
A The Assouad and Fano Methods for Minimax Lower Bounds

In this precursor to the appendix, we review the Le Cam, Fano and Assouad methods [2, 29, 1, 27]
for proving lower bounds for stochastic optimization. Each reduces estimation to testing then uses
information theoretic tools to bound the probability of error in various hypothesis tests.

A.1 Le Cam and Fano Methods

We start with a lemma that provides the standard reduction from estimation to testing that we
extensively use in our proofs. This is essentially [12, Ex. 7.5]; we provide the proof for completeness.
Lemma 1 (From estimation to testing). Let P be a collection of distributions over X and L :
⇥⇥ P ! R+ satisfy

inf
✓2⇥

L(✓, P ) = 0 for P 2 P.

For distributions P,Q 2 P , define the separation

sepL(P,Q;⇥) := sup

⇢
� � 0

���� for all ✓ 2 ⇥,
L(✓, P )  � implies L(✓, Q) � �

L(✓, Q)  � implies L(✓, P ) � �

�
.

Let � > 0 and {Pv}v2V ⇢ P be a family of distributions indexed by a finite set V satisfying the
separation condition sepL(Pv, Pv0 ;⇥) � � for v 6= v

0
2 V . Then for Xn

1

iid
⇠ P ,

inf
b✓

sup
P2P

EPL(b✓(Xn
1
), P ) � � inf

 
P( (Xn

1
) 6= V ),

where P is the joint distribution over the random index V chosen uniformly in V and X
n
1

iid
⇠ Pv

conditional on V = v.

Proof. Let V ⇠ Uniform(V) and X
n
1
| (V = v)

iid
⇠ Pv . Then for any estimator b✓, we have

sup
P2P

EPL(b✓(Xn
1
), P ) �

1

|V|

X

v

EPvL(b✓, Pv) � �
1

|V|

X

v

Pv(L(b✓, Pv) � �) = �P(L(b✓(Xn
1
), PV ) � �),

where P denotes the joint distribution of X
n
1

and V . Define the test  (xn
1
) :=

argminv2V L(b✓(xn
1
), Pv). The separation assumption guarantees that if  (✓) 6= v then L(✓, Pv) � �,

so
P(L(b✓(Xn

1
), PV ) � �) � P ( (Xn

1
) 6= V ) .

Taking the infimum over all tests  yields the result.

With this, the classical Le Cam and Fano methods are straightforward combinations of Lemma 2 with
(respectively) Le Cam’s lemma [29, Lemma 1] and Fano’s inequality [8, Theorem 2.10.1].
Proposition 6 (Le Cam’s method). Let P0 and P1 be two distributions of P over X . Let � > 0 be
such that sepL(P0, P1,⇥) � �. Then

inf
b✓

sup
P2P

EPL(b✓(Xn
1
), P ) �

�

2
(1� kP

n
0
� P

n
1
k
tv
).

Proposition 7 (Fano’s method). Let V be a finite index set and {Pv}v2V a collection of distributions
contained by P such that minv 6=v0 sepL(Pv, Pv0 ,⇥) � �, then

inf
b✓

sup
P2P

EPL(b✓(Xn
1
), P ) � �

✓
1�

I(Xn
1
;V ) + log 2

log |V|

◆
.

With these tools, minimax lower bounds on the stochastic risk MS

n in Section 2 follow by (i)
demonstrating an appropriate loss L and (ii) separation. The next lemma, essentially present in the
paper [1] (cf. [11]), reduces optimization to testing by providing an appropriate separation function.

12



Lemma 2 (From optimization to function estimation). Let X be a sample space, ⇥ ⇢ Rd, F be a
collection a functions Rd

⇥ X ! R, and P be a collection of distributions over X . Let V index
{Pv}v2V ⇢ P . For F 2 F , define fv(✓) := EPv [F (✓, X)] and for each v, v

0
2 V , set

dopt(v, v
0
,⇥) := inf

✓2⇥

⇢
fv(✓) + fv0(✓)� inf

✓2⇥

fv(✓)� inf
✓2⇥

fv0(✓)

�
.

If dopt(v, v0,⇥) � � � 0 for all v 6= v
0
2 V , then

MS

n(⇥,F) � MS

n(⇥,F ,P) �
�

2
inf
 

P( (Xn
1
) 6= V ).

