
A Discussion

We briefly remark some properties of the update steps of BPG-methods. Note that the updates are
independent for U and Z in (1.3), where updates can be done in parallel blockwise (communication
is only required to solve the 1D cubic equation). This can be potentially used to increase the speedup
in practice, in particular for large matrices. Some terms in gradients overlap, so using temporary
variables in implementation can possibly increase the speedup. These speedups are not restricted to
(1.3), however to all the update steps we mentioned in this paper.

We now provide insights on why BPG-methods are a better choice over other methods, with focus on
alternating methods.

• PALM-methods estimate a Lipschitz constant with respect to a block of coordinates in each
iteration, which is expensive for large block matrices. BPG-methods use a global L-smad
constant, which is computed only once.

• PALM-methods cannot be parallelized block wise, for example, in the two block case, the
computation of the Lipschitz constant of the second block must wait for the first block to be
updated, hence it is inherently serial.

• Alternating minimization methods do not converge for non-smooth regularization terms and
can be inefficient (for, e.g., ALS) for some matrix factorization problems (see, for example,
[34, 54]). BPG-methods and PALM-methods converge (due to linearization).

• PALM is not applicable to the 2D function g(x, y) = (x3 + y3)2, because the block-wise
Lipschitz continuity of the gradients fails to hold even after fixing one variable. BPG-
methods are applicable here.

• PALM is not applicable to, for example, symmetric matrix Factorization as also pointed in
[21] or the following penalty method based (relaxed) orthogonal NMF problem (see (1.1))

min
U∈U,Z∈Z

{
Ψ ≡ 1

2
‖A−UZ‖2F +

ρ

2

∥∥UTU− I
∥∥2

F
+ IU≥0 + IZ≥0 +R1(U) +R2(Z)

}
,

where second term does not have a block-wise Lipschitz continuous gradient for any ρ > 0.
Here BPG-methods are applicable (similarly also for Projective NMF) with minor changes to
the Bregman distance. For symmetric matrix factorization, we recover the kernel generating
distances proposed in [21].

• BPG-methods are very general so the choice of applications will increase substantially and
this will potentially open doors to design new losses and regularizers, without restricting to
Lipschitz continuous gradients.

State of the art models. The state-of-the-art matrix factorization models in [33] go beyond two
factors and new factorization models are introduced. BPG algorithms are not valid in their setting,
and requires potentially developing new Bregman distances. Also, BPG based methods are not
applicable for big data setting, where stochasticity plays a major role. The stochastic version of BPG
was recently proposed in [20]. The empirical comparisons to [33] is still open. Moreover, designing
the appropriate kernels in the context of new factorization models can possibly require substantially
technical proofs.

Extensions. Our algorithms can potentially extended to several applications, for example, multi-task
learning, general matrix sensing, weighted PCA with various applications including cluster analysis,
phase retrieval, power system state estimation. Even though CoCaIn BPG-MF appears to perform
best, the performance of BPG-MF which forms the basis for CoCaIn BPG-MF, is worst as illustrated
in 3. This possibly implies that the kernel choice or the coefficients involved in the kernels are not
optimal. Such optimal choice of kernel generating distances were partially explored in the context of
symmetric matrix factorization setting in [21], where new Bregman distances based on Gram kernels
were introduced with state of the art performance in applicable settings.

B Overview of the Results

Below, we provide a table with the problem or content description and corresponding section where
the results are presented.
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Matrix Factorization problem Section
Standard Matrix Factorization Section C

L2-Regularized Matrix Factorization Section C.1
Graph Regularized Matrix Factorization Section C.2

L1-Regularized Matrix Factorization Section C.3
Nuclear Norm Regularized Matrix Factorization Section C.4

Non-negative Matrix Factorization (NMF) Section D
L2-regularized NMF Section D.1
L1-regularized NMF Section D.2

Graph Regularized NMF Section D.3
Symmetric NMF via Non-Symmetric Relaxation Section D.4

Sparse NMF Section D.5
Matrix Completion Section E

Closed Form Solution with 5th-order Polynomials Section F
Conversion to Cubic Equation Section F.1

Extensions to Mixed Regularization Terms Section F.2
Technical Proofs Section G

Additional Experiments Section H

C Closed Form Solutions Part I for Matrix Factorization

Since, the update steps of BPG-MF and CoCaIn BPG-MF have same structure, we provide the closed
form expressions to just BPG-MF. We start with the following technical lemma.
Lemma C.1. Let Q ∈ RA×B for some positive integers A and B. Let t ≥ 0 and ‖Q‖F 6= 0 then

min
X∈RA×B

{
〈Q,X〉 : ‖X‖2F = t2

}
≡ min

X∈RA×B

{
〈Q,X〉 : ‖X‖2F ≤ t2

}
= −t ‖Q‖F ,

with the minimizer at X∗ = −tQ/ ‖Q‖F .

Proof. The proof is inspired from [41, Lemma 9]. On rewriting we have the following equivalence

min
X∈RA×B

{
〈Q,X〉 : ‖X‖2F ≤ t2

}
≡ − max

X∈RA×B

{
〈−Q,X〉 : ‖X‖2F ≤ t2

}
.

The expression 〈−Q,X〉 is maximized at X∗ = c(−Q) for certain constant c. On substituting we
have

〈−Q,X∗〉 = c ‖Q‖2F .

Since, the dependence on c is linear and we additionally require ‖X‖2F ≤ t2, we can set c = t
‖Q‖F

if
‖Q‖F 6= 0 else c = 0. Hence, the minimizer to

min
X∈RA×B

{
〈Q,X〉 : ‖X‖2F ≤ t2

}
is attained at X∗ = −t Q

‖Q‖F
for ‖Q‖F 6= 0 else X∗ = 0. The equivalence in the statement follows

as ‖X∗‖2F = t2.

Consider the following non-convex matrix factorization problem

min
U∈RM×K ,Z∈RK×N

{
Ψ(U,Z) :=

1

2
‖A−UZ‖2F

}
. (C.1)

Denote g = Ψ, f := 0, h = ha.
Proposition C.1. In BPG-MF, with above defined g, f, h the update steps in each iteration are given
by Uk+1 = −rPk, Zk+1 = −rQk where r is the non-negative real root of

c1

(∥∥Qk
∥∥2

F
+
∥∥Pk

∥∥2

F

)
r3 + c2r − 1 = 0 , (C.2)

with c1 = 3 and c2 = ‖A‖F .
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Proof. Consider the following subproblem

(Uk+1,Zk+1) ∈ argmin
(U,Z)∈RM×K×RK×N

{〈
Pk,U

〉
+
〈
Qk,Z

〉
+c1

(
‖U‖2F + ‖Z‖2F

2

)2

+ c2

(
‖U‖2F + ‖Z‖2F

2

) .

Denote the objective in the above minimization problem as O(Uk,Zk). Now, the following holds

min
(U,Z)∈RM×K×RK×N

(
O(Uk,Zk)

)
≡ min
t1≥0,t2≥0

{
min

(U,Z)∈RM×K×RK×N ,‖U‖F=t1,‖Z‖F=t2

(
O(Uk,Zk)

)}
, (C.3)

≡ min
t1≥0,t2≥0

{
min

(U,Z)∈RM×K×RK×N ,‖U‖F≤t1,‖Z‖F≤t2

(
O(Uk,Zk)

)}
, (C.4)

where the first step is a simple rewriting of the objective. The second step is non-trivial. In order to
prove (C.4) we rewrite (C.3) as

min
t1≥0,t2≥0

{
min

U1∈RM×K

{〈
Pk,U1

〉
: ‖U1‖2F = t1

}
+ min

Z1∈RK×N

{〈
Qk,Z1

〉
: ‖Z1‖2F = t2

}
+c1

(
t21 + t22

2

)2

+ c2

(
t21 + t22

2

)}
.

Now, note the following equivalence due to Lemma C.1

min
U1∈RM×K

{〈
Pk,U1

〉
: ‖U1‖2F = t1

}
≡ min

U1∈RM×K

{〈
Pk,U1

〉
: ‖U1‖2F ≤ t1

}
,

min
Z1∈RK×N

{〈
Qk,Z1

〉
: ‖Z1‖2F = t2

}
≡ min

Z1∈RK×N

{〈
Qk,Z1

〉
: ‖Z1‖2F ≤ t2

}
.

This proves (C.4). Now, we solve for (Uk+1,Zk+1) via the following strategy. Denote

U∗1(t1) ∈ argmin
{〈

Pk,U1

〉
: U1 ∈ RM×K , ‖U1‖2F ≤ t1

}
,

Z∗1(t2) ∈ argmin
{〈

Qk,Z1

〉
: Z1 ∈ RK×N , ‖Z1‖2F ≤ t2

}
.

Then we obtain (Uk+1,Zk+1) = (U∗1(t∗1),Z∗1(t∗2)), where t∗1 and t∗2 are obtained by solving the
following two dimensional subproblem

(t∗1, t
∗
2) ∈ argmin

t1≥0,t2≥0

{
min

U1∈RM×K

{〈
Pk,U1

〉
: ‖U1‖2F ≤ t1

}
+ min

Z1∈RK×N

{〈
Qk,Z1

〉
: ‖Z1‖2F ≤ t2

}
+c1

(
t21 + t22

2

)2

+ c2

(
t21 + t22

2

)}
.

Note that inner minimization subproblems can be trivially solved once we obtain U∗1(t1) and Z∗1(t2)
via Lemma C.1. Then the solution to the subproblem in each iteration is as follows:

Uk+1 =

{
t∗1
−Pk

‖Pk‖F
, for

∥∥Pk
∥∥
F
6= 0 ,

0 otherwise .

Zk+1 =

{
t∗2
−Qk

‖Qk‖F
, for

∥∥Qk
∥∥
F
6= 0 ,

0 otherwise .
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We solve for t∗1 and t∗2 with the following two dimensional minimization problem

argmin
t1≥0,t2≥0

{
−t1

∥∥Pk
∥∥
F
− t2

∥∥Qk
∥∥
F

+ c1

(
t21 + t22

2

)2

+ c2

(
t21 + t22

2

)}
.

