometric graphons on Sd−1 is that the eigenfunctions {φk}k∈N of
the integral operator TW are a fixed set that do not depend on the particular function f considered.
This comes from the fact that TW is a convolution operator on the sphere and its eigenfunctions are
the well-known spherical harmonics of dimension d, which are harmonic polynomials in d variables
defined on Sd−1 corresponding to the eigenfunctions of the Laplace-Beltrami operator on the sphere.
This follows from [7, Thm.1.4.5] and from the Funck-Hecke formula given in [7, Thm.1.2.9]. Let
dk denote the dimension of the k-th spherical harmonic space. It is well-known [7, Cor.1.1.4] that
d0 = 1, d1 = d and dk =

(
k+d−1
k

)
−
(
k+d−3
k−2

)
. Another important fact, known as the addition

theorem [7, Lem.1.2.3 and Thm.1.2.6], is that
dk∑

i=dk−1

φj(x)φj(y) = ckG
γ
k(〈x, y〉)

where Gγk are the Gegenbauer polynomials of degree k with parameter γ = d−2
2 and ck = 2k+d−2

d−2 .

The Gegenbauer polynomial of degree one is Gγ1(t) = 2γt (see [7, Appendix B2]), hence we have
Gγ1(〈Xi, Xj〉) = 2γ〈Xi, Xj〉 for every i and j. In consequence, by the addition theorem

Gγ1(〈Xi, Xj〉) =
1

c1

d∑
k=1

φk(Xi)φk(Xj)

where we recall that d1 = d. This implies the following relation for the Gram matrix, observing that
2γc1 = d

G∗ :=
1

n
(〈Xi, Xj〉)i,j =

1

2γc1

d∑
j=1

v∗j v
∗
j
T =

1

d
V ∗V ∗T (4)

where v∗j is the Rn vector with i-th coordinate φj(Xi)/
√
n and V ∗ is the matrix with columns v∗j .

In a similar way, we define for any matrix U in Rn×d with columns u1, u2, · · · , ud, the matrix
GU := 1

dUU
T . As part of our main theorem we prove that for n large enough there exists a matrix V̂

in Rn×d where each column is one of the eigenvector of T̂n, such that Ĝ := GV̂ approximates G∗

well, in the sense that the norm ‖Ĝ −G∗‖F converges to 0 at a rate which is that of the nonparametric
estimation of a function on Sd−1.

2.4 Eigenvalue gap condition

In this section we describe one of our main hypotheses on W needed to ensure that the space
span{v∗1 , v∗2 , · · · , v∗d} can be effectively recovered with the vectors v̂1, v̂2, · · · , v̂d using our al-
gorithm. Informally, we assume that the eigenvalue λ∗1 is sufficiently isolated from the rest
of the spectrum of TW (not counting multiplicity). We assume without loss of generality that
λ∗1 = λ∗2 = · · · = λ∗d1 . Given a geometric graphon W , we define the spectral gap of W relative to
the eigenvalue λ∗1 by

Gap1(W ) := min
j /∈{1,··· ,d1}

|λ∗1 − λ∗j |

which quantifies the distance between the eigenvalue λ∗1 and the rest of the spectrum. In particular,
we have the following elementary proposition.
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Proposition 2. It holds that Gap1(W ) = 0 if and only if there exists j /∈ {1, · · · , d1} such that
λ∗j = λ∗1 or λ∗1 = 0.

Proof. Observe that the unique accumulation point of the spectrum of TW is zero. The proposition
follows from this observation.

To recover the population Gram matrix G∗ with our Gram matrix estimator Ĝ we require the spectral
gap ∆∗ := Gap1(W ) to be different from 0. This assumption have been made before in the
literature, in results that are based in some version of the Davis-Kahan sin θ theorem (see for
instance [6], [23], [29]). More precisely, our results will hold on the following event

E :=
{
δ2

(
λ
( 1

ρn
Tn
)
, λ(TW )

)
∨ 2

9
2

√
d

ρn∆∗
‖Tn − T̂n‖op ≤

∆∗

4

}
,

for which we prove the following: given an arbitrary α we have that

P(E) ≥ 1− α

2

for n large enough (depending on W and α). This dependence can be made explicit using (1) and (3)

max {
√
ρn
n
,

√
log n

n
} ≤ ∆∗2

215/2C
√
d

and
log n

n
≤
( ∆∗

8C ′
) 2s+d−1

s

where C,C ′ > 0. The following theorems are the main results of this paper. Their proofs can be
found in the supplementary material.
Proposition 3. On the event E , there exists one and only one set Λ1, consisting of d eigenvalues of
T̂n, whose diameter is smaller than ρn∆∗/2 and whose distance to the rest of the spectrum of T̂n
is at least ρn∆∗/2. Furthermore, on the event E , our algorithm (Algorithm 1) returns the matrix
Ĝ = (1/c1)V̂ V̂ T , where V̂ has by columns the eigenvectors corresponding to the eigenvalues on Λ1.