Proof. We construct an appropriate loss L and apply Lemma 1. Define L(✓, P ) := fP (✓) �
inf✓2⇥ fP (✓). By construction, L(✓, P ) � 0 and inf✓2⇥ L(✓, P ) = 0 for all ✓ 2 ⇥ and P 2 P .
Let v 6= v

0
2 V . Then if L(✓, Pv) = fv(✓) � inf✓2⇥ fv(✓) 

1

2
dopt(v, v0,⇥), it is evidently the

case that fv0(✓)� inf✓2⇥ fv0(✓) � 1

2
dopt(v, v0,⇥), so that sepL(Pv, Pv0 ,⇥) � 1

2
dopt(v, v0,⇥). The

distributions {Pv}v2V are �/2-separated, allowing application of Lemma 1.

Our general strategy for proving lower bounds on MS

n is as follows:

• Choose a function F 2 F and define V and {Pv}v2V ⇢ P such that dopt(v, v0,⇥) � � > 0.
• Lower bound the testing error inf P( (Xn

1
) 6= V ), and choose the largest separation � to

make this testing error a positive constant.

To showcase this proof technique, we prove that minimax stochastic risk for 1-dimensional optimiza-
tion has lower bound 1/

p
n; we use this to address technicalities in later proofs.

Lemma 3. Let Fd=1 = {f : R⇥ X ! R | f(·, x) is convex and 1-Lipschitz}. Then

MS

n([�1, 1],Fd=1) �
1

4
p
6n

.

Proof. Let ⇥ = [�1, 1] and X = {±1},V = {±1}.

To see the separation condition, let F (✓, x) := |✓ � x|. For � 2 [0, 1

2
], we define Pv s.t. if X ⇠ Pv

we have

X =

⇢
1 with probability 1+v�

2

�1 with probability 1�v�
2

.

We have fv(✓) =
1+�
2

|✓ � v| + 1��
2

|✓ + v| and inf✓ fv(✓) =
1��
2

. To lower bound the separation,
note that

f1(✓) + f�1(✓)� inf
⇥

f1 � inf
⇥

f�1 = |✓ � 1|+ |✓ + 1|� (1� �) � �.

This yields dopt(1,�1,⇥) � �.

We lower bound the testing error via Proposition 6:

inf
 :Xn!{±1}

P( (Xn
1
) 6= V ) =

1

2
(1�

��Pn
1
� P

n
�1

��
tv
) �

1

2

✓
1�

r
n

2
Dkl (P1||P�1)

◆
,

where the rightmost inequality is Pinsker’s inequality. Noting that Dkl (P1||P�1) = � log 1+�
1��  3�2

for � 2 [0, 1

2
] and setting � = 1/

p
6n yields the result.

A.2 The Assouad Method

Assouad’s method reduces the problem of estimation (or optimization) to one of multiple binary
hypothesis tests. In this case, we index a set of distributions P = {Pv}v2V on a set X by the
hypercube V = {±1}d. For a function F : Rd

⇥ X ! R, we define fv(✓) := EPv [F (✓, X)]. Then
for a vector � 2 Rd

+
, following Duchi [11, Lemma 5.3.2], we say that the functions {fv} induce a

�-separation in Hamming metric if

fv(✓)� inf
✓2⇥

fv(✓) �
dX

j=1

�j1(sign(✓j) 6= vj) . (8)

With this condition, we have the following generalized Assouad method [11, Lemma 5.3.2].
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Lemma 4 (Generalized Assouad’s method). Let Xn
1

iid
⇠ PV , where V ⇠ Uniform({±1}d). Define

the averages

P+j :=
1

2d�1

X

v:vj=1

P
n
v and P�j :=

1

2d�1

X

v:vj=�1

P
n
v .

Assume that the collection {fv} for fv = EPv [F (·, X)] induces a �-separation (8). Then letting
F = {F}, the single function F ,

MS

n(⇥,F ,P) �
1

2

dX

j=1

�j(1� kP+j � P�jktv).

B Proofs for Section 3.1

B.1 Proof of Proposition 1

We use the general information-theoretic framework of reduction from estimation to testing presented
in Section A.1 to prove the lower bound.

Separation Let us consider the sample space X = {±ej}jd and the function F (✓, x) := ✓
>
x ;

F belongs to F
�,1. Let � 2 [0, 1/2], for v 2 {±1}d, we define Pv such that for X ⇠ Pv we have

X =

⇢
vjej with probability 1+�

2d

�vjej with probability 1��
2d .