Thus, the solutions t∗1 and t∗2 are the non-negative real roots of the following equations

−
∥∥Pk

∥∥
F

+ c1(t21 + t22)t1 + c2t1 = 0

−
∥∥Qk

∥∥
F

+ c1(t21 + t22)t2 + c2t2 = 0

Further simplifications lead to t1 = r
∥∥Pk

∥∥
F

and t2 = r
∥∥Qk

∥∥
F

for some r ≥ 0 such that r satisfies
the following cubic equation

c1

(∥∥Qk
∥∥2

F
+
∥∥Pk

∥∥2

F

)
r3 + c2r − 1 = 0 .

C.1 Extensions to L2-Regularized Matrix Factorization

We consider the following L2-Regularized Matrix Factorization problem [38].

min
U∈RM×K ,Z∈RK×N

{
Ψ(U,Z) :=

1

2
‖A−UZ‖2F +

λ0

2

(
‖U‖2F + ‖Z‖2F

)}
. (C.5)

Denote g := 1
2 ‖A−UZ‖2F , f := λ0

2

(
‖U‖2F + ‖Z‖2F

)
and h = ha.

Proposition C.2. In BPG-MF, with the above defined g, f, h the update steps in each iteration are
given by Uk+1 = −rPk, Zk+1 = −rQk where r is the non-negative real root of

c1

(∥∥Qk
∥∥2

F
+
∥∥Pk

∥∥2

F

)
r3 + (c2 + λ0)r − 1 = 0 , (C.6)

with c1 = 3 and c2 = ‖A‖F .

We skip the proof as it is very similar to Proposition C.1 and only change is in c2.

C.2 Extensions to Graph Regularized Matrix Factorization

Graph Regularized Matrix Factorization was proposed in [13]. However, they used non-negativity
constraints. We simplify the problem here by not considering the non-negativity constraints. We later
show in Section D.3, how the non-negativity constraints are handled. Here, given L ∈ RM×M we
are interested to solve

min
U∈RM×K ,Z∈RK×N

{
Ψ(U,Z) :=

1

2
‖A−UZ‖2F +

µ0

2
tr(UTLU) +

λ0

2

(
‖U‖2F + ‖Z‖2F

)}
.

In such a case, it is easy to extend the following ideas to Graph Regularized Non-negative Matrix
Factorization. We show here L-smad property. We first need the following technical lemma.
Lemma C.2. Let g1(U) = tr(UTLU), then for any H ∈ RM×K we have∇g1(U) = LU +LTU,〈

H,∇2g1(U)H
〉

= 2 〈LH,H〉 .

Proof. Note that tr(UTLU) = 〈LU,U〉, now we obtain for H ∈ RM×K the following

〈L(U + H),U + H〉 = 〈L(U + H),U + H〉
= 〈LU,U〉+ 〈LU,H〉+ 〈LH,U〉+ 〈LH,H〉 ,
= 〈LU,U〉+ 〈LU,H〉+

〈
LTU,H

〉
+ 〈LH,H〉 .

Thus the statement holds, by collecting the first and second order terms.

Now, we prove the L-smad property.
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Proposition C.3. Let g(U,Z) = 1
2 ‖A−UZ‖2F + µ0

2 tr(UTLU). Then, for a certain constant
L ≥ 1, the function g satisfies L-smad property with respect to the following kernel generating
distance,

hc(U,Z) = 3h1(U,Z) + (‖A‖F + µ0 ‖L‖F )h2(U,Z) .

Proof. The proof is similar to Proposition 2.1 and Lemma C.2 must be applied for the result.

Denote g := 1
2 ‖A−UZ‖2F + µ0

2 tr(UTLU), f := λ0

2

(
‖U‖2F + ‖Z‖2F

)
and h = hc.

Proposition C.4. In BPG-MF, with the above defined f, g, h the update steps in each iteration are
given by Uk+1 = −rPk, Zk+1 = −rQk where r ≥ 0 and satisfies

c1

(∥∥Qk
∥∥2

F
+
∥∥Pk

∥∥2

F

)
r3 + (c2 + µ0 ‖L‖F + λ0)r − 1 = 0 , (C.7)

with c1 = 3 and c2 = ‖A‖F .

The proof is similar to Proposition C.1 and only c2 changes.

C.3 Extensions to L1-Regularized Matrix Factorization

Now consider the following matrix factorization problem with L1-Regularization

min
U∈RM×K ,Z∈RK×N

{
Ψ(U,Z) :=

1

2
‖A−UZ‖2F + λ1 (‖U‖1 + ‖Z‖1)

}
. (C.8)

Recall that soft-thresholding operator is defined for any y ∈ Rd by

Sθ (y) = argminx∈Rd

{
θ ‖x‖1 +

1

2
‖x− y‖2

}
= max {|y| − θ, 0} sgn (y) , (C.9)

where θ > 0 and the operations are applied element-wise. We require the following technical result.
Lemma C.3. Let Q ∈ RA×B for some positive integers A and B. Let t0 > 0 and let t ≥ 0 then

min
X∈RA×B

{
〈Q,X〉+ t0 ‖X‖1 : ‖X‖2F ≤ t2

}
= −t ‖St0(−Q)‖F .

with the minimizer at X∗ = t
St0 (−Q)

‖St0 (−Q)‖
F

for ‖St0(−Q)‖F 6= 0 and otherwise all X such that

‖X‖2F ≤ t2 are minimizers. Moreover we have the following equivalence,

min
X∈RA×B

{
〈Q,X〉+ t0 ‖X‖1 : ‖X‖2F ≤ t2

}
≡ min

X∈RA×B

{
〈Q,X〉+ t0 ‖X‖1 : ‖X‖2F = t2

}
.

(C.10)

Proof. We have the following equivalence

min
X∈RA×B

{
〈Q,X〉+ t0 ‖X‖1 : ‖X‖2F ≤ t2

}
≡ − max

X∈RA×B

{
〈−Q,X〉 − t0 ‖X‖1 : ‖X‖2F ≤ t2

}
.

Then the result follows due to [41, Proposition 14] with the minimizer at X∗ = t
St0 (−Q)

‖St0 (−Q)‖
F

for

‖St0(−Q)‖F 6= 0 and 0 otherwise. The equivalence statement in (C.10) follows as ‖X∗‖2F = t2 for
‖St0(−Q)‖F 6= 0 and otherwise all the points satisfying ‖X‖2F = t2 are minimizers.

Denote g := 1
2 ‖A−UZ‖2F , f := λ1 (‖U‖1 + ‖Z‖1) and h = ha.

Proposition C.5. In BPG-MF, with the above defined g, f, h the update steps in each iteration are
given by Uk+1 = rSλ1λ(−Pk), Zk+1 = rSλ1λ(−Qk) where r ≥ 0 and satisfies

c1

(∥∥Sλ1λ

(
−Qk

)∥∥2

F
+
∥∥Sλ1λ

(
−Pk

)∥∥2

F

)
r3 + c2r − 1 = 0 , (C.11)

with c1 = 3 and c2 = ‖A‖F .
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Proof. The proof is similar to that of Proposition C.1, but with certain changes due to the L1 norm in
the objective. Consider the following subproblem

(Uk+1,Zk+1) ∈ argmin
(U,Z)∈RM×K×RK×N

{
λλ1 (‖U‖1 + ‖Z‖1) +

〈
Pk,U

〉
+
〈
Qk,Z

〉
+c1

(
‖U‖2F + ‖Z‖2F

2

)2

+ c2

(
‖U‖2F + ‖Z‖2F

2

) ,

Denote the objective in the above minimization problem as O(Uk,Zk). Now, we show that the
following holds

min
(U,Z)∈RM×K×RK×N

(
O(Uk,Zk)

)
≡ min
t1≥0,t2≥0

{
min

(U,Z)∈RM×K×RK×N ,‖U‖F=t1,‖Z‖F=t2

(
O(Uk,Zk)

)}
, (C.12)

≡ min
t1≥0,t2≥0

{
min

(U,Z)∈RM×K×RK×N ,‖U‖F≤t1,‖Z‖F≤t2

(
O(Uk,Zk)

)}
. (C.13)

where the first step is a simple rewriting of the objective. The second step is non-trivial. In order to
prove (C.13) we rewrite (C.12) as

min
t1≥0,t2≥0

{
min

U1∈RM×K

{〈
Pk,U1

〉
+ λλ1 ‖U‖1 : ‖U1‖2F = t1

}
+ min

Z1∈RK×N

{〈
Qk,Z1

〉
+ λλ1 ‖Z‖1 : ‖Z1‖2F = t2

}
+c1

(
t21 + t22

2

)2

+ c2

(
t21 + t22

2

)}
.

where the second step (C.13) uses Lemma C.3 and strong convexity of h. Now, note the following
equivalence due to Lemma C.3

min
U1∈RM×K

{〈
Pk,U1

〉
+ λλ1 ‖U‖1 : ‖U1‖2F = t1

}
≡ min

U1∈RM×K

{〈
Pk,U1

〉
+ λλ1 ‖U‖1 : ‖U1‖2F ≤ t1

}
, (C.14)

and

min
Z1∈RK×N

{〈
Qk,Z1

〉
+ λλ1 ‖Z‖1 : ‖Z1‖2F = t2

}
≡ min

Z1∈RK×N

{〈
Qk,Z1

〉
+ λλ1 ‖Z‖1 : ‖Z1‖2F ≤ t2

}
. (C.15)

We solve the subproblems via the following strategy. Denote

U∗1(t1) ∈ argmin
{〈

Pk,U1

〉
+ λλ1 ‖U‖1 : U1 ∈ RM×K , ‖U1‖2F ≤ t1

}
Z∗1(t2) ∈ argmin

{〈
Qk,Z1

〉
+ λλ1 ‖Z‖1 : Z1 ∈ RK×N , ‖Z1‖2F ≤ t2

}
Then we obtain (Uk+1,Zk+1) = (U∗1(t∗1),Z∗1(t∗2)), where t∗1 and t∗2 are obtained by solving the
following two dimensional subproblem

(t∗1, t
∗
2) ∈ argmin

t1≥0,t2≥0

{
min

U1∈RM×K

{〈
Pk,U1

〉
+ λλ1 ‖U‖1 : ‖U1‖2F ≤ t1

}
+ min

Z1∈RK×N

{〈
Qk,Z1

〉
+ λλ1 ‖Z‖1 : ‖Z1‖2F ≤ t2

}
+c1

(
t1 + t2

2

)2

+ c2

(
t1 + t2

2

)}
.
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Note that inner minimization subproblems can be trivially solved once we obtain U∗1(t1) and Z∗1(t2).
Due to Lemma C.3 we obtain the solution to the subproblem in each iteration as follows

Uk+1 =

t∗1
Sλλ1 (−Pk)

‖Sλλ1 (−Pk)‖
F

, for
∥∥Sλλ1

(−Pk)
∥∥
F
6= 0 ,

0 otherwise .

