
A Stochastic Gradient HMC

Assume we want to draw samples θ ∼ p(θ|XO), the potential energy U(θ) is defined as (for our
partial amortized inference algorithm, this is replaced with Eq. 3)

U(θ) = −
∑

xI∈XO

log p(xi|θ)− log p(θ). (11)

Typically, we use the mini-batch to estimate this quantity, therefore, the stochastic estimate of U(θ)
with the batch XS can be written as

Ũ(θ,XS) = −|O|
|S|

∑
xi∈XS

log p(xi|θ)− log p(θ), (12)

where |S| and |O| are the number of rows for XS and XO respectively.

The preconditioned SGHMC [6] uses the diagonal Fisher information matrix as the adaptive pre-
conditioner with moving average approximations[24]. Thus, the transition dynamics at time t is the
following :

B = 1
2ε

Vt−1 = (1− τ)Vt−2 + τ∇θŨ(θ) · ∇θŨ(θ)
gt−1 = 1√

λ+
√
Vt−1

Preconditioning Computation

pt = (1− εβ)pt−1 − εgt−1∇θŨ(θ) + ε∂gt−1

∂θt−1
+
√

2ε(β −B)η

θt = θt−1 + εgt−1pt−1

}
SGHMC Updates

(13)

where η ∼ N (0, I) and ε is the step size. [6] shows that the continuous-time dynamics of the above
transitions can indeed preserve the stationary distribution π(θ) ∝ exp(−U(θ)). In practice, the
update equation of the preconditioning SGHMC Eq. 13 is closely related to Adam optimizer as
discussed in [6]. Intuitively, this can be regarded as a specially designed Adam with properly scaled
Gaussian noise. Algorithm 2 shows the procedure of the partial amortized inference.

Algorithm 2: Amortized Inference + SGHMC
input :Data XO , step size ε, friction β, thinning τ , learning rate γ, initialized θ, max sample size N
Result: Variational parameter φ and {θn}Nn=1

Model and sampler initialization;
counter=0;
while not converged do

Sample minibatch XS ∈XO;
Random masking with mask m: X̃S = XS ×m;
/* Inference Network Update */
Compute L(X̃S ;φ) using Eq.4;
qφ: Optimize(L(X̃S ;φ);Adam;γ);
/* SGHMC step */
Compute Ũ(θ) using Eq.3 with proper scale;
θ: Simulate dynamics Eq.13;
/* Update the sample pool */
if counter= Kτ , where K is any positive integer then
{θn} =Update({θn},θ,N); // Using FIFO procedure

end
counter+=1;

end

B Conditional BELGAM

We follow the similar notations as in main text, but we have additional target sets YO and Y ∗ in
observed training and test data respectively. By similar derivations in [45], we have

log p(YO|XO, θ) ≥
∑
i∈XO

[
Eqφ(zi|xi,yi)[log p(yi|zi, θ)]−KL[qφ(zi|xi, yi)||p(zi|xi)]

]
(14)
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Note that the encoder proposed in BELGAM can handle variable-sized inputs, thus, we can
make further approximation p(zi|xi) ≈ qφ(zi|xi). We call the right hand side of Eq. 14 as
Lconditional(YO;φ). We should note that Lconditional(YO;φ) only focuses on prediction quality. On
the contrary, successful active prediction, as discussed in main text, requires the model not only has a
better target prediction but also capture the correlations between input features for sequential active
decisions. Thus, in practice, we need to include the Eq. 2 as well. Thus during each SGHMC step,
Eq. 2 is replaced with

L({YO,XO};φ) = βLconditional(YO;φ) + (1− β)Ljoint(XO;φ) (15)

where β controls which tasks the model focuses on. When β = 0.5, we have

log p({XO,YO}, θ) ≥ L({XO,YO}; θ) (16)

with equality holds when qφ(zi|xi) = p(zi|xi) and qφ(zi|xi, yi) = p(zi|xi, yi). In experiment,
we choose β = 0.6. We can also derive the equivalent form for Eq.4 using similar procedures for
inference network update.