We then have fv(✓) =
�
d✓

>
v. By duality,

f
⇤
v := inf

⇥

fv = �
�

d
sup

✓2Bp(0,1)
v
>
✓ = �

�

d
kvkp⇤ ,

where p
⇤ is such that 1/p+ 1/p⇤ = 1. For v, v0 2 {±1}d, we thus have:

dopt(v, v
0
,⇥) = inf

✓2⇥

fv(✓) + fv0(✓)� f
⇤
v � f

⇤
v0 = inf

✓2Bp(0,1)

�

d
(✓>(v + v

0) + kvkp⇤ + kv
0
kp⇤)

=
�

d
(kvkp⇤ + kv

0
kp⇤ � kv + v

0
kp⇤)

= 2
�

d

h
d
1/p⇤

� (d� dHam(v, v
0))1/p

⇤
i
,

where dHam(v, v0) is the Hamming distance between v and v
0. The Gilbert-Varshimov bound [12,

Lemma 7.5] guarantees the existence of a d/2 `1-packing of {±1}d of size at least exp(d/8). Let V
be such a packing; we have that, for a numerical constant c0 > 0:

8v 6= v
0
2 V, dopt(v, v

0
,⇥) � c0�d

�1/p
. (9)

Applying Lemma 2 yields

MS

n(⇥, �) �
c0

2
�d

�1/p inf
 

P( (Xn
1
) 6= V ).

Bounding the testing error We bound the testing error with Fano’s inequality and upper bounding
the mutual information I(X;V ). Using the identity � log 1+�

1��  3�2, it holds

I(Xn
1
;V )  nmax

v,v0
Dkl (Pv||Pv0)  3n�2,

and, recalling that log |V| � d/8 yields

inf
 

P( (Xn
1
) 6= V ) �

✓
1�

3n�2 + log 2

d/8

◆
.
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In the case that d � 32 log 2, choosing � =
q

d
48n yields the desired lower-bound. In the case

that d < 32 log 2, with F
d=1 as in Lemma 3, that any 1-dimensional optimization problem may be

embedded into a d-dimensional problem yields

MS

n(⇥, �) � MS

n([�1, 1],Fd=1) & 1
p
n
.

This gives the lower bound for all d 2 N.

To conclude the proof, we establish an upper bound on the minimax regret. We consider the regret
guarantee of (5) for h(✓) = 1

2
k✓k

2

2
. Since p � 2, it holds that for all ✓ 2 Rd

, k✓k2  d
1
2�

1
p k✓kp

and thus sup✓,✓02⇥
Dh(✓, ✓0)  d

1
2�

1
p . On the other hand, since r 2 [1, 2], kgk2  kgkr  1. A

straightforward optimization of the stepsize ↵ yields the upper bound on MR

n(⇥, �).

B.2 Proof of Proposition 2

The proof is very similar to Proposition 1 so we forego some of the details.

Separation We consider X = {±1}d and F (✓, x) := ⌘✓
>
x—we will decide the value of ⌘ later

in the proof. For v 2 {±1}d, we define Pv such that for X ⇠ Pv we have

Xj =

⇢
vj with probability 1+�

2

�vj with probability 1��
2

.

This yields fv(✓) = ⌘�✓
>
v. Considering again the Gilbert-Varshimov packing V ⇢ {±1}d, we

lower bound the separation

for all v 6= v
0
2 V, dopt(v, v

0
,⇥) = inf

✓2⇥

fv(✓) + fv0(✓)� f
⇤
v � f

⇤
v0 � c0⌘�d

1/p⇤
.

Bounding the testing error Noting that

Dkl (Pv||Pv0) =
X

jd

1vj=v0
j
� log

1 + �

1� �
 3d�2,

and have I(Xn
1
;V )  3nd�2. For F to remain in F

�,1, we must have that for all x 2 X , ⌘kxkr  1;
noting that kxkr = d

1/q , we choose ⌘ = d
�1/q . In the case that d � 32 log 2, choosing � = 1/

p
48n

yields the minimax lower-bound

MS

n(⇥, �) & d
1
p⇤ d

� 1
q

p
n

=
d

1
2�

1
p d

1
2�

1
q

p
n

.

In the case that d < 32 log 2, we once again refer Lemma 3, which concludes the proof for the lower
bound on the minimax stochastic risk.