Theorem 4. Let W be a regular geometric graphon on Sd−1 with regularity parameter s and such
that ∆∗ > 0. Then there exists a set of eigenvectors v̂1, · · · , v̂d of T̂n such that

‖G∗ − Ĝ‖F = O(n−
s

2s+d−1 )

where Ĝ = GV̂ and V̂ is the matrix with columns v̂1, · · · , v̂d. Moreover, this rate is the minimax rate
of nonparametric estimation of a regression function f with Sobolev regularity s in dimension d− 1.

The condition ∆∗ > 0 allow us to use Davis-Kahan type results for matrix perturbation to prove
Theorem 4. With this and concentration for the spectrum we are able to control with high probability
the terms ‖Ĝ − G‖F and ‖G − G∗‖F . The rate of nonparametric estimation of a function in Sd−1
can be found in [11, Chp.2].

3 Algorithms

The Harmonic EigenCluster algorithm(HEiC) (see Algorithm 1 below) receives the observed adja-
cency matrix T̂n and the sphere dimension as its inputs to reconstruct the eigenspace associated to
the eigenvalue λ∗1. In order to do so, the algorithm selects d vectors in the set v̂1, v̂2, · · · v̂n, whose
linear span is close to the span of the vectors v∗1 , v

∗
2 , · · · , v∗d defined in Section 2.3. The main idea

is to find a subset of {λ̂0, λ̂2, · · · , λ̂n−1}, which we call Λ1, consisting on d1 elements (recall that
d1 = d) and where all its elements are close to λ∗1. This can be done assuming that the event E
defined above holds (which occurs with high probability). Once we have the set Λ1, we return the
span of the eigenvectors associated to the eigenvalues in Λ1.

For a given set of indices i1, · · · , id we define

Gap1(T̂n; i1, · · · , id) := min
i/∈{i1,··· ,id}

max
j∈{i1,··· ,ij}

|λ̂j − λ̂i|

and
Gap1(T̂n) := max

{i1,··· ,id}∈Sn
d

Gap1(T̂n; i1, · · · , id)
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Algorithm 1: Harmonic EigenCluster(HEiC) algorithm

Input: (T̂n, d) adjacency matrix and sphere dimension

Λsort = {λ̂sort1 , · · · , λ̂sortn−1} ←eigenvalues of T̂n sorted in decreasing order
Λ1 ← {Λsort

1 , · · · ,Λsort
1+d}: where Λsort

i is the i-th element in Λsort

Initialize i = 2, gap = Gap1(T̂n; 1, 2, · · · , d)

while i ≤ n− d do
if Gap1(T̂n; i, i+ 1, · · · , i+ d) > gap then

Λ1 ← {Λsort
i , · · · ,Λsort

i+d}
end if
i← i+ 1

end while
Return: Λ1, gap

where Snd contains all the subsets of {1, · · · , n − 1} of size d. This definition parallels that of
Gap1(W ) for the graphon. Observe any set of indices in Snd will not include 0. Otherwise stated, we
can leave λ̂sort0 out of this definition and it will not be candidate to be in Λ1. In the supplementary
material we prove that the largest eigenvalue of the adjacency matrix will be close to the eigenvalue λ∗0
and in consequence can not be close enough to λ∗1 to be in the set Λ1, given the definition of the
event E .

To compute Gap1(T̂n) we consider the set of eigenvalues λ̂j ordered in decreasing order. We use the
notation λ̂sortj to emphasize this fact. We define the right and left differences on the sorted set by

left(i) = |λ̂sorti − λ̂sorti−1 |
right(i) = left(i+ 1)

where left(·) is defined for 1 ≤ i ≤ n and right(·) is defined for 0 ≤ i ≤ n−1. With these definition,
we have the following lemma, which we prove in the supplementary material.
Lemma 5. On the event E , the following equality holds

Gap1(T̂n) = max
{

max
1≤i≤n−d−1

min {left(i), right(i+ d)}, left(n− d+ 1)
}

The set Λ1 has the form Λ1 = {λ̂sorti∗ , λ̂sorti∗+1, · · · , λ̂sorti∗+d} for some 1 ≤ i∗ ≤ n − d − 1. We have
that either

i∗ = arg max
1≤i≤n−d−1

min {left(i), right(i+ d)}

or i∗ = n − d depending whether or not one has max1≤i≤n−d−1 min {left(i), right(i+ d)} >
left(n− d+ 1). The algorithm then constructs the matrix V̂ having columns {v̂i∗ , v̂i∗+1, · · · , v̂i∗+d}
and returns V̂ V̂ T .

It is worth noting that Algorithm 1 time complexity n3 + n, where n3 comes from the fact that we
compute the eigenvalues and eigenvectors of the n × n matrix T̂n and the linear term is because
we explore the whole set of eigenvalues to find the maximum gap for the size d. In terms of space
complexity the algorithm is n2 because we need to store the matrix T̂n.