C Information acquisition

C.1 Theoretical results

Review: EDDI. For the active target prediction, model need to decide which feature should be
queried for the purpose of predicting the target Y accurately in each test selection step. [28] proposes
a reward function for this test task inspired by Bayesian experimental design [4, 26]. They propose to
select the data point xi,d by maximizing:

R(xi,d,XO) = Exi,d∼p(xi,d|XO) [KL[p(yi|xi,d,XO)||p(yi|XO)]] . (17)

We find that this can be written as the mutual information between the target yi and the candidate
xi,d:

R(xi,d,XO) = H[p(yi|XO)]− Ep(xi,d|XO)[H[p(yi|XO, xi,d)]]. (18)

Thus, maximizing this quantity is equivalent to finding the most informative feature to the predictive
target variable yi. However, this is not a suitable acquisition function in the training time as it is
built on the assumption that the model is well trained and able to find the true informative features.
Specifically, from Eq.18, it should be noted that xi,d is irrelevant to the first term. Thus, maximizing
this objective is equivalent to minimizing the expected entropy after observing xi,d, or conditional
entropy H(yi|xi,d). This objective purely encourages exploitation. For example, it can fail in the
following scenario. In the beginning of training acquisition, the model may capture the wrong
informative feature due to the small training data set. The exploitation nature of EDDI tends to pick
this wrong feature over others in the following acquisitions and will be trapped into the sub-optimal
strategy.

EDDI for PA-BELGAM. Next, we show that with a trained PA-BELGAM, the above objective can
be approximated efficiently. We assume the decoupled posterior p(θ,Z|Xo) ≈ p(θ|XO)p(Z|XO)

and conditionally independent features p(xi|zi, θ) =
∏|oi|
d=1 p(xi,d|θ,zi). The EDDI rewards in

Eq.17 can be rewritten by using KL chain rule:

KL[p(yi|xi,d,XO)||p(yi|XO)] =KL[p(yi, zi, θ|xi,d,XO)||p(yi, zi, θ|XO)]

− Ep(yi|xi,d,XO)[KL[p(zi, θ|yi, xi,d,XO)||p(zi, θ|yi,XO)]].

(19)

The first term can be further approximated as

KL[p(yi, zi, θ|xi,d,XO)||p(yi, zi, θ|XO)] = KL[p(zi, θ|xi,d,XO)||p(zi, θ|XO)]

+KL[p(yi|zi, θ, xi,d,XO)||p(yi|zi, θ,XO)]

= KL[p(zi|xi,d,XO, θ)||p(zi|XO, θ)] +KL[p(θ|xi,d,XO)||p(θ|XO)] +KL[p(yi|zi, θ)||p(yi|zi, θ)]
= KL[p(zi|xi,d,XO)||p(zi|XO)].

(20)
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where the last equality holds if we assume no posterior updates for θ. This is a reasonable assumption
because xi,d is only single data point adding into a much larger set XO. By using similar trick, we
can show the second term in Eq.19 is re-written as

Ep(yi|xi,d,XO)[KL[p(zi, θ|yi, xi,d,XO)||p(zi, θ|yi,XO)]]

= Ep(yi|xi,d,XO)[KL[p(zi|yi, xi,d,XO)||p(zi|XO,yi)] +KL[p(θ|yi,XO, xi,d)||p(θ|XO,yi)]]

= Ep(yi|xi,d,XO)[KL[p(zi|yi, xi,d,XO)||p(zi|XO,yi)]].

(21)

Then, we replace the posterior of Z with variational approximations qφ. Eq.17 can be aproximated as

R(xi,d,XO) ≈Ep(xi,d|XO)[KL[qφ(zi|xi,d,XO)||qφ(zi|XO)]]

− Ep(xi,d,yi|XO)[KL[qφ(zi|yi, xi,d,XO)||qφ(zi|XO,yi)]].
(22)

This is exactly equivalent to the original form in [28]. The only difference is the sampling stage for
xi,d ∼ p(xi,d|XO) and xi,d,yi ∼ p(xi,d,yi|XO), where the θ samples are needed.

zi ∼ qφ(zi|XO)

θ ∼ p(θ|XO) using SGHMC
xi,d ∼ p(xi,d|zi, θ)
yi ∼ p(yi|zi, θ)

(23)

Connections of Icebreaker acquisition function to mutual information We now show that the
information acquisition function proposed in Eq.10 with α = 1

2 is equivalent to the mutual information
between θ and the feature-target pair (yi, xi,d).