Zk+1 =

t∗2
Sλλ1 (−Qk)

‖Sλλ1 (−Qk)‖
F

, for
∥∥Sλλ1

(−Qk)
∥∥
F
6= 0 ,

0 otherwise .

We solve for t∗1 and t∗2 with the following two dimensional minimization problem

argmin
t1≥0,t2≥0

{
−t1

∥∥Sλλ1
(−Pk)

∥∥
F
− t2

∥∥Sλλ1
(−Qk)

∥∥
F

+ c1

(
t21 + t22

2

)2

+ c2

(
t21 + t22

2

)}
.

Thus, the solutions t∗1 and t∗2 are the non-negative real roots of the following equations

−
∥∥Sλλ1(−Pk)

∥∥
F

+ c1(t21 + t22)t1 + c2t1 = 0

−
∥∥Sλλ1

(−Qk)
∥∥
F

+ c1(t21 + t22)t2 + c2t2 = 0 .

Set t1 = r
∥∥Sλλ1(−Pk)

∥∥
F

and t2 = r
∥∥Sλλ1(−Qk)

∥∥
F

for some r ≥ 0. This results in the following
cubic equation,

c1

(∥∥Sλλ1(−Qk)
∥∥2

F
+
∥∥Sλλ1(−Pk)

∥∥2

F

)
r3 + c2r − 1 = 0 ,

where the solution is the non-negative real root.

C.4 Extensions with Nuclear Norm Regularization

We start with the notion of Singular Value Shrinkage Operator [14], where given a matrix Q ∈ RA×B
of rank K with Singular Value Decomposition given by UΣVT with U ∈ RA×K , Σ ∈ RK×K and
V ∈ RK×N for t ≥ 0 the output is

Dt(Q) = USt(Σ)VT , (C.16)

where the soft-thresholding operator is applied only to the singular values. Before we proceed, we
require the following technical lemma.

Lemma C.4. Let Q ∈ RA×B of rank K with Singular Value Decomposition given by UΣVT with
U ∈ RA×K , Σ ∈ RK×K and Z ∈ RK×N . Let t ≥ 0 and ‖Q‖F 6= 0 then

min
X∈RA×B

{
〈Q,X〉+ t0 ‖X‖∗ : ‖X‖2F ≤ t2

}
= −t ‖St0(−Σ)‖ .

with X∗ = t
Dt0 (−Q)

‖Dt(−Q)‖F
if ‖Dt0(−Q)‖ 6= 0 else any X such that ‖X‖2F ≤ t2 is a minimizer.

Moreover we have the following equivalence

min
X∈RA×B

{
〈Q,X〉+ t0 ‖X‖∗ : ‖X‖2F ≤ t2

}
= min

X∈RA×B

{
〈Q,X〉+ t0 ‖X‖∗ : ‖X‖2F = t2

}
.

(C.17)

Proof. The sub-differential of the nuclear norm [14] is given by

∂ ‖X‖∗ =
{
UVT + W : W ∈ RA×B ,UTW = 0,WV = 0, ‖W‖2 ≤ 1

}
. (C.18)

The normal cone for the set C1 =
{

X : ‖X‖2F ≤ t2
}

is given by

NC1(X̄) =
{
V ∈ RA×B :

〈
V,X− X̄

〉
≤ 0 for all X ∈ C1

}
≡
{
θX̄ : θ ≥ 0

}
.

We consider the following problem

min
X∈RA×B

{
〈Q,X〉+ t0 ‖X‖∗ : ‖X‖2F ≤ t2

}
.
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and the optimality condition [55, Theorem 10.1, p. 422] results in

0 ∈ Q + t0∂ ‖X‖∗ +NC1
(X) .

We follow the strategy from [14, Theorem 2.1]. One can decompose −Q as

−Q = U0Σ0VT
0 + U1Σ1VT

1 .

where U0,V0 contain the singular vectors for singular values greater than t0 and U1,V1 for less
than equal to t0. Then with X = U0ΣVT

0 , the optimality condition becomes

0 = Q + t0(U0VT
0 + W) + θU0ΣVT

0 , (C.19)

and thus we obtain

U0Σ0VT
0 + U1Σ1VT

1 = t0
(
U0VT

0 + W
)

+ θU0ΣVT
0 .

With W = t−1
0 U1Σ1VT

1 all the conditions in (C.18) are satisfied. For some unknown θ ≥ 0 we
have

θΣ = Σ0 − t0I .
The objective 〈Q,X〉+ t0 ‖X‖∗ is now monotonically decreasing with θ after substituting. Thus, we
obtain the solution X = t

‖Σ0−t0I‖U0 (Σ0 − t0I) VT
0 for ‖Σ0 − t0I‖ 6= 0 else the solution is 0. The

equivalence statement in (C.17) follows trivially because if ‖Σ0 − t0I‖ 6= 0 we have ‖X‖2F = t2

otherwise all the points satisfying ‖X‖2F ≤ t2 are minimizers.

Here, we want to solve matrix factorization problem with nuclear norm regularization, where for
certain constant λ2 > 0 we want to solve

min
U∈RM×K ,Z∈RK×N

{
Ψ(U,Z) :=

1

2
‖A−UZ‖2F + λ2 (‖U‖∗ + ‖Z‖∗)

}
. (C.20)

Denote g := 1
2 ‖A−UZ‖2F , f := λ2 (‖U‖∗ + ‖Z‖∗) and h = ha.

Proposition C.6. In BPG-MF, with the above defined g, f, h the update steps in each iteration are
given by Uk+1 = rDλ1λ(−Pk), Zk+1 = rDλ1λ(−Qk) where r ≥ 0 and satisfies

c1

(∥∥Dλ1λ

(
−Qk

)∥∥2

F
+
∥∥Dλ1λ

(
−Pk

)∥∥2

F

)
r3 + c2r − 1 = 0 , (C.21)

with c1 = 3 and c2 = ‖A‖F .

The proof is similar to Proposition C.5 but Lemma C.4 must be used instead of Lemma C.3.

C.5 Extensions with Non-Convex Sparsity Constraints

We want to solve the matrix factorization problem with non-convex sparsity constraints [8]

min
U∈RM×K ,Z∈RK×N

{
Ψ(U,Z) :=

1

2
‖A−UZ‖2F : ‖U‖0 ≤ s1, ‖Z‖0 ≤ s2,

}
. (C.22)

The problem with additional non-negativity constraints, the so called Sparse NMF is considered
in Section D.5. Now, denote g := 1

2 ‖A−UZ‖2F , f := I‖U‖0≤s1 + I‖Z‖0≤s2 and h = ha. Note
that the Assumption C is not valid here, hence CoCaIn BPG-MF theory does not hold and hints at
possible extensions of CoCaIn BPG-MF, which is an interesting open question. Before, we proceed,
we require the following concept. Let y ∈ Rd and without loss of generality we can assume that
|y1| ≥ |y2| ≥ . . . ≥ |yd|, then the hard-thresholding operator [41] is given by

Hs (y) = argminx∈Rd
{
‖x− y‖2 : ‖x‖0 ≤ s

}
=

{
yi, i ≤ s,
0, otherwise,

(C.23)

where s > 0 and the operations are applied element-wise. We require the following technical lemma.
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Lemma C.5. Let Q ∈ RA×B for some positive integers A and B. Let t ≥ 0 and ‖Q‖F 6= 0 then

min
X∈RA×B

{
〈Q,X〉 : ‖X‖2F ≤ t2, ‖X‖0 ≤ s

}
= −t ‖Hs(−Q)‖ .

with the minimizer X∗ = tHs(−Q)
‖Hs(−Q)‖ if ‖Hs(−Q)‖ 6= 0 else X∗ = 0 . Moreover we have the

following equivalence

min
X∈RA×B

{
〈Q,X〉 : ‖X‖2F ≤ t2, ‖X‖0 ≤ s

}
= min

X∈RA×B

{
〈Q,X〉 : ‖X‖2F = t2, ‖X‖0 ≤ s

}
.

Proof. The proof is similar to [41, Proposition 11]. We have

min
X∈RA×B

{
〈Q,X〉 : ‖X‖2F ≤ t2, ‖X‖0 ≤ s

}
= − max

X∈RA×B

{
〈−Q,X〉 : ‖X‖2F ≤ t2, ‖X‖0 ≤ s

}
,

= − max
X∈RA×B

{
〈Hs(−Q),X〉 : ‖X‖2F ≤ t2

}
.

