
Dear reviewers, thank you for taking the time to review our paper. We have addressed your main questions1

in A1, A2 and A3, and your remaining questions below. We especially thank Rev1 for his/her thoughtful2

and encouraging remarks. All issues raised are easy to address. We will incorporate all of your suggestions.3

A1: Rank assumption on the Hessian. Corollary 1 gives an example where the Hessian need not have4

full rank to satisfy our assumptions. Indeed whenever the sketching matrix Sk = sk ∈ Rd is a column vector,5

eq (9) and (20) hold trivially so long as s>k Hksk 6= 0. This can hold for rank deficient Hessian matrices for6

instance when the diagonal has no zero elements and when sk are random unit coordinate vectors.7

A2: Novelty related to Pilanci/Wainwright’s work. There are many key differences between RSN and8

Newton Sketch (NS) [20]. First, they are simply different algorithms. The sketching method underlying NS9

relies on having at hand the square root of the Hessian. In contrast, RSN uses a random subspace constraint10

to sketch the Hessian and thus needs no square root. Furthermore, NS requires full gradient and function11

evaluations, while RSN only needs a sketched gradient and requires no function evaluations. The convergence12

proof of NS requires a sketch size proportional to ε−2, an unknown universal constant and global spectral13

properties of the Hessian; see equations (12) and (19) in [30]. Thus this required sketch size could be as14

large as d (or larger, which makes the results vacuous). This is because the theory of NS builds upon the15

theory of “one shot” sketching techniques. Furthermore, they do not establish linear convergence rates1. In16

contrast, we establish linear convergence which can hold in the rank deficient case and for every sketch size.17

We achieve this by entirely bypassing the theory of one shot sketches, showing it is not at all necessary. This18

in turn gives us the freedom of choosing the sketch size arbitrarily and allows us to apply RSN to large scale19

problems no matter how large the dimension. We will include this discussion in the paper.20

A3: Bounding 0 < c ≤ ρ ≤ 1. The bound ρ ≤ 1 follows from Lemma 7 since ρ(xk) ≤ 1 for all k. We21

can guarantee that ρ is bounded away from zero ρ ≥ c > 0 if we use the common assumption that f(x) is22

L–smooth and m–strongly convex. This follows under the conditions of Lemma 7 since:23

ρ(x) ≥ mλ+
min

(
E

[
S(S>H(x)S)†S>

])
≥ m

L β, where β := λ+
min

(
E

[
S(S>S)†S>

])
. The right-hand side is24

a fixed positive constant independent on x, thus ρ ≥ m
L β > 0. We can even relax the strongly convex25

assumption since only λ+
min (H(x)) needs to be uniformly bounded away from zero (the spectral gap must26

be lower bounded). Furthermore, β is known for many distributions, e.g. for Gaussians and the family of27

randomized orthogonal sketches (Section A.1 in [12]) we have β = s
d , where s is the sketch size and d the28

dimension. Thus ρ ≥ m
L

s
d and ρ is at least linearly increasing in s. We will now include this lower bound.29

Rev2. Theorem 2 is not surprised ... This has been stated in [20] as an inexact Newton method. Our RSN30

method is not an inexact Newton method since we do not need to guarantee that the quadratic upper bound31

is minimized to within a given accuracy threshold. In no way has RSN been stated/analysed in [20].32

Q1. Assumption (17) ... seems to be too strong. For convex functions, this assumption is equivalent33

to f being lower bounded, which is a trivial assumption, since otherwise f is a linear function.34

Q2. Eq (52) and Eq (76). Thank you, we have fixed the squared norms and (76) should be an inequality.35

Q3. Same assumptions as [6, 28]. Why not compare? S-Newton in [6] is based on subsampling36

and has no dimension reduction: it is targeted at large n and small d. The opposite setting of RSN. Also,37

subsampling and be applied in conjunction with our technique. The method in [28] is for solving constraint38

linear least square, not general optimization smooth and convex optimization.39

Rev3. “Newton should be q-quadratic. Therefore ... not super impressive.” There exists only semi-local40

quadratic convergence for Newton based methods. For global convergence, linear rates are as good as it gets.41

Q1. Comment about parameter tuning. We apologize, but we did not understand your question/comment.42

Q2. Where is the proposed line search strategy. It is in Algorithm 3 in the supp. material as stated on lines43

242–243 of the main paper. Our line search does not require function evaluations, but only sketched gradients44

and sketched Hessian. Since the sketched Hessian is already available from the RSN update, our line search45

is computationally much cheaper than the standard Armijo method.46

Q3. Assumption 2 seems too strong. Assumption 2 does not hold for x2
1 + huber1(x2) but neither is this a47

twice differentiable function, thus one cannot apply Newton type methods. Assumption 2 is necessary to48

guarantee that the Newton direction is well defined, see Lemma 9.49

Q4. The assumption does not hold for generalized linear models if ... This assumption holds for all convex50

generalized linear models independently of the rank of A and the regularization parameter. This follows from51

examining the gradient and Hessian in (77) and (78) in the supp material and using standard linear algebra52

results such as Lemma 10. We will clarify this point and include the proof of this claim in the supp material.53

Q5. Theorem 2: Is this not the usual gradient descent rate? Please see lines 219–225. In particular, Theorems54

2 and 3 rely on relative smoothness and convex assumptions. Under these assumptions, it is not known if55

gradient descent converges.56

Q6. Is it possible that λmin ... is larger with sketching than without? Yes if D is a preconditioner D ≈ U−1.57

1See Theorem 2 in [10], where in the number of iterations T is lower bounded by a constant term