For the upper bound, we turn to (5), with h(✓) = 1

2
k✓k

2

2
. It holds again that sup✓,✓02⇥

Dh(✓, ✓0) 

d
1/2�1/p. Since r � 2, we have that supkgkr1

kgk2 = d
1
2�

1
r and choosing the stepsize ↵ to

optimize (5) yields the upper bound on the minimax regret.

C Proofs for Section 3.2

C.1 Proof of Theorem 1

For the upper bound, we use Corollary 1. Because B�(0, 1) is quadratically convex, we have
QHull(B�(0, 1)) = B�(0, 1), so that supg2QHull(B�(0,1)) ✓

>
g = �

⇤(✓), giving the upper bound. The
lower bound uses Proposition 3. Define the hyperrectangle Rec(✓) :=

Q
jd[�|✓j |, |✓j |], so that, by

orthosymmetry of ⇥, ⇥ � Rec(✓) for all ✓ 2 ⇥. Additionally, recalling the notation (3) of F�,1 and
F

M , if M 2 Rd
+

satisfies �(M)  1 then, by orthosymmetry of �, F�,1
� F

M . Thus

MS

n(⇥, �) � MS

n(Rec(✓), �) � MS

n(Rec(✓),F
M ) �

1

8
p
n log 3

X

jd

|✓j |Mj
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for all M 2 B�(0, 1)\Rd
+

and ✓ 2 ⇥. Taking a supremum over M 2 B�(0, 1) and ✓ 2 ⇥, we have

MS

n(⇥, �) �
1

8
p
n log 3

sup
✓2⇥

sup
�(M)1

✓
>
M =

1

8
p
n log 3

sup
✓2⇥

�
⇤(✓).

C.2 Proof of Theorem 2

The upper bound is simply Corollary 1. For the lower bound, similar to our warm-up in Section 3.1,
we consider “sparse” gradients, though instead of using Fano’s method we use Assouad’s method to
more carefully relate the geometry of the norm � and constraint set ⇥.

Let a be such that Rec(a) ⇢ ⇥. We consider the sample space X := {±ej}jd and functions

F (✓, x) :=
X

jd

1

�(ej)
|xj ||✓j � ajxj |.

For any x 2 X , the subdifferential @✓F (✓, x) has at most one non-zero coordinate; the orthosymmetry
of � implies F 2 F

�,1. Let p 2 Rd
+

(to be specified presently) be such that 1>
p = 1 and for

1  j  d, let �j 2 [0, 1/2]. We define the distributions Pv on X by

X =

(
vjej with probability pj(1+�j)

2

�vjej with probability pj(1��j)
2

.

With this choice, we evidently have

fv(✓) = EX⇠PvF (✓, X) =
X

jd

pj

�(ej)


1 + �j

2
|✓j � ajvj |+

1� �j

2
|✓j + ajvj |

�

and immediately that inf⇥ fv =
P

jd
pjaj

�(ej)
(1 � �j). As a consequence, we have the Hamming

separation (recall Eq. (8))

fv(✓)� inf
⇥

fv =
X

jd

pjaj�j

�(ej)
1sign(✓j) 6=vj ,

which allows us to apply Assouad’s method via Lemma 4.

Using the same notation as Lemma 4, we have
��Pn

+j � Pn
�j

��2
tv


1

2
Dkl

�
Pn
+j ||Pn

�j

�
 log 3 · npj�

2

j .

Choosing �j = min{ 1

2
,

1

2

p
npj log(3)

} yields the lower bound

MS

n(⇥, �) �
1

8

X

jd

aj

�(ej)
min

⇢
pj ,

p
pj

p
n log 3

�
,

and by taking pj = ( aj

�(ej)
)2/ka/�(e·)k22, we obtain for any a 2 ⇥ that

MS

n(⇥, �) � MS

n(Rec(a), �) �
1

8

X

jd

aj

�(ej)
min

(
a
2

j

�(ej)2ka/�(e·)k22
,

1
p
n log 3

aj

�(ej)ka/�(e·)k2

)

=
1

8 ka/�(e.)k2
2

dX

j=1

a
2

j

�(ej)2
min

⇢
aj

�(ej)
,
ka/�(e.)k2
p
n log 3

�
.