The first equality is a simple rewriting of the objective. Then, the corresponding objective 〈−Q,X〉
can be maximized with

∑A
i=1

∑B
j=1 I(i,j)∈Ω0

(−QijXij) where Ω0 is set of index pairs and I(i,j)∈Ω0

is 1 if the index pair if (i, j) ∈ Ω0 and zero otherwise. Note that the objective 〈−Q,X〉 is maximized
if Ω0 contains all the index pairs corresponding to the elements of −Q with highest absolute value
which is captured by Hard-thresholding operator. Thus, the second equality follows and the solution
follows due to Lemma C.1. The equivalence statement follows as ‖X∗‖2F = t2 for ‖Hs(−Q)‖ 6= 0

else the function value is zero and is attained by all the points in the set
{

X : ‖X‖2F ≤ t2
}

are
minimizers, hence the equivalence.

Proposition C.7. In BPG-MF, with the above defined g, f, h the update steps in each iteration are
given by Uk+1 = rHs1(−Pk), Zk+1 = rHs2(−Qk) where r ≥ 0 and satisfies

c1

(∥∥Hs1 (−Qk
)∥∥2

F
+
∥∥Hs2 (−Pk

)∥∥2

F

)
r3 + c2r − 1 = 0 , (C.24)

with c1 = 3 and c2 = ‖A‖F .

The proof is similar to Proposition C.5 but Lemma C.5 must be used instead of Lemma C.3.

D Closed Form Solutions Part II for NMF variants

For simplicity we consider the following problem [36, 37]

min
U∈RM×K ,Z∈RK×N

{
Ψ(U,Z) :=

1

2
‖A−UZ‖2F + IU≥0 + IZ≥0

}
. (D.1)

We setR1(U) = 0,R2(Z) = 0, g = Ψ and f = IU≥0 + IZ≥0 where I is the indicator operator. We
start with the following technical lemma.

Lemma D.1. Let Q ∈ RA×B for some positive integers A and B. Let t ≥ 0 and ‖Q‖F 6= 0 then

min
X∈RA×B

{
〈Q,X〉 : ‖X‖2F ≤ t2,X ≥ 0

}
= −t ‖Π+(−Q)‖F ,

with the minimizer X∗ = t Π+(−Q)
‖Π+(−Q)‖F

if ‖Π+(−Q)‖F 6= 0 else X∗ = 0. For ‖Π+(−Q)‖F 6= 0,
we have the following equivalence

min
X∈RA×B

{
〈Q,X〉 : ‖X‖2F ≤ t2,X ≥ 0

}
≡ min

X∈RA×B

{
〈Q,X〉 : ‖X‖2F = t2,X ≥ 0

}
. (D.2)

Proof. On rewriting we have the following equivalence

min
X∈RA×B

{
〈Q,X〉 : ‖X‖2F ≤ t2,X ≥ 0

}
≡ − max

X∈RA×B

{
〈−Q,X〉 : ‖X‖2F ≤ t2,X ≥ 0

}
.
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The expression 〈−Q,X〉 is maximized at X∗ = cΠ+(−Q) for certain constant c. On substituting
we have

〈−Q,X∗〉 = c ‖Π+(−Q)‖2F .

Since, the dependence on c is linear and we additionally require ‖X‖2F ≤ t2, we can set c =
t

‖Π+(−Q)‖F
if ‖Π+(−Q)‖F 6= 0 else c = 0. Hence, the minimizer to

min
X∈RA×B

{
〈Q,X〉 : ‖X‖2F ≤ t2

}
is attained at X∗ = −t Π+(−Q)

‖Π+(−Q)‖F
for ‖Π+(−Q)‖F 6= 0 else X∗ = 0. The equivalence in the

statement follows as ‖X∗‖2F = t2.

Denote g = Ψ, f = IU≥0 + IZ≥0 and h = ha.
Proposition D.1. In BPG-MF, when g = Ψ in (D.1) the update step in each iteration are given by
Uk+1 = Π+(−Pk), Zk+1 = Π+(−Qk) where r ≥ 0 and satisfies

c1

(∥∥Π+(−Qk)
∥∥2

F
+
∥∥Π+(−Pk)

∥∥2

F

)
r3 + c2r − 1 = 0 . , (D.3)

with c1 = 3 and c2 = ‖A‖F .

Proof. The proof is similar to that of Proposition C.1, but with certain changes due to the involved
non-negativity constraints for the objective. Consider the following subproblem

(Uk+1,Zk+1) ∈ argmin
(U,Z)∈RM×K

+ ×RK×N
+

{〈
Pk,U

〉
+
〈
Qk,Z

〉

+c1

(
‖U‖2F + ‖Z‖2F

2

)2

+ c2

(
‖U‖2F + ‖Z‖2F

2

) .

Denote the objective in the above minimization problem as O(Uk,Zk). Now, we show that the
following holds

min
(U,Z)∈RM×K×RK×N

(
O(Uk,Zk)

)
≡ min
t1≥0,t2≥0

{
min

(U,Z)∈RM×K×RK×N ,‖U‖F=t1,‖Z‖F=t2

(
O(Uk,Zk)

)}
, (D.4)

≡ min
t1≥0,t2≥0

{
min

(U,Z)∈RM×K×RK×N ,‖U‖F≤t1,‖Z‖F≤t2

(
O(Uk,Zk)

)}
, (D.5)

where the first step is a simple rewriting of the objective and involved variables and the second
equivalence proof is similar to that equivalence of (C.13) and (C.12) in Proposition C.5, which we
describe now. The second step is non-trivial. In order to prove (D.5) we rewrite (D.4) as

min
t1≥0,t2≥0

{
min

U1∈RM×K

{〈
Pk,U1

〉
: ‖U1‖2F = t1,U1 ≥ 0

}
+ min

Z1∈RK×N

{〈
Qk,Z1

〉
: ‖Z1‖2F = t2,Z1 ≥ 0

}
+c1

(
t21 + t22

2

)2

+ c2

(
t21 + t22

2

)}
.

where the second step uses Lemma D.1 and strong convexity of h. Now, due to Lemma C.3, if∥∥Π+(−Pk)
∥∥
F
6= 0 we have

min
U1∈RM×K

{〈
Pk,U1

〉
: ‖U1‖2F = t1 ,U1 ≥ 0

}
≡ min

U1∈RM×K

{〈
Pk,U1

〉
: ‖U1‖2F ≤ t1 ,U1 ≥ 0

}
,

(D.6)
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and similarly if
∥∥Π+(−Qk)

∥∥
F
6= 0 we have

min
Z1∈RK×N

{〈
Qk,Z1

〉
: ‖Z1‖2F = t2 ,Z1 ≥ 0

}
≡ min

Z1∈RK×N

{〈
Qk,Z1

〉
: ‖Z1‖2F ≤ t2 ,Z1 ≥ 0

}
.

(D.7)

Note that if
∥∥Π+(−Pk)

∥∥
F

= 0 and
∥∥Pk

∥∥
F
6= 0 then the objective

min
U1∈RM×K

{〈
Pk,U1

〉
: ‖U1‖2F = t1 ,U1 ≥ 0

}
with minimum function value of a positive value t1 min

i∈[M ], j∈[K]
{(Pk)i,j} where we have [A] =

{1, 2, . . . , A} for a positive integer A. Similarly if
∥∥Π+(−Qk)

∥∥
F

= 0 and
∥∥Qk

∥∥
F
6= 0 the

minimum function value for

min
Z1∈RK×N

{〈
Qk,Z1

〉
: ‖Z1‖2F = t2 ,Z1 ≥ 0

}
is a positive value t2 min

i∈[K], j∈[N ]
{(Qk)i,j}. Thus for

∥∥Pk
∥∥
F
6= 0 with

∥∥Π+(−Pk)
∥∥
F

= 0 (or∥∥Qk
∥∥
F
6= 0 with

∥∥Π+(−Qk)
∥∥
F

= 0) the final objective (D.4) is monotonically increasing in t1
(or t2) which will drive t1 (or t2) to 0 due to the constraint t1 ≥ 0 (or t2 ≥ 0). So, without loss
of generality we can consider

∥∥Π+(−Qk)
∥∥
F
6= 0 and

∥∥Π+(−Qk)
∥∥
F

= 0. Now, we obtain the
solutions via the following strategy. Denote

U∗1(t1) ∈ argmin
{〈

Pk,U1

〉
: U1 ∈ RM×K+ , ‖U1‖2F ≤ t1

}
,

Z∗1(t2) ∈ argmin
{〈

Qk,Z1

〉
: Z1 ∈ RK×N+ , ‖Z1‖2F ≤ t2

}
.

Then we obtain (Uk+1,Zk+1) = (U∗1(t∗1),Z∗1(t∗2)), where t∗1 and t∗2 are obtained by solving the
following two dimensional subproblem

(t∗1, t
∗
2) ∈ argmin

t1≥0,t2≥0

{
min

U1∈RM×K
+

{〈
Pk,U1

〉
: ‖U1‖2F ≤ t1

}
+ min

Z1∈RK×N
+

{〈
Qk,Z1

〉
: ‖Z1‖2F ≤ t2

}
+c1

(
t1 + t2

2

)2

+ c2

(
t1 + t2

2

)}
.

Note that inner minimization subproblems can be trivially solved once we obtain U∗1(t1) and Z∗1(t2).
Due to Lemma D.1 we obtain the solution to the subproblem in each iteration as follows

Uk+1 =

{
t∗1

Π+(−Pk)
‖Π+(−Pk)‖F

, for
∥∥Π+(−Pk)

∥∥
F
6= 0 ,

0, otherwise .

Zk+1 =

{
t∗2

Π+(−Qk)
‖Π+(−Qk)‖F

, for
∥∥Π+(−Qk)

∥∥
F
6= 0 ,

0, otherwise .

We solve for t∗1 and t∗2 with the following two dimensional minimization problem

argmin
t1≥0,t2≥0

{
−t1

∥∥Π+(−Pk)
∥∥
F
− t2

∥∥Π+(−Qk)
∥∥
F

+ c1

(
t21 + t22

2

)2

+ c2

(
t21 + t22

2

)}
.