Rc(xi,d,XO) =
1

2
H[p(xi,d|XO)] +

1

2
Ep(xi,d|XO)[H[p(yi|xi,d,XO)]]︸ ︷︷ ︸

1

−1

2
Ep(θ|XO)[H[p(xi,d|θ,XO)]]− 1

2
Ep(θ,xi,d|XO)[H[p(yi|θ, xi,d,XO)]]︸ ︷︷ ︸

2

.

(24)

For 1 , we have

1 = −
∫
p(xi,d|XO)

[
log p(xi,d|XO) +

∫
p(yi|xi,d,XO) log p(yi|xi,d,XO)dyi

]
dxi,d

= −
∫
p(xi,d|XO)

∫
p(yi|xi,d,XO) log p(xi,d,yi|XO)dyidxi,d

= H[p(yi, xi,d|XO)].

(25)

For 2 :

2 =

∫
p(θ, xi,d|XO)

[
log p(xi,d|θ,XO) +

∫
p(yi|θ, xi,d,XO) log p(yi|θ, xi,d,XO)dyi

]
dθdxi,d

=

∫
p(θ, xi,d|XO)

[∫
p(yi|θ, xi,d,XO) log p(yi, xi,d|θ,XO)dyi

]
dθdxi,d

=

∫
p(yi, xi,d, θ|XO) log p(yi, xi,d|θ,XO)dyidxi,ddθ

= −Ep(θ|XO)[H[p(yi, xi,d|θ,XO)]].
(26)

Thus, the Eq.10 with α = 1
2 is written as

RC(xi,d,XO) =
1

2
(H[p(yi, xi,d|XO)]−Ep(θ|XO)[H[p(yi, xi,d|θ,XO)]]) =

1

2
I(θ, {yi, xi,d}|XO).

(27)
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D Active Prediction Evaluation Algorithm

Algorithm 3: Active prediction task evaluation
Result: Area under information curve AUIC
input :DO ,DU ,M,f(·),Y
/* Initialization */
DO = ∅;
AUIC= 0;
while DU 6= ∅ do

/* Test time acquisition */
Compute EDDI reward R(xi,d,DO) for xi,d ∈ DU using Eq.22 for each row i;
Select single xi,d ∈ DU into DO for each row i ; // Test time acquisition
/* Test Evaluation */
Predict Ỹ =Predict(M,DO); // Prediction
Compute p = f(Y ) ; // Evaluation
AUIC+=p; // Compute AUIC value

end

E Training details

In this section, we give details about the experiment setup and the training acquisition.

E.1 Training time acquisition

We compute the Icebreaker acquisition functions (Eq.10 or Eq.5) for the entire pool set XU . During
the selection ,we apply two heuristics. First, instead of picking the top K values, we first normalize
their rewards rid with temperature T :

wid =
exp(rid/T )∑
rid

exp(rid/T )
(28)

Then, we sample xi,d according to their weights wid. This is a common trick in the active learning
techniques to encourage some exploration [2, 58]. When T → 0, this sampling becomes the
maximization. The second heuristic is to balance the selected feature number from the observed and
new instances. Specifically, assume we need to select K values from the pool, we use the above
procedure to select K2 from the rows that have been queried with at least one feature before and other
K
2 from the rows that are completely new. This is to balance the proportion of exploiting the observed

rows and exploring the new ones. For a fair comparison, the second heuristic is applied for all the
baselines as well.