For notational simplicity, define the set T := {✓/�(e.) | ✓ 2 ⇥}, which is evidently orthosymmetric
and convex (it is a diagonal scaling of ⇥). Then

MS

n(⇥, �) � sup
u2T

1

8 kuk2
2

dX

j=1

u
2

j min

⇢
uj ,

kuk
2

p
n log 3

�
. (10)

16



For any vector u 2 Rd
+

and c < 1, if we define J = {j 2 [d] | uj �
cp
d
kuk

2
}, then

kuk
2

2
= kuJk

2

2
+kuJck

2

2
 kuJk

2

2
+kuk

2

2

X

j2Jc

c
2

d
 kuJk

2

2
+c

2
kuk

2

2
, i.e. kuJk2 �

p
1� c2 kuk

2
.

Now, fix k 2 N. If in the supremum (10) we consider any vector u 2 T, u � 0 satisfying kuk
0
 k,

then setting the index set J = {j : uj � kuk
2
/
p
n log 3} = {j : uj � kuk

2
/
p
k(n/k) log 3} we

have

MS

n(⇥, �) �
1

8 kuk2
2

dX

j=1

u
2

j min

⇢
uj ,

kuk
2

p
n log 3

�
�

1

8 kuk2
2

X

j2J

u
2

j

kuk
2

p
n log 3

�
1

8

✓
1�

k

n log 3

◆
kuk

2
p
n log 3

.

Taking a supremum over u with kuk
0
 k gives the theorem.

C.3 Proof of Corollary 2

Given proof of Theorem 2, the proof is nearly immediate. Let p 2 [1, 2],� 2 (R+ \ {0})d and
�(v) = k� � vkp. For the lower bound, the final display of the proof of Theorem 2 above guarantees
the lower bound MS

n(⇥, �) � 1

16
kuk

2
/
p
n for all u 2 {✓/�(e.) | ✓ 2 ⇥} and n � 2d. We first

observe that QHull (B�(0, 1)) = {v, k� � vk
2
 1}. Thus, the upper bound in Theorem 2 is

MR

n(⇥, �) 
1
p
n
sup
✓2⇥

sup
g:k��gk21

✓
>
g.

Using
sup

g:k��gk21

u
>
g = sup

z:kzk21

u
> (z/�) = ku/�k

2
,

and recalling �j = �(ej) concludes the proof.

C.4 Proof of Corollary 3

There is a bijective mapping between F and F
�,1: for F 2 F , ✓0 2 ⇥0, and x 2 X , we define

eF (✓0, x) := F (U✓0, x). dom eF � ⇥0 and its subdifferential is [16, Thm. 4.2.1]

@✓
eF (✓0, x) = U

>
@✓F (U✓0, x).

Since eF falls within the scope of Theorems 1 or Corollary 2, there exists a diagonal re-scaling ⇤⇤ that
achieves the optimal rate. We conclude the proof by observing that a diagonally re-scaled stochastic
gradient update on eF corresponds to the update ✓i+1 = ✓i � U⇤⇤

U
>
gi where gi 2 @✓F (✓i, Xi).

D Proofs for Section 4

D.1 Proof of Theorem 3

Let us tackle the first case stated in the theorem; we reduce the second case to the first one by scaling
the dimension.

D.1.1 Case 1  p  1 + 1/ log(2d)

We always have the lower bound 1/
p
n by Lemma 3 by reducing to a lower-dimensional problem, so

we assume without loss of generality that d � 8.

Separation Let us consider V = {±ej}jd. For v = ±ej 2 V , we define Pv on X 2 {±1}d by
choosing coordinates of X independently via

Xj =

(
1 with probability 1+�vj

2

�1 with probability 1��vj

2
.
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Immediately, we have EPvX = �v. For x 2 {±1}d, we define F (✓, x) := d
�1/p⇤

✓
>
x, so F 2 F

�,1,
fv(✓) = EPvF (✓, X) = �d

�1/p⇤
✓
>
v, and a calculation gives that f⇤

v := inf⇥ fv = ��d
�1/p⇤

. For
v 6= v

0
2 V , we have

dopt(v, v
0
,⇥) = inf

✓2⇥

fv(✓) + fv0(✓)� f
⇤
v � f

⇤
v0 = d

�1/p⇤
� inf
✓2⇥

�
(v + v

0)>✓ + 2
�

= �d
�1/p⇤

(2� kv + v
0
kp⇤)

� (2�
p
2)�d�1/p⇤

.