Thus, the solutions t∗1 and t∗2 are the non-negative real roots of the following equations

−
∥∥Π+(−Pk)

∥∥
F

+ c1(t21 + t22)t1 + c2t1 = 0 ,

−
∥∥Π+(−Qk)

∥∥
F

+ c1(t21 + t22)t2 + c2t2 = 0 .

Further simplifications lead to t1 = r
∥∥Π+(−Pk)

∥∥
F

and t2 = r
∥∥Π+(−Qk)

∥∥
F

for some r ≥ 0.
This results in the following cubic equation,

c1

(∥∥Π+(−Qk)
∥∥2

F
+
∥∥Π+(−Pk)

∥∥2

F

)
r3 + c2r − 1 = 0 ,

where the solution is the non-negative real root.
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D.1 Extensions to L2-regularized NMF

Here, the goal is solve the following minimization problem

min
U∈RM×K ,Z∈RK×N

{
Ψ(U,Z) :=

1

2
‖A−UZ‖2F +

λ0

2

(
‖U‖2F + ‖Z‖2F

)
+ IU≥0 + IZ≥0

}
.

Denote g := 1
2 ‖A−UZ‖2F + λ0

2

(
‖U‖2F + ‖Z‖2F

)
, f := IU≥0 + IZ≥0 and h = hb.

Proposition D.2. In BPG-MF, with above defined g, f, h the update step in each iteration are given
by Uk+1 = Π+(−Pk), Zk+1 = Π+(−Qk) where r ≥ 0 and satisfies

c1

(∥∥Π+(−Qk)
∥∥2

F
+
∥∥Π+(−Pk)

∥∥2

F

)
r3 + (c2 + λ0)r − 1 = 0 ,

with c1 = 3 and c2 = ‖A‖F .

The proof is similar to Proposition D.1 with only change in c2.

D.2 Extensions to L1-regularized NMF

Here, the goal is solve the following minimization problem

min
U∈RM×K ,Z∈RK×N

{
Ψ(U,Z) :=

1

2
‖A−UZ‖2F + λ1 (‖U‖1 + ‖Z‖1) + IU≥0 + IZ≥0

}
.

We denote eD to be a vector of dimension D with all its elements set to 1.

Lemma D.2. Let Q ∈ RA×B for some positive integers A and B. Let t ≥ 0 and ‖Q‖F 6= 0 then

min
X∈RA×B

{
〈Q,X〉+ t0 ‖X‖1 : ‖X‖2F ≤ t2,X ≥ 0

}
= −t

∥∥Π+(−
(
Q + t0eAeB

T
)
)
∥∥
F

with the minimizer X∗ = t
Π+(−(Q+t0eAeB

T ))

‖Π+(−(Q+t0eAeB
T ))‖F

if the condition
∥∥Π+(−

(
Q + t0eAeB

T
)
)
∥∥
F
6= 0

holds .

Proof. By using X ≥ 0 and the basic trace properties we have the following equivalence

‖X‖1 =
∑
i,j

Xij = eA
TXeB = tr

(
eA

TXeB

)
= tr

(
eBeA

TX
)

=
〈
eAeB

T ,X
〉
,

hence we have the following equivalence

min
X∈RA×B

{
〈Q,X〉+ t0 ‖X‖1 : ‖X‖2F ≤ t2,X ≥ 0

}
≡ min

X∈RA×B

{〈
Q + t0eAeB

T ,X
〉

: ‖X‖2F ≤ t2,X ≥ 0
}

Now, the solution follows due to Lemma D.1.

Denote g := 1
2 ‖A−UZ‖2F , f := λ1 (‖U‖1 + ‖Z‖1) + IU≥0 + IZ≥0 and h = ha.

Proposition D.3. In BPG-MF, with the above defined g, f, h the update steps in each iteration are
given by Uk+1 = rΠ+(−

(
Pk + t0eMeTK

)
), Zk+1 = rΠ+(−

(
Qk + t0eKeTN

)
) where r ≥ 0 and

satisfies

c1

(∥∥Π+(−
(
Pk + t0eMeTK

)
)
∥∥2

F
+
∥∥Π+(−

(
Qk + t0eKeTN

)
)
∥∥2

F

)
r3 + c2r − 1 = 0 ,

with c1 = 3, c2 = ‖A‖F and t0 = λλ1.

We skip the proof as it is similar to Proposition D.1.
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D.3 Extensions to Graph Regularized Non-negative Matrix Factorization

Graph Regularized Non-negative Matrix Factorization was proposed in [13]. Here, given L ∈ RM×M
we are interested to solve

min
U∈RM×K ,Z∈RK×N

{Ψ(U,Z) =
1

2
‖A−UZ‖2F +

µ0

2
tr(UTLU)

+
λ0

2

(
‖U‖2F + ‖Z‖2F

)
+ IU≥0 + IZ≥0

}
.

Recall that
hc(U,Z) = 3h1(U,Z) + (‖A‖F + µ0 ‖L‖F )h2(U,Z) .

Denote g := 1
2 ‖A−UZ‖2F + µ0

2 tr(UTLU), f := λ0

2

(
‖U‖2F + ‖Z‖2F

)
+ IU≥0 + IZ≥0 and

h = hc.

Proposition D.4. In BPG-MF, with the above defined f, g, h the update steps in each iteration are
given by Uk+1 = rΠ+(−Pk), Zk+1 = rΠ+(−Qk) where r ≥ 0 and satisfies

c1

(∥∥Π+(−Qk)
∥∥2

F
+
∥∥Π+(−Pk)

∥∥2

F

)
r3 + (c2 + µ0 ‖L‖F + λ0)r − 1 = 0 , (D.8)

with c1 = 3 and c2 = ‖A‖F .

The proof is similar to Proposition D.1 and only c2 changes.

D.4 Extensions to Symmetric NMF via Non-Symmetric Relaxation.

In [68], the following optimization problem was proposed in the context of Symmetric NMF where
the factors U and ZT are equal. The symmetricity of the factors was lifted via a quadratic penalty
terms resulting in the following problem

min
U∈RM×K ,Z∈RK×N

{
Ψ(U,Z) :=

1

2
‖A−UZ‖2F +

λ0

2

∥∥∥U− ZT
∥∥∥2

F
+ IU≥0 + IZ≥0

}
.

Now, we prove the L-smad property. We need the following technical lemma.

Lemma D.3. Let g(U,Z) = 1
2 ‖A−UZ‖2F + λ0

2

∥∥∥U− ZT
∥∥∥2

F
be as defined above, we have the

following

∇Ug(A,UZ) = λ0

(
U− ZT

)
− (A−UZ)ZT

∇Zg(A,UZ) = λ0

(
U− ZT

)
+ UT (A−UZ)

and 〈
(H1,H2),∇2g(A,UZ)(H1,H2)

〉
= −2 〈A−UZ,H1H2〉+ ‖UH2 + H1Z‖2F + λ0

∥∥∥H1 −H2
T
∥∥∥2

F
.

Proof. The first part of proof for function 1
2 ‖A−UZ‖2F follows from Proposition 2.1. For the other

term, with the Forbenius dot product, we obtain

λ0

2

∥∥∥U + H1 − ZT −H2
T
∥∥∥2

F

=
λ0

2

(∥∥∥U− ZT
∥∥∥2

F
+ 2

〈
U− ZT ,H1 −H2

T
〉

+
∥∥∥H1 −H2

T
∥∥∥2

F

)
.

Combining with Lemma G.1, the statement follows from the collecting the first order and second
order terms.
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Proposition D.5. Let g(U,Z) = 1
2 ‖A−UZ‖2F + λ0

2 ‖U− Z‖2F . Then, for a certain constant
L ≥ 1, the function g satisfies L-smad property with respect to the following kernel generating
distance,

hd(U,Z) = 3h1(U,Z) + (‖A‖F + 2λ0)h2(U,Z) .

Proof. The proof is similar to Proposition 2.1 and Lemma D.3 must be applied for the result.

Denote g := 1
2 ‖A−UZ‖2F + λ0

2 ‖U− Z‖2F , f := IU≥0 + IZ≥0 and h = hd.
Proposition D.6. In BPG-MF, with the above defined update steps in each iteration are given by
Uk+1 = rΠ+

(
−Pk

)
, Zk+1 = rΠ+

(
−Qk

)
where r ≥ 0 and satisfies

c1

(∥∥Π+

(
−Pk

)∥∥2

F
+
∥∥Π+

(
−Qk

)∥∥2

F

)
r3 + (c2 + 2λ0)r − 1 = 0 , (D.9)

with c1 = 3 and c2 = ‖A‖F .

The proof is similar to Proposition D.1 and only c2 changes.

D.5 Extensions to NMF with Non-Convex Sparsity Constraints (Sparse NMF)

Consider the following problem from [8]

min
U∈RM×K ,Z∈RK×N

{
Ψ(U,Z) :=

1

2
‖A−UZ‖2F : U ≥ 0, ‖U‖0 ≤ s1,Z ≥ 0, ‖Z‖0 ≤ s2,

}
,

where s1 and s2 are two known positive integers. Denote g := 1
2 ‖A−UZ‖2F , f := IU≥0 +

I‖U‖0≤s1 + IZ≥0 + I‖Z‖0≤s2 and h = ha. Note that the Assumption C is not valid here, hence
CoCaIn BPG-MF theory does not hold and hints at possible extensions of CoCaIn BPG-MF, which is
an interesting open question. We start with the following technical lemma.
Proposition D.7. Let Q ∈ RA×B for some positive integers A and B. Let t ≥ 0 and ‖Q‖F 6= 0
then

min
X∈RA×B

{
〈Q,X〉 : ‖X‖2F ≤ t2, ‖X‖0 ≤ s,X ≥ 0

}
= −t ‖Hs(Π+(−Q))‖F .

with the minimizer X∗ = t Hs(Π+(−Q))
‖Hs(Π+(−Q))‖F

if ‖Hs(Π+(−Q))‖F 6= 0 else X∗ = 0. If
‖Hs(Π+(−Q))‖F 6= 0 we have the following equivalence

min
X∈RA×B

{
〈Q,X〉 : ‖X‖2F ≤ t2, ‖X‖0 ≤ s,X ≥ 0

}
(D.10)

≡ min
X∈RA×B

{
〈Q,X〉 : ‖X‖2F = t2, ‖X‖0 ≤ s,X ≥ 0

}
(D.11)

Proof. We have

min
X

{
〈Q,X〉 : ‖X‖2F ≤ t2, ‖X‖0 ≤ s,X ≥ 0

}
= −max

X

{
〈−Q,X〉 : ‖X‖2F ≤ t2, ‖X‖0 ≤ s,X ≥ 0

}
,

= −max
X

{
〈Π+(−Q),X〉 : ‖X‖2F ≤ t2, ‖X‖0 ≤ s

}
,

= −max
X

{
〈Hs(Π+(−Q)),X〉 : ‖X‖2F ≤ t2

}
.