Remark 1. If we change T̂n in the input of Algorithm 1 to T̂ usvt
n (obtained by the USVT algorithm [6])

we predict that the algorithm will give similar results. This is because discarding some eigenvalues
bellow a prescribed threshold do not have effect on our method. However, as preprocessing step the
USVT might help in speeding up the eigenspace detection, but this step is already linear in time.

3.1 Estimation of the dimension d

So far we have focused on the estimation of the population Gram matrix G∗. We now give an
algorithm to find the dimension d, when it is not provided as input. This method receives the
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matrix T̂n as input and uses Algorithm 1 as a subroutine to compute a score, which is simply the value
of the variable Gap1(T̂n) returned by Algorithm 1. We do this for each d in a set of candidates, which
we call D. This set of candidates will be usually, but not necessarily, fixed to {1, 2, 3, · · · , dmax}.
Once we have computed the scores, we pick the candidate that have the maximum score.

Given the guarantees provided by Theorem 4, the previously described procedure will find the correct
dimension, with high probability (on the event E), if the true dimension of the graphon is on the
candidate set D. This will happen, in particular, if the assumptions of Theorem 4 are satisfied. We
recall that the main hypothesis on the graphon is that the spectral gap Gap1(W ) should be different
from 0.

4 Experiments

We generate synthetic data using different geometric graphons. In the first set of examples, we focus
in recovering the Gram matrix when the dimension is provided. In the second set we tried to recover
the dimension as well.

4.1 Recovering the Gram matrix

We start by considering the graphon W1(x, y) = 1〈x,y〉≤0 which defines, through the sampling
scheme given in Section 2.2, the same random graph model as the classical RGG model on Sd−1
with threshold 0. Thus two sampled points Xi, Xj ∈ Sd−1 will be connected if and only if they lie in
the same semisphere.

Figure 1: In the left we have a boxplot of MSEn for different values of n. In the right, we plot the
score for a set of candidate dimensions D = {1, · · · , 19}. Data were sampled with W1 on Sd−1 with
d = 3.
We consider different values for the sample size n and for each of them we sample 100 Gram matrices
in the case d = 3 and run the Algorithm 1 for each. We compute each time the mean squared error,
defined by

MSEn =
1

n2
‖Ĝ − G∗‖2F

In Figure 1 we put the MSEn for different values of n, showing how MSEn decrease in terms of n.
For each n, the MSEn we plot is the mean over the 100 sampled graphs.

4.2 Recovering the dimension d

We conducted a simulation study using graphon W1, sampling 1000 point on the sphere of dimension
d = 3 and we use Algorithm 1 to compute a score and recover d. We consider a set of candidates
with dmax = 15. In Figure 1 we provide a boxplot for the score of each candidate repeating the
procedure 50 times. We see that for this graphon, the algorithm can each time differentiates the true
dimension from the “noise".
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Figure 2: The mean (25 repetitions) runtime of the HEiC algorithm for the graphon W1. The
experiments were performed on a 3,3Ghz Intel i5 with 16GB RAM.

5 Discussion

Although in this paper we have focused on the sphere as the latent metric space, our main result
can be extended to other latent space where the distance is translation invariant, such as compact
Lie groups or compact symmetric spaces. In that case, the geometric graphon will be of the form
W (x, y) = f(cos ρ(x, y)) where x, y are points in the compact Lie group S and ρ(·, ·) is the metric.
We will have

f(cos ρ(x, y)) = f(cos ρ(x · y−1, e1)) = f̃(x · y−1)

where e1 is the identity element in S and f̃(x) = f(ρ(x, e1)). In consequence W (x, y) = f̃(x ·y−1).
Furthermore, there exists an addition theorem in this case (which is central to our recovery result).
Analogous regularity notions to the one considered in this work are also worth exploring. In [8] the
authors give more details on the model of geometric graphon in compact Lie groups with focus on
the graphon estimation.

In principle, it would be possible to extend most of the results of this paper to the case when the
underlying space is Bd = {x ∈ Rd : ‖x‖ ≤ 1} and the link function depends only on the inner
products of the points in Bd. As detailed in [7], the harmonic analysis on the sphere can be extended
to the unit ball. In particular, an analogous addition theorem exists. Besides, one fundamental fact
that used in the proof of Theorem 1 is the control on the growth of the L2(Sd−1) norm of the spherical
harmonics, which has its analog for the polynomial base in L2(Bd). Despite the similarities between
the model on the unit sphere and the model on the unit ball, they might generate very different graphs.
For instance, an interesting feature of the model on Bd is that is not only angle dependent (as in the
case of the unit sphere), but also norm dependent. This would allow to generate graphs with more
heterogenous node distribution. The study in depth of this model is left for a future work as well as
the study of the sparser case.
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