E.2 Training hyperparameters

UCI. We split the whole data set into the training and test sets with proportion 80% and 20%. In
order to mimic that some features may not be available for query, we manually mask 20% in the
training set. For the imputation task, 40% of the data in the test set are masked as the test target and
the remaining 60% are reserved as the test input. For the active prediction, we only mask the target
variable in the test set as the test target. We also sample 2% of the data instance as the pre-train data
as the model has not learned anything in the beginning and the acquisition is the same as random.

We use 5-dimensional latent variable z and the embedding for each feature ed has 10 dimensions. h(·)
is a neural network with 1 hidden layer of 20 units. The aggregation function g(·) is the summation.
For the decoder, it has the structure 5 − 100 − 40 − X , where X is the output dimensions. The
data set is normalized with 0 mean and unit variance. We use α = 1 and α = 0.4 in Eq.10 for the
imputation and the active prediction training time acquisition respectively. We use the learning rate
0.003 for the Adam optimizer and ε2 = 0.0003 for the SGHMC step size. We also use τ = 0.99,
and εβ = 0.1 for the SGHMC hyperparameters. The model is trained with 1500 epochs and 100
mini-batch size. The first 750 epochs are used for the SGHMC burn-in and no θ samples are recorded.
At each training time acquisition, the model selects 25 and 50 values from the pool for the active
prediction and the imputation respectively.

MovieLens-1M. The MovieLens-1m data set contains 1 million ratings for 3000 movies from 6000
users. Each rating is a categorical data ranging from 1 to 5. We follow the same data pre-processing
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Figure 8: (Left) The missing proportion of each feature in MIMIC III. (Middle and Right) The norm
of the weights. Zero feature weights indicate the corresponding feature is irrelevant to the target
according to the model. This figure is directly taken from [36].

procedure as [13] by selecting 1000 movies and 2000 users with the highest number of ratings. We
follow the same settings as the UCI imputation with 0.5% data as the pre-train and 20% of the values
in the test set as the targets. The model picks 5000 data points from the pool at the training acquisition
followed by a model re-initialization to avoid local optima [9].

The latent and feature embedding dimensions are 100 and 50 respectively. The decoder structure
is the same as the UCI setting apart from the input and output dimensions. The learning rate and
hyperparameters for Adam and SGHMC are the same as the UCI imputation. We train the model
using 300 epochs with 100 batch size. Similarly we use half of the total epochs for the SGHMC
burn-in. Each training acquisition selects 2000 values from the pool.

MIMIC III. The latent and feature embedding dimensions are the same as the UCI active prediction.
The decoder structure is changed to 5− 100− 100− 18, where 18 is the data dimension of MIMIC
III. The step size of SGHMC is changed to ε2 = 0.0001. The model is trained for 500 epochs with
100 batch size. The pre-train data set size is 0.5% of the pool data. Each training acquisition selects
50 values from the pool set. The data normalization is the same as the UCI.

E.2.1 MIMIC III data set statistics

MIMIC III data set after being processed by [11] is extremely imbalanced, where around 88% of
the data has label 0. Thus, training with this data set will result in a lazy model that only outputs
label 0. Typically additional pre-processing method for such data set is needed. In this project, we
manually balance the data by taking an equal number of instances with label 0 and 1, which forms
a new, balanced data set. We do the same for the test set as well. Figure 8 (Left) shows the feature
label and its missing proportion in MIMIC III. Table 1 shows the acronym of each label. From Figure
8 (middle and right), we can observe there is a clear shift of importance for Glucose. We hypothesize
the reason is that the relationship of Glucose and target is less linear and cannot be captured by the
linear model. For the Icebreaker, when the training data set is small, it is easier to pick up simple
relationships. Thus, Glucose seems to be less relevant in the beginning. But as the data set grows,
Icebreaker can capture non-linear dependencies and start to value the importance of Glucose.