The first equality is a simple rewriting of the objective. Then, the corresponding objective 〈−Q,X〉
can be maximized with

∑A
i=1

∑B
j=1 I(i,j)∈Ω0

(−QijXij) where Ω0 is set of index pairs and I(i,j)∈Ω0

is 1 if the index pair if (i, j) ∈ Ω0 and zero otherwise. It is easy to see that the objective 〈−Q,X〉
is maximized if Ω0 contains all the index pairs corresponding to the elements of −Q with highest
absolute value which is captured by Hard-thresholding operator. However due to the non-negativity
constraint if there is any −Qij such that it is negative, then since Xij will be driven to zero. So,
before we use the Hard-thresholding operator, we need to use Π+(.) = max{0, .} in second equality.
The third equality follows as a consequence of hard sparsity constraint similar to Lemma C.5 and the
solution follows due to Lemma C.1. The equivalence statement follows as ‖X∗‖2F = t2.
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Proposition D.8. In BPG-MF, with the above defined g, f, h the update steps in each iteration are
Uk+1 = rHs1(Π+(−Pk)), Zk+1 = rHs2(Π+(−Qk)) where r ≥ 0 and satisfies

c1

(∥∥Hs1 (Π+(−Qk)
)∥∥2

F
+
∥∥Hs2 (Π+(−Pk)

)∥∥2

F

)
r3 + c2r − 1 = 0 ,

with c1 = 3 and c2 = ‖A‖F .

The proof is similar to Proposition D.1.

E Matrix Completion Problem

Matrix Completion is an important non-convex optimization problem, which arises in practical real
world applications, such as recommender systems [35, 15, 23]. Give a matrix A where only the
values at the index set given by Ω are given. The goal is obtain the rest of the values. One of the
popular strategy is to obtain the factors U ∈ RM×K and Z ∈ RK×N for a small positive integer K.
This is cast into the following problem,

min
U∈RM×K ,Z∈RK×N

{
Ψ(U,Z) :=

1

2
‖PΩ (A−UZ)‖2F +

λ0

2

(
‖U‖2F + ‖Z‖2F

)}
, (E.1)

where PΩ is an masking operator over index set Ω which preserves the given matrix entries and sets
others to zero.. We require the following technical lemma.

Lemma E.1. Let g := 1
2 ‖PΩ (A−UZ)‖2F be as defined above, we have the following

∇Ug(A,UZ) = −PΩ(A−UZ)ZT , ∇Zg(A,UZ) = −UTPΩ(A−UZ)〈
(H1,H2),∇2g(A,UZ)(H1,H2)

〉
= ‖PΩ(UH2 + H1Z)‖2F − 2 〈PΩ(A−UZ),H1H2〉 .

Proof. With the Forbenius dot product, we have

‖PΩ(A−UZ)‖2F = 〈PΩ(A−UZ), PΩ(A−UZ)〉 .
In the above expression by substituting U with U + H1 and Z with Z + H2, we obtain

〈PΩ(A− (U + H1)(Z + H2)), PΩ(A− (U + H1)(Z + H2))〉 ,
= ‖PΩ(A−UZ)‖2F + ‖PΩ(UH2 + H1Z)‖2F
− 2 〈PΩ(A−UZ), PΩ(UH2 + H1Z)〉 − 2 〈PΩ(A−UZ), PΩ(H1H2)〉

where in the last term we ignored the terms higher than second order. Collecting all the first order
terms we have

− 2 〈PΩ(A−UZ), PΩ(UH2 + H1Z)〉
= −2 〈PΩ(A−UZ),UH2 + H1Z〉
= −2

〈
PΩ(A−UZ)ZT ,H1

〉
− 2

〈
UTPΩ(A−UZ),H2

〉
and similarly collecting all the second order terms we have

‖PΩ(UH2 + H1Z)‖2F − 2 〈PΩ(A−UZ), PΩ(H1H2)〉
= ‖PΩ(UH2 + H1Z)‖2F − 2 〈PΩ(A−UZ),H1H2〉

Thus the statement follows using the second order Taylor expansion.

Proposition E.1. Let g := 1
2 ‖PΩ (A−UZ)‖2F and h1, h2 be as defined as in (2.6). Then, for a

certain constant L ≥ 1, the function g satisfies L-smad property with respect to the following kernel
generating distance,

ha(U,Z) = 3h1(U,Z) + ‖PΩ(A)‖F h2(U,Z) .
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Proof. With Lemma G.1 we obtain〈
(H1,H2),∇2g(A,UZ)(H1,H2)

〉
= ‖PΩ(UH2 + H1Z)‖2F − 2 〈PΩ(A−UZ),H1H2〉
≤ ‖H1Z + UH2‖2F − 2 〈PΩ(A−UZ),H1H2〉
≤ 2 ‖H1Z‖2F + 2 ‖UH2‖2F + 2 ‖PΩ(A)‖F ‖H1H2‖F + 2 ‖PΩ(UZ)‖F ‖H1H2‖F ,

≤ 2 ‖H1Z‖2F + 2 ‖UH2‖2F + 2 ‖PΩ(A)‖F ‖H1H2‖F + 2 ‖UZ‖F ‖H1H2‖F .

The rest of the proof is similar to Proposition 2.1.

Proposition E.2. Let g := 1
2 ‖PΩ (A−UZ)‖2F + λ0

2

(
‖U‖2F + ‖Z‖2F

)
and h1, h2 be as defined

as in (2.6). Then, for a certain constant L ≥ 1, the function g satisfies L-smad property with respect
to the following kernel generating distance,

ha(U,Z) = 3h1(U,Z) + (‖PΩ(A)‖F + λ0)h2(U,Z) .

The update steps are very similar as what we described earlier in Section C and D.

F Closed Form Solution with 5th-order Polynomial

The goal of this section is to show a case, where while obtaining the update step of BPG-MF we
obtain a 5th order polynomial equation, for which Newton based method solvers can be used. We
later show that we can obtain a cubic equation by slightly modifying the kernel generating distance.
Let λ0 > 0 and we consider the following problem

min
U∈RM×K ,Z∈RK×N

{
Ψ(U,Z) :=

1

2
‖A−UZ‖2F +

λ0

2
‖U‖2F

}
. (F.1)

We setR1(U) = λ0

2 ‖U‖
2
F ,R2(Z) = 0, g = 1

2 ‖A−UZ‖2F , f(U,Z) = λ0

2 ‖U‖
2
F and h = ha.

Proposition F.1. In BPG-MF, with above defined g, f, h the update steps in each iteration are given
by Uk+1 = − Pk

r1+λ0
, Zk+1 = −Qk

r1
where r1 ≥ 0 and satisfies

c1

(∥∥Qk
∥∥2

F
(r1 + λ0)2 +

∥∥Pk
∥∥2

F
r2
1

)
+ c2r

2
1(r1 + λ0)2 − r3

1(r1 + λ0)2 = 0 , (F.2)

with c1 = 3 and c2 = ‖A‖F .

Proof. The proof is similar to that of Proposition C.1. Consider the following subproblem

(Uk+1,Zk+1) ∈ argmin
(U,Z)∈RM×K×RK×N

{
λ0

2
‖U‖2F +

〈
Pk,U

〉
+
〈
Qk,Z

〉
+c1

(
‖U‖2F + ‖Z‖2F

2

)2

+ c2

(
‖U‖2F + ‖Z‖2F

2

) ,

Denote the objective in the above minimization problem as O(Uk,Zk). Now, we show that the
following holds

min
(U,Z)∈RM×K×RK×N

(
O(Uk,Zk)

)
≡ min
t1≥0,t2≥0

{
min

(U,Z)∈RM×K×RK×N ,‖U‖F=t1,‖Z‖F=t2

(
O(Uk,Zk)

)}
,

≡ min
t1≥0,t2≥0

{
min

(U,Z)∈RM×K×RK×N ,‖U‖F≤t1,‖Z‖F≤t2

(
O(Uk,Zk)

)}
.

where the first step is a simple rewriting of the objective and the second step follows as there is no
change in the constraint set and due to Lemma C.1, which is given precisely in Proposition C.1 where
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the equivalence argument used for (C.4) and (C.3) holds here. Note that in the first step, we used
‖U‖F = t1 this results in deviation of value of c2 to c2 + λ0, corresponding to U (see below). We
solve for (Uk+1,Zk+1) via the following strategy. Denote

U∗1(t1) ∈ argmin
{〈

Pk,U1

〉
: U1 ∈ RM×K , ‖U1‖2F ≤ t1

}
,

Z∗1(t2) ∈ argmin
{〈

Qk,Z1

〉
: Z1 ∈ RK×N , ‖Z1‖2F ≤ t2

}
.

