
We wish to thank our reviewers for their insightful feedback that helped us improve the clarity and overall quality of our1

work. We have revised the paper as suggested by the reviewers. The corresponding changes are:2

• As mentioned by reviewer #1, the hardware requirements of PyTorch were not clearly explained. We therefore3

updated section 5.1 of our paper to state that PyTorch can run in a CPU only environment but will happily take4

advantage of GPUs if such devices are available.5

• To better support our performance claims, we compared the speed of PyTorch against that of 3 additional6

libraries (namely Chainer, CNTK and PaddlePaddle) as requested by reviewer #1. We included in our new7

comparison matrix the tools that Amazon or NVidia support officially. In essence, we relied on these companies8

to perform a market research study on our behalf and identify the best solutions currently available. However,9

we excluded Caffe and Theano from the final list since they are no longer actively maintained. We also10

excluded Keras since it is essentially a frontend running on top of TensorFlow, CNTK, or Theano. We11

reproduced the updated version of Table 1 below. We believe that these additional results confirm that the12

performance of PyTorch is indeed very competitive.13

• Reviewer #1 wondered about attribution. Since more than 1000 people have contributed to PyTorch, we can’t14

list every single individual. Instead we’ve highlighted the people who had a profound impact on the library15

and have significantly helped shape its development. We’ve also acknowledged the impact of the community16

as a whole in section 8.17

• We fixed the typographical error line 87 pointed out by reviewer #1.18

• We realized that didn’t cite the "Automatic differentiation in PyTorch" work from Paszke, Gross, Chintala,19

Chanan, Yang, DeVito, Lin, Desmaison, Antiga and Lerer submitted at the 2017 NIPS autodiff workshop. We20

added the missing reference in section 4.3.21

• Reviewer #2 mentioned that the last paragraph of Section 5.2 is confusing. We agree, and rewrote the paragraph22

to emphasize that we keep the execution of tensor operators on CPU synchronous since, unlike on GPU, the23

benefits of an asynchronous execution model are overshadowed by the overhead of cross-thread communication24

and synchronization.25

• We rewrote section 5.4 to explicitly state that the PyTorch multiprocessing module builds upon the native26

Python multiprocessing library. We emphasized that while the PyTorch version of the module optimizes the27

transfer of large tensors between processes, it leverages the Python implementation whenever possible.28

• We updated Listing 1 to refer to the ’nn.functional’ module instead of ’F’ to increase the clarity of the code as29

suggested by reviewer #230

• We reordered the list of programming languages to match the order in which array libraries are listed line31

37-38 to improve clarity as suggested by reviewer #3.32

Framework Throughput (higher is better)
AlexNet VGG-19 ResNet-50 MobileNet GNMTv2 NCF

Chainer 778± 15 N/A 219 ± 1 N/A N/A N/A
CNTK 845± 8 84± 3 210± 1 N/A N/A N/A
MXNet 1554 ± 22 113± 1 218± 2 444± 2 N/A N/A
PaddlePaddle 933± 123 112± 2 192± 4 557 ± 24 N/A N/A
TensorFlow 1422± 27 66± 2 200± 1 216± 15 9631± 1.3% 4.8e6± 2.9%
PyTorch 1547± 316 119 ± 1 212± 2 463± 17 15512 ± 4.8% 5.4e6 ± 3.4%

Table 1: Training speed for 6 models using 32bit floats. Throughput is measured in images per second for the AlexNet, VGG-19,
ResNet-50, and MobileNet models, in tokens per second for the GNMTv2 model, and in samples per second for the NCF model.
The fastest speed for each model is shown in bold.