F Additional UCI Results

For imputation task, we also evaluate the performance of Icebreaker on Concrete and Wine quality
data sets. For the active prediction, we investigate its performance and feature selection strategy in a
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Acronym Label Abbrv. Label
Cap. Capillary refill rate Glu. Glucose
Dia.BP Diastolic blood pressure HR Heart Rate
Ins.Oxy Fraction inspired oxygen Hei. Height
GCS:E GCS: eye opening MBP Mean blood pressure
GCS:M GCS: motor response Oxy.Sat Oxygen saturation
GCS:T GCS: total Res.R Respiratory rate
GCS:V GCS: verbal response Temp Temperature
Wei. Weight

Table 1: Label and its Acronym
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Figure 9

simple data set called Energy. For all these experiments, we follow the experiment setup mentioned
previously.

Imputation. Figure 9a shows the imputation NLL curve as the data set grows. As expected,
Icebreaker outperforms the baselines, especially when the training data size is small. Figure 9b shows
the selection pattern of Icebreaker, where we can observe a long-tailed strategy similar to Boston
housing and MovieLens-1m imputation.

Active Prediction. Figure 10 shows the AUIC curve as training data set size grows. We can see
Icebreaker still outperforms the other 3 baselines by a small margin. The possible reason is that
the Energy data set is a very simple data set with clear informative variables. We choose this set
for the purpose of diagnosing the selection strategy of Icebreaker rather than achieving significant
improvement over others. To investigate the strategy of Icebreaker, we group the features in Energy
data set into 4 groups: Useful for target, Useful, Harder to learn and Useless based on the middle
panel in Figure 11.

The x-axis in the middle panel of Figure 11 represents the sorted target value from low to high.
Y-axis indicates the feature values corresponding to the target. We can see for the blue line, it has a

18



0 250 500 750 1000 1250 1500 1750 2000 2250
Training Set Size

35.0

37.5

40.0

42.5

45.0

47.5

50.0

52.5

55.0

AU
IC

 V
al

ue

Boston Housing Active testing performance

Icebreaker+EDDI
Row AT+EDDI
PA-BELGAM+EDDI
PVAE+EDDI

0 250 500 750 1000 1250 1500 1750 2000 2250
Training Set Size

19

20

21

22

23

24

25

AU
IC

 V
al

ue

Energy Active testing performance

Icebreaker+EDDI
Row AT+EDDI
PA-BELGAM+EDDI
PVAE+EDDI

Figure 10: AUIC curve w.r.t. Energy data set size

clear boundary at target value −0.3 and the oscillation of this line is not large compared to others.
Thus, it acts as an indicator feature to separate the small and large target values, which is the most
useful one for predicting target. As for the red curve, it still has a relatively clear boundary but the
large oscillation indicates this is not a robust feature for the prediction. So we refer to it as "Useful".
Similar for green curve, its boundary is less clear and it has a even larger oscillation. Therefore, we
call it "harder to learn". As for the black curve, it acts as the pure noise and has no clear correlations
to target variables. We classify this as "Useless" features.

From the left panel in Figure 11, initially, "Harder to Learn" and "Useless" features are selected the
most. This is because the objective Eq.10 encourages the model to find the informative but hard
features. Due to the initially scarce training data, the model successfully figures out they are hard
to learn but fails to identify which one is more informative. Thus, the selected elements for both
features increases in a similar trend. With the data set growing, the model finds out the useless feature.
Although it is hard to learn, the model still reduces its query frequency. As for the other two useful
features, the model starts to select more of them after 800 data points.

The right panel in Figure 11 shows the initial choice made by the model during the active prediction.
There are actually two features that can be classified as ’Useful for target’. But we only plot one of
them in the left and middle panel of Figure 11 for clarity. The other one is plotted in the right panel
of Figure 11 with light blue. It is the same for ’Useful’ features.

It is expected that the ’Useful for target’ feature is regarded as the most important one by the model
though they are not selected the most in training. ’Useful’ and ’Harder to Learn’ features are also
selected with the number decreasing according to their importance. As expected, the ’Useless’
features are not selected at all. Thus, the Icebreaker can indeed discover the important features and
select the hard ones among them.
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Figure 11: (Left) Accumulated feature number (Middle) Correlations between the features and target
(Right) Initial choice at the test time acquisition.
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