Then we obtain (Uk+1,Zk+1) = (U∗1(t∗1),Z∗1(t∗2)), where t∗1 and t∗2 are obtained by solving the
following two dimensional subproblem

(t∗1, t
∗
2) ∈ argmin

t1≥0,t2≥0

{
min

U1∈RM×K

{〈
Pk,U1

〉
: ‖U1‖2F ≤ t1

}
+ min

Z1∈RK×N

{〈
Qk,Z1

〉
: ‖Z1‖2F ≤ t2

}
+c1

(
t21 + t22

2

)2

+ c2
t22
2

+ (c2 + λ0)
t21
2

}
.

Note that inner minimization subproblems can be trivially solved once we obtain U∗1(t1) and Z∗1(t2)
via Lemma C.1. Then the solution to the subproblem in each iteration as follows:

Uk+1 =

{
t∗1
−Pk

‖Pk‖F
, for

∥∥Pk
∥∥
F
6= 0 ,

0 otherwise .

Zk+1 =

{
t∗2
−Qk

‖Qk‖F
, for

∥∥Qk
∥∥
F
6= 0 ,

0 otherwise .

We solve for t∗1 and t∗2 with the following two dimensional minimization problem

argmin
t1≥0,t2≥0

{
−t1

∥∥Pk
∥∥
F
− t2

∥∥Qk
∥∥
F

+ c1

(
t21 + t22

2

)2

+ c2
t22
2

+ (c2 + λ0)
t21
2

}
.

Thus, the solutions t∗1 and t∗2 are the non-negative real roots of the following equations

−
∥∥Pk

∥∥
F

+ c1(t21 + t22)t1 + (c2 + λ0)t1 = 0 , (F.3)

−
∥∥Qk

∥∥
F

+ c1(t21 + t22)t2 + c2t2 = 0 . (F.4)

Further simplifications with t1 =
‖Pk‖

F

r1+λ0
and t2 =

‖Qk‖
F

r1
denoting r1 = c1(t21 + t22) + c2, then we

have

r1 = c1

(∥∥Pk
∥∥
F

r1 + λ0

)2

+

(∥∥Qk
∥∥
F

r1

)2
+ c2

This will result in following 5th order equation,

c1

(∥∥Pk
∥∥2

F
r2
1 +

∥∥Qk
∥∥2

F
(r1 + λ0)2

)
+ c2r

2
1(r1 + λ0)2 − r3

1(r1 + λ0)2 = 0 .

F.1 Conversion to Cubic Equation

We set R1(U) = λ0

2 ‖U‖
2
F , R2(Z) = 0 and g = 1

2 ‖A−UZ‖2F . Denote f(U,Z) = λ0

2 ‖U‖
2
F ,

h(U,Z) = ha(U,Z) + λ0

2 ‖Z‖
2
F . Note that such a g satisfies L-smad property with respect to h

satisfies L-smad trivially since only a quadratic term is added to ha.
Proposition F.2. In BPG-MF, with the above defined g, f, h the update steps in each iteration are
given by Uk+1 = −rPk, Zk+1 = −rQk where r is the non-negative real root of

c1

(∥∥Qk
∥∥2

F
+
∥∥Pk

∥∥2

F

)
r3 + (c2 + λ0)r − 1 = 0 , (F.5)

with c1 = 3 and c2 = ‖A‖F .
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Proof. The resulting subproblem is
(Uk+1,Zk+1) ∈ argmin

(U,Z)∈RM×K×RK×N

{〈
Pk,U

〉
+
〈
Qk,Z

〉
+c1

(
‖U‖2F + ‖Z‖2F

2

)2

+ (c2 + λ0)

(
‖U‖2F + ‖Z‖2F

2

) .

The rest of the proof is similar to Proposition C.1.

F.2 Extensions to Mixed Regularization Terms

Let λ0 > 0 and we consider the following problem

min
U∈RM×K ,Z∈RK×N

{
Ψ(U,Z) :=

1

2
‖A−UZ‖2F +

λ0

2
‖U‖2F + λ1 ‖Z‖1

}
. (F.6)

Note that the regularizer is a mixture of L1 and L2 regularization. The usual strategy with h = ha
would result in a fifth order polynomial. In order to generate a cubic equation, we use the same
strategy as given Section F.1. We set h(U,Z) = ha(U,Z) + λ0

2 ‖Z‖
2
F , g = 1

2 ‖A−UZ‖2F and
f(U,Z) = λ0

2 ‖U‖
2
F + λ1 ‖Z‖1.

Proposition F.3. In BPG-MF, with the above defined g, f, h the update steps in each iteration are
given by Uk+1 = −rPk, Zk+1 = rSλλ1

(
−Qk

)
where r is the non-negative real root of

c1

(∥∥Pk
∥∥2

F
+
∥∥Sλλ1

(
−Qk

)∥∥2

F

)
r3 + (c2 + λ0)r − 1 = 0 , (F.7)

with c1 = 3 and c2 = ‖A‖F .

The proof is similar to Proposition C.1 and Proposition C.5.

G Technical Lemmas and Proofs

Before we proceed to the proof of Proposition 2.1 we require the following technical lemma.
Lemma G.1. Let g := 1

2 ‖A−UZ‖2F , then we have the following

∇g(A,UZ) =
(
−(A−UZ)ZT ,−UT (A−UZ)

)〈
(H1,H2),∇2g(A,UZ)(H1,H2)

〉
= −2 〈A−UZ,H1H2〉+ 〈UH2 + H1Z,UH2 + H1Z〉 .

Proof. With the Forbenius dot product, we have

‖A−UZ‖2F = 〈A−UZ,A−UZ〉 .
In the above expression by substituting U with U + H1 and Z with Z + H2, we obtain
〈A− (U + H1)(Z + H2),A− (U + H1)(Z + H2)〉 ,
= 〈A−UZ−UH2 −H1Z−H1H2,A−UZ−UH2 −H1Z−H1H2〉 ,
= 〈A,A〉 − 〈A,UZ〉 − 〈A,UH2〉 − 〈A,H1Z〉 − 〈A,H1H2〉 ,
− 〈UZ,A〉+ 〈UZ,UZ〉+ 〈UZ,UH2〉+ 〈UZ,H1Z〉+ 〈UZ,H1H2〉
− 〈UH2,A〉+ 〈UH2,UZ〉+ 〈UH2,UH2〉+ 〈UH2,H1Z〉+ 〈UH2,H1H2〉
− 〈H1Z,A〉+ 〈H1Z,UZ〉+ 〈H1Z,UH2〉+ 〈H1Z,H1Z〉+ 〈H1Z,H1H2〉
− 〈H1H2,A〉+ 〈H1H2,UZ〉+ 〈H1H2,UH2〉+ 〈H1H2,H1Z〉+ 〈H1H2,H1H2〉 .

Collecting all the first order terms we have
− 〈A,UH2〉 − 〈A,H1Z〉+ 〈UZ,UH2〉+ 〈UZ,H1Z〉
− 〈UH2,A〉+ 〈UH2,UZ〉 − 〈H1Z,A〉+ 〈H1Z,UZ〉
= −〈A,H1Z〉+ 〈UZ,H1Z〉 − 〈H1Z,A〉+ 〈H1Z,UZ〉
− 〈A,UH2〉+ 〈UZ,UH2〉 − 〈UH2,A〉+ 〈UH2,UZ〉 ,
= −2 〈A,H1Z〉 − 2 〈A,UH2〉+ 2 〈UZ,H1Z〉+ 2 〈UZ,UH2〉 ,
= −2tr((A−UZ)ZTHT

1 )− 2tr((A−UZ)HT
2 UT ) ,

= −2tr((A−UZ)ZTHT
1 )− 2tr(UT (A−UZ)HT

2 ) ,
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and similarly collecting all the second order terms we have

− 〈A,H1H2〉+ 〈UZ,H1H2〉+ 〈UH2,UH2〉+ 〈UH2,H1Z〉
+ 〈H1Z,UH2〉+ 〈H1Z,H1Z〉 − 〈H1H2,A〉+ 〈H1H2,UZ〉
= −2 〈A−UZ,H1H2〉+ 〈UH2 + H1Z,UH2 + H1Z〉 .

Thus the statement follows using the second order Taylor expansion.

Lemma G.2. Given h1 :=
(
‖U‖2F+‖Z‖2F

2

)2

, then we have the following

∇h1(U,Z) =
((
‖U‖2F + ‖Z‖2F

)
U,
(
‖U‖2F + ‖Z‖2F

)
Z
)
,

〈
(H1,H2),∇2h1(U,Z)(H1,H2)

〉
= (‖H1‖2F+‖H2‖2F )(‖U‖2F+‖Z‖2F )+2

∥∥H1UT + ZHT
2

∥∥2

F

Proof. By the definition of Forbenius dot product, we have

1

4
‖U‖4F +

1

4
‖Z‖4F +

1

2
‖U‖2F ‖Z‖

2
F =

1

4
〈U,U〉2 +

1

4
〈Z,Z〉2 +

1

2
〈U,U〉 〈Z,Z〉

Now, considering h1(U + H1,Z + H2) we have

1

4
〈U + H1,U + H1〉2 +

1

4
〈Z + H2,Z + H2〉2 +

1

2
〈U + H1,U + H1〉 〈Z + H2,Z + H2〉

=
1

4
(〈U,U〉+ 2 〈H1,U〉+ 〈H1,H1〉)2

+
1

4
(〈Z,Z〉+ 2 〈Z,H2〉+ 〈H2,H2〉)2

+
1

2
(〈U,U〉+ 2 〈H1,U〉+ 〈H1,H1〉) (〈Z,Z〉+ 2 〈Z,H2〉+ 〈H2,H2〉)

=
1

4

(
〈U,U〉2 + 4 〈H1,U〉2 + 〈H1,H1〉2 + 2 〈H1,H1〉 〈U,U〉

+4 〈U,U〉 〈H1,U〉+ 4 〈H1,U〉 〈H1,H1〉)

+
1

4

(
〈Z,Z〉2 + 4 〈Z,H2〉2 + 〈H2,H2〉2 + 2 〈H2,H2〉 〈Z,Z〉

+4 〈Z,H2〉 〈Z,Z〉+ 4 〈Z,H2〉 〈H2,H2〉)