Lemma 2 yields

MS

n(⇥, �) �
2�

p
2

2
�d

�1/p⇤
inf

 :Xn!V
P( (Xn

1
) 6= V ).

It now remains to bound the testing error.

Bounding the testing error Noting that |V| = log(2d), we lower bound the testing error via Fano’s
inequality

inf
 :Xn!V

P( (Xn
1
) 6= V ) �

✓
1�

I(Xn
1
;V ) + log 2

log(2d)

◆
.

For any v 6= v
0
2 V , we have for � 2 [0, 1

2
] that

Dkl (Pv||Pv0) = � log
1 + �

1� �
 3�2.

We can thus bound the mutual information between X
n
1

and V

I(Xn
1
;V )  nmax

v 6=v0
Dkl (Pv||Pv0)  3n�2.

In the case that d < 8, the lower bound holds trivially via Lemma 3. In the case that d � 8, assuming
that choosing �2 = log(2d)

6n ^
1

2
yields

MS

n(⇥, �) �
2�

p
2

2
d
�1/p⇤

min

(r
log(2d)

6n
,
1

2

)✓
1�

1

2
�

1

4

◆
, (11)

which is valid for all p 2 [1, 2]. In the case that 1  p  1 + 1/ log(2d), we note that d�1/p⇤
=

1/d
p�1
p � 1/e, which yields

MS

n(⇥, �) � c ·

r
log(2d)

n
^ 1

for a numerical constant c0 > 0.

To conclude, we need to establish the upper bound. Let us choose a = 1 + 1/ log(2d),
sup✓2⇥ k✓ka supg2B� (0,1)kgka⇤p

a�1
p
n

upper bounds the minimax regret. Since a > p, sup✓2⇥
k✓ka = 1.

We have a
⇤ = log(2d) + 1 and p

⇤
� a

⇤. We have

kgka⇤  d
1
a⇤ � 1

p⇤ kgkp⇤  d
1
a⇤ ,

because g 2 Bp⇤(0, 1). We note that d1/a
⇤
= exp

⇣
log d

log(2d)+1

⌘
 e. Noting that 1/

p
2(a� 1) =

p
log(2d)/2 concludes this case.

D.1.2 Case 1 + 1/ log(2d) < p  2

Let d0  d. We can embed a function Fd0 : Rd0 ⇥ X ! R as a function F : Rd
⇥ X ! R by

letting ⇡d0 denote the projection onto the first d0-components, and defining

F (✓, x) = Fd0(⇡d0✓, x).

If the subgradients of Fd0 lie in Bp⇤(0, 1), so do those of F . Similarly, if ✓0 2 {⌧ 2 Rd0 , k⌧kp  1}
then ✓ = (✓0,0d0+1:d) 2 Bp(0, 1). As such, any lower bound for the d0-dimensional problem
implies an identical one for all d � d0-dimensional problems. For 1 + 1/ log(2d) < p  2, let us

18



define d0 = d1/2 exp( 1

p�1
)e, so d0  d as desired. In the case that p > 1 + 1/ log 16, Lemma 3

yields the desired lower bound. In the case that p  1 + 1/ log 16, we have that d0 � 8, and the
lower bound (11) holds so that for a numerical constant c > 0,

MS

n(⇥, �) � cd
�1/p⇤

0
·

r
log(2d0)

n
^ 1.

We have that d�1/p⇤

0
� (1/2)

1
p�1 exp(�1/p) �

p
2/e. This yields the final lower bound

MS

n(⇥, �) � c ·
1p

2(p� 1)n
^ 1.

Proposition 5 yields the upper bound and concludes this proof.

D.2 Proof of Theorem 4

Let A � 0 be a positive semi-definite matrix for the distance generating function hA(✓) =
1

2
✓
>
A✓

defined above, and let q = p
p�1

be the conjugate to p. We choose linear functions Fi(✓) := g
>
i ✓

where gi 2 Bq(0, 1). In this case, letting {✓i}in be the points mirror descent plays, the regret with
respect to ✓ 2 Rd is

Regretn,A(✓) =
X

in

Fi(✓i)� Fi(✓) =
X

in

g
>
i (✓i � ✓),

so that

Regret
⇤
n,A := sup

k✓kp1

Regretn,A(✓) =

����
X

in

gi

����
q

+
1

2

X

in

kgik
2

A�1 �
1

2

����
X

in

gi

����
2

A�1

.

