Supplementary Material
Local SGD with Periodic Averaging:
Tighter Analysis and Adaptive Synchronization

Notation: In the rest of the appendix, we use the following notation for ease of exposition:

t
x(t) 2 = Zx(t) gt & Zggﬂ, (1) £EFED) = F7, 2| —Jr  (13)
We also indicate inner product between vectors x and y with (x,y).
A Proof of Theorem 1
The proof is based on the Lipschitz continuous gradient assumption, which gives:
2L
E[F(=)) - F(x")] < -nE[(VF®),g9)] + T7E[Ig"|?] (14)
The second term in left hand side of (14) is upper-bounded by the following lemma:
Lemma 1. Under Assumptions 1 and 2, we have the following bound
E[lg”?] < (S + )Y IVFEE + 2 (15)
p = pB

The first term in left-hand side of (14) is bounded with following lemma:

Lemma 2. Under Assumptions 3, and according to the Algorithm 1 the expected inner product
between stochastic gradient and full batch gradient can be bounded by:
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The third term in (16) is bounded as follows:
Lemma 3. Under Assumptions 1 to 2, for kT + 11t for some k > 1, we have:
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Note that first this lemma implies that the term E Zp Ix ® — X; only depends on the time

te & | L] throught — 1. Second, it is noteworthy that since X< 'H) = x{feth)

have E Z§:1 [|x(tet) —
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Now using the notation ¢(t) £ E[F(x®) — F*] and by plugging back all the above lemmas into
result (14), we get:
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where in @ we use the following from the definitions:
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In the following lemma, we show that with proper choice of learning rate the negative coefficient of

the |[VF (xg-t)) |2 can be dominant at each communication time periodically. Thus, we can remove
the terms including ||VF(x§t))||§ from the bound in (18).

Adopting the following notation for n < m:

A =14, Ann Am—1 Ay (23)
B =B, B Bim—1 B (24)
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with convention that F(m) A,,,, we have the following lemma:
Lemma 4. We have:
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Lemma 5. Let o be a positive constant that satlsﬁes

T is sufficiently large to ensure that 4(a — 3)"
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we have:

foralll <t <T.
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We conclude the proof of Theorem 1 with the following lemma:

14

Y7 (a+1)7~2. If we choose the learning rate as 1, =

< KV192 and a = at + 4. Suppose that
< GAL%(pt1) (r—1)7(a+1)""2 and

_4
n(t+a)’

(28)



Lemma 6. For the learning rate as given in Lemma 5, iterating over (28) leads to the following
bound:
a? 4ko*T(T 4 2a)  256K%02T (1 — 1)

(29)

B Proof of lemmas
B.1 Proof of Lemma 1

The proof follows from the Proof of Lemma 6 in [38] by replacing o2 with "—BQ.

B.2 Proof of Lemma 2

Letg® =1 Zp N ggt) We have:
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where @ follows from 2(a, b) = ||a||? + ||b||?> — [|a — b||? and Assumption 1, and @ comes from
Assumption 3.
B.3 Proof of Lemma 3
Let us set t, = L%JT Therefore, according to Algorithm 1 we have:
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for 1 < j < p. Then, the update rule of Algorithm 1, can be rewritten as:
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where @ comes from the update rule of our Algorithm. Now, from (34) we compute the average
model as follows:

) = 1 G
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First, without loss of generality, suppose ¢t = t. + r where r denotes the indices of local updates. We
note that fort, +1 <t <t.+ T, Et||5<(t) — xﬁt) ||? does not depend on time t < t. for 1 < j < p.
We bound the term E||x®) — xl(t) |? fort.+1 < t=t.+r < t.+ 7 inthree steps: 1) We first relate
this quantity to the variance between stochastic gradient and full gradient, 2) We use Assumption 1

on unbiased estimation and i.i.d sampling, 3) We use Assumption 2 to bound the final terms. We
proceed to the details each of these three steps.
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Step 1: Relating to variance
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where @ holds because t = t. +r < t.+ 7, @is due to [[a — b||? < 2(||a||* + [|b]|?), ® comes
from E[X?] = E[[X — E[X]]?] + E[X]?, @ comes from unbiased estimation Assumption 1.