+
1

2
(〈U,U〉 〈Z,Z〉+ 2 〈U,U〉 〈Z,H2〉+ 〈U,U〉 〈H2,H2〉)

+
1

2
(2 〈H1,U〉 〈Z,Z〉+ 4 〈H1,U〉 〈Z,H2〉+ 2 〈H1,U〉 〈H2,H2〉)

+
1

2
(〈H1,H1〉 〈Z,Z〉+ 2 〈H1,H1〉 〈Z,H2〉+ 〈H1,H1〉 〈H2,H2〉)

Collecting all the first order terms, we have

〈U,U〉 〈H1,U〉+ 〈Z,H2〉 〈Z,Z〉+ 〈U,U〉 〈Z,H2〉+ 〈H1,U〉 〈Z,Z〉 ,
and similarly collecting all the second order terms we have

1

4

(
4 〈H1,U〉2 + 2 〈H1,H1〉 〈U,U〉+ 4 〈Z,H2〉2 + 2 〈H2,H2〉 〈Z,Z〉

)
+

1

2
(〈U,U〉 〈H2,H2〉+ 4 〈H1,U〉 〈Z,H2〉+ 〈H1,H1〉 〈Z,Z〉) ,

=
1

2

(
2 〈H1,U〉2 + (〈H1,H1〉+ 〈H2,H2〉)(〈U,U〉+ 〈Z,Z〉)

+2 〈Z,H2〉2 + 4 〈H1,U〉 〈Z,H2〉
)
,

=
1

2

(
(〈H1,H1〉+ 〈H2,H2〉)(〈U,U〉+ 〈Z,Z〉) + 2(〈H1,U〉+ 〈Z,H2〉)2

)
.

Thus the statement follows.
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Lemma G.3. Given h2(U,Z) :=
‖U‖2F+‖Z‖2F

2 , then we have the following

∇h2(U,Z) = (U,Z) ,〈
(H1,H2),∇2h2(U,Z)(H1,H2)

〉
= ‖H1‖2F + ‖H2‖2F .

Proof. Considering h2(U + H1,Z + H2), we have

1

2
〈U + H1,U + H1〉+

1

2
〈Z + H2,Z + H2〉

=
1

2
(〈U,U〉+ 2 〈U,H1〉+ 〈H1,H1〉) +

1

2
(〈Z,Z〉+ 2 〈Z,H2〉+ 〈H2,H2〉) .

Collecting all the first order terms we have

〈U,H1〉+ 〈Z,H2〉 ,
and similarly collecting all the second order terms we have

1

2
(〈H1,H1〉+ 〈H2,H2〉) .

Thus the statement holds.

G.1 Proof of Proposition 2.1

Proof. We prove here the convexity of Lha − g for a certain constant L ≥ 1. With Lemma G.1 we
obtain〈

(H1,H2),∇2g(A,UZ)(H1,H2)
〉

= ‖H1Z + UH2‖2F − 2 〈A−UZ,H1H2〉 ,
≤ 2 ‖H1Z‖2F + 2 ‖UH2‖2F + 2 ‖A‖F ‖H1H2‖F + 2 ‖UZ‖F ‖H1H2‖F ,

≤ 2 ‖H1‖2F ‖Z‖
2
F + 2 ‖U‖2F ‖H2‖2F + 2 ‖A‖F ‖H1‖F ‖H2‖F + 2 ‖U‖F ‖Z‖F ‖H1‖F ‖H2‖F .

With AM-GM inequality, for non-negative real numbers a, b we have 2
√
ab ≤ a+ b, we have

2 ‖U‖F ‖Z‖F ‖H1‖F ‖H2‖F ≤ ‖H1‖2F ‖Z‖
2
F + ‖U‖2F ‖H2‖2F ,

and similarly we have

2 ‖A‖F ‖H1‖F ‖H2‖F ≤ ‖A‖F ‖H1‖2F + ‖A‖F ‖H2‖2F .

Using the above two inequalities, we obtain〈
(H1,H2),∇2g(A,UZ)(H1,H2)

〉
≤ (3 ‖Z‖2F + ‖A‖F ) ‖H1‖2F + (3 ‖U‖2F + ‖A‖F ) ‖H2‖2F .

(G.1)

Now, considering the kernel generating distances, via Lemma G.2 and G.3 we obtain〈
(H1,H2),∇2h1(U,Z)(H1,H2)

〉
= 2 ‖H1U + H2Z‖2F + (‖U‖2F + ‖Z‖2F ) ‖H1‖2F + (‖U‖2F + ‖Z‖2F ) ‖H2‖2F
≥ ‖Z‖2F ‖H1‖2F + ‖U‖2F ‖H2‖2F ,

and 〈
(H1,H2),∇2h2(U,Z)(H1,H2)

〉
= ‖H1‖2F + ‖H2‖2F .

Now, it is easy to see that〈
(H1,H2),∇2ha(U,Z)(H1,H2)

〉
≥
〈
(H1,H2),∇2g(A,UZ)(H1,H2)

〉
.

A similar proof holds for the convexity of Lha + g, however the choice of L here need not be the
same as it is for Lha − g (see [9, Remark 2.1]).
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H Additional Experiments and Implementation Details

H.1 Double Backtracking Implementation

This subsection where we provide certain crucial implementation details of CoCaIn BPG-MF algo-
rithm, is largely based on [46, Section 5.4]. Note that CoCaIn BPG-MF is a sequential algorithm in
the sense one can compute Y k

U, Y
k
Z first via the steps (2.8), (2.9) and (2.10). Then, the updates can

be done exactly like BPG-MF, where step-size depends on the parameter L̄k obtained via (2.12). In
(2.10) it is required to find Lk such that the following holds

Dg

(
Uk+1,Zk+1, Y k

U, Y
k
Z

)
≥ −LkDh

(
Uk+1,Zk+1, Y k

U, Y
k
Z

)
, (H.1)

similarly in (2.12) it is required to find L̄k such that

Dg

(
Uk+1,Zk+1, Y k

U, Y
k
Z

)
≤ L̄kDh

(
Uk+1,Zk+1, Y k

U, Y
k
Z

)
. (H.2)

The above mentioned steps can be solved via the classical backtracking strategy for Lk and L̄k
individually, hence the name "double backtracking". We describe the backtracking procedure for Lk
and it is easy to extend to L̄k. The backtracking strategy involves a scaling parameter ν ≥ 1 and an
initialization point Lk,0 > 0 (preferably small) both chosen by the user and the parameter Lk is set
to the smallest element from the set

{
Lk,0, νLk,0, ν

2Lk,0, . . .
}

such that (2.10) holds. For L̄k one
requires to use (2.12) and also due to the additional restriction that L̄k ≥ L̄k−1 in CoCaIn BPG-MF
it is required to start the initialization L̄k,0 = L̄k−1.

H.2 Non-negative Matrix Factorization

We consider the same setting as the simple matrix factorization problem considered in 3, however we
set U = RM×K+ and Z = RK×N+ . We consider Medulloblastoma dataset [12] dataset with matrix
A ∈ R5893×34. As evident from Figure 4 PALM based methods outpeform BPG methods here. This
raises new open questions and hints at potential variants of BPG for constrained problems with global
convergence.
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Figure 4: Non-negative Matrix Factorization on Medulloblastoma Dataset [12].

H.3 Matrix Completion

The MovieLens datasets are essentially a matrix A ∈ RM×N , where M denotes the number of users
and N denotes the number of movies. Only a few non-zero entries are given and the entries denote
the ratings which the user has provided for a particular movie. The ratings can take the value between
1 and 5, which we refer to as scale. The exact statistics of all the MovieLens datasets are given below.

Dataset Users Movies Non-zero entries Scale
MovieLens100K 943 1682 100000 1-5
MovieLens1M 6040 3952 1000209 1-5
MovieLens10M 71567 10681 10000054 1-5

The plots provided for the matrix completion problem in Section 3 uses only 80% of the data and we
use the remaining 20% as test data in order to obtain the generalization performance to unseen matrix
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entries with the resulting factors U ∈ RM×K and Z ∈ RK×N where we use K = 5. The predicted
rating to a particular i ∈ {1, 2, . . . ,M} and j ∈ {1, 2, . . . , N} is given by (UZ)ij . The test data is
comprised of matrix indices with unseen entries and we denote this set of indices as ΩT . A popular
measure for the test data is the Test RMSE, which is given by the following entity

Test RMSE =

√√√√ 1

|ΩT |
M∑
i=1

N∑
j=1

I(i,j)∈ΩT (Aij − (UZ)ij)
2

where |ΩT | denotes the cardinality of the set ΩT and I(i,j)∈ΩT = 1 if the index pair (i, j) lies in the
set ΩT else it is zero. The Test RMSE comparisons for the MovieLens Dataset are given below in
Figure 5.
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Figure 5: Test RMSE plot on MovieLens Datasets [30].

The above given figures show that the proposed methods BPG-MF-WB and CoCaIn BPG-MF are
competitive to PALM and iPALM. BPG-MF is slow in the beginning, however it is competitive to
other methods towards the end.

H.4 Time Comparisons

We provide time comparisons in Figures 6, 7, 8 for all the experimental settings mentioned in
Section 3, where we mention the dataset in the caption. Since, we used logarithmic scaling, we used
an offset of 10−2 for all algorithms for better visualization.
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Figure 6: Time plots for Simple Matrix Factorization on Synthetic Dataset.

As evident from the plots, the proposed variants BPG-MF-WB and CoCaIn BPG-MF are competitive
that PALM and iPALM. And, BPG-MF is mostly slow, due to constant step-size, which can be
potentially helpful when backtracking is computationally expensive.
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Figure 7: Time plots for Non-negative Matrix Factorization on Medulloblastoma dataset [12].
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Figure 8: Time plots for Matrix Completion on MovieLens Datasets [30].
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