Now, we choose linear functions fi so that the regret is large. To do so, choose vectors

u 2 argmax
kxkq1

x
>
A

�1
x and v 2 argmin

kxkq=1

x
>
A

�1
x. (12)

Now, we choose the vectors gi 2 Rd so that for a � 2 [0, 1] to be chosen,

(a) gi = u for n/4 of the indices i 2 [n]

(b) gi = �u for n/4 of the indices i 2 [n]

(c) gi = v for n
4
(1 + �)n of the indices i 2 [n]

(d) gi = �v for n
4
(1� �) of the indices i 2 [n].

With these choices, we obtain the regret lower bound

Regret
⇤
n,A � sup

�1


n

2
� kvkq +

n

4
u
>
A

�1
u�

�
2
n
2

8
v
>
A

�1
v

�

�
n

4
·


u
>
A

�1
u+min

⇢
1,

2 kvkq
nv>A�1v

�
kvkq

�
. (13)

We now consider two cases. In the first, A is large enough that kvkq �
1

2
nv

>
A

�1
v. Then the regret

bound (13) becomes
Regret

⇤
n,A �

n

4

h
u
>
A

�1
u+ kvkq

i
�

n

4
,

as kvkq = 1 by the construction (12). This gives the first result of the theorem. For the second
claim, which holds in the case that kvkq <

1

2
nv

>
A

�1
v, we consider the operator norms of general

invertible linear operators. For a mapping T : Rd
! Rd, define the `p to `q operator norm

kTk`p!`q
:= sup

x 6=0

kT (x)kq
kxkp

.
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Then the construction (12) evidently yields

u
>
A

�1
u = kA

�1/2
k
2

`q!`2 and
kvk

2

q

v>A�1v
= sup

x 6=0

kA
1/2

xk
2

q

kxk
2

2

= kA
1/2

k
2

`2!`q .

Revisiting the regret (13), we obtain

Regret
⇤
n,A �

n

4
·

���A�1/2
���
2

`q!`2
+

2

n

���A1/2
���
2

`2!`q

�
�

r
n

2
kA

�1/2
k`q!`2kA

1/2
k`2!`q ,

where we have used that ab  1

2
a
2 + 1

2
b
2 for all a, b. But for any invertible linear operator, standard

results on the Banach-Mazur distance [26, Corollary 2.3.2] imply that

inf
A�0

kAk`2!`q

��A�1
��
`q!`2

� d
1/2�1/q

.

This gives the result.

E Proof of Theorem 5

The proof follows similar lines as the one we show in Appendix D.2 but choosing different u, v 2 Rd.
Let ↵ � 0 be a stepsize. We consider linear functions Fi(✓) := g

>
i ✓ with k� � gik1  1. Let

{✓i}in be the iterates of online gradient descent. The regret with respect to ✓ 2 Rd is

Regretn,↵(✓) =
X

in

g
>
i (✓i � ✓).

This yields

Regret
⇤
n,↵ = sup

k✓k11

Regretn,↵(✓) =

������

X

in

gi

������
1

+
↵

2

X

in

kgik
2

2
�
↵

2

������

X

in

gi

������

2

2

.

Let k = argminjd �j , we choose

u = ek/�k and v =
1

k�k
1

.

For � 2 [0, 1], we now choose the vectors gi 2 Rd as follows:

(a) gi = u for n/4 of the indices i 2 [n].
(b) gi = �u for n/4 of the indices i 2 [n].
(c) gi = v for n

4
(1 + �) of the indices i 2 [n].

(d) gi = �v for n
4
(1� �) of the indices i 2 [n].

For this construction, we lower bound the regret

Regret
⇤
n,↵ � sup

0�1

⇢
n�

2
kvk

1
+

n↵

4
kuk

2

2
�
↵�

2
n
2

8
kvk

2

2

�

�
n↵

4
kuk

2

2
+

n kvk
1

4
min

(
1,

2 kvk
1

n↵ kvk
2

2

)
.

(14)

If the stepsize is too small (i.e. ↵ 
2

n
kvk1

kvk2
2

) then (14) becomes

Regret
⇤
n,↵ �

nd

4 k�k
1

.

In the other case that ↵ >
2

n
kvk1

kvk2
2

, (14) yields

Regret
⇤
n,↵ �

n

4↵
kuk

2

2
+

kvk
2

1

kvk
2

2

↵

2
�

p
2

2

p
nd

minjd �j
,

which is the desired result.
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