Step 2: Unbiased estimation and i.i.d. sampling
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® is due to independent mini-batch sampling as well as unbiased estimation Assumption. ® follow
from inequality || -7, a:[* < m 0, [lai]>.

Step 3: Using Assumption 2

Next step is to bound the terms in (37) using Assumption 2 as follow:
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Now taking summation over worker indices (38), we obtain:
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B.4 Proof of Lemma 4

The lemma is simply a recursive application of (18). We write out the details below. We use the short
hand notation: d(*) £ 7P ||VF(X§t))||2.
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We can rewrite (41) as follows:
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Now, using the vector notation in (23) and iterating (43), we obtain the following:
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B.5 Proof of Lemma 5
To show Lemma 5, it suffices to show that for the choice of learning rates stated in the lemma, the

coefficients of d* in the statement of Lemma 1, i.e., (27), are all non-positive. So, we aim to show
that
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1) Nty > Nty if tq < to.
2) Atl < At2 ift; < to.
3) Bt1 > Btz ift; < to.

Using these properties, we have:
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Since 7, is decreasing with ¢, it suffices to show that n; > 12 . We show that
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for the a = at + 4 where avexp (—é) < K4 /192 (’%1) this condition holds. At a high level,

note that AI_I =(1- ﬁ)“l is upper bounded by a 64/0‘, that is, as 7 increases, this
expression viewed as a function of 7 has a finite limit. Given that B; is the ratio of two affine
terms in 7, we are guaranteed that for a sufficiently small o and for a sufficiently large 7, and

performing some elementary manipulations, we can ensure that n; = ﬁ will be larger than
L = =—L——. We write out the details below: We aim to show that
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where @ follows from the fact that (a —3)" 'L(Cy + p) < 16ML 7(r — 1)(a + 1)"~2 and

%Cl(’%l)h —D(a+1)2< (p%l) 6452 (T —1)%(a+ 1)7~2, and the last inequality above has
to be shown for sufficiently large 7.

Letting a = a7 + 4 leads to the following condition:
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where @ follows from the property that - +1 is non-decreasing with respect to 7. From (48) we get
our condition over « as follows:
1
((p+ )19262e5 — @ ) ( Lyioak2ed + 6a> T—5>0 (49)
p

. Note that the above is satisfied so long as % <K 192( 1) and

((%)192/@26% + 6a> + \/((;)192526a + 6@) +20 ((%)192%26% - a2)

2 ((Pp )192k2e% — a?)

T >

(50)

Remark 2. Note that the left hand side of (46) is independent of the time and is smaller than any
condition over 1, derived to cancel out the effect of ||g||3 periodically and satisfying it for every n is
a sufficient condition to have this property.

Note that due to the choice of 7, it can cancel out the effect of B; and we can rewrite the (43) as
follows:

E[F (&) — F*] < AE[F(ER®D) — F*] + A, (51)
B.6 Proof of Lemma 6
From Lemma 5, we have:
Clt+1) < A(t) + Ay (52)

Define z; £ (t + a)? similar to [33], we have
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Now by multiplying both sides of (54) with % we have:
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where @ follows from (53). Next iterating over (54) leads to the following bound:
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Final step in proof is to bound Zf;ol ;—’;Ak as follows:
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Next we bound two terms in (56) as follows:
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where @ follows from | % |7+ a > |k + a] and @ comes from the fact that Tn] < 2 for any integer
n > 0.

Based on these inequalities we get:
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Then, the upper bound becomes as follows:
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Finally, from (60) we conclude:
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C Proof of Theorem 2

Theorem 2 can be seen as an extension of Theorem 1, and for the purpose of the proof and letting
te = [ £ |7 where T = Zil 7;, we only need following Lemmas:

Lemma 7. Under Assumptions 1 to 3 we have:
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Lemma 8. Under assumptions I to 3, if we choose the learning rate as 0, = ﬁ inequality (18)
reduces to
E[F(XRTV)] — F* < AE[F(xW) — F*] + Ay, (63)

for all iterations and ¢ = amax; 7, + 4 and 4 < L %'
ea

Finally, for the rest of the proof we only need to reconsider the last term as follows:
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The rest of the proof is similar to the proof of Theorem 1.
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