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1 Proof of Proposition 1]

Proof. First, if X' = g - X, then po(X) = pa(X’) for all v and therefore u(X) = u(X"’). In the
other direction assume by way of contradiction that u(X) = u(X’) and g - X # X', forall g € S,,.
That is, X and X' represent different multisets. Let [X]| = {g- X | g € S,,} denote the orbit of X
under the action of S,,; similarly denote [X’]. Let K C R™** be a compact set containing [ X, [ X],
where [X]| N [X'] = () by assumption.

By the Stone—Weierstrass Theorem applied to the algebra of continuous functions C (K, R) there
exists a polynomial f so that f|;x] > 1 and f|;x.) < 0. Consider the polynomial

a(X) == 3 flg- X).

gESH

By construction ¢(g - X) = ¢(X), for all g € S,,. Therefore ¢ is a multi-symmetric polynomial.
Therefore, ¢(X ) = r(u(X)) for some polynomial r. On the other hand,

1 <g(X) =r(u(X)) =ruX’)) =q¢X’) <0,

where we used the assumption that u(X ) = u(X’). We arrive at a contradiction. O

2 Proof of equivairance of WL update step
Consider the formal tensor B’ of dimension n* with multisets as entries:
B = {Cj ' i € N;()}. ()
Then the k-WL update step (Equation [3) can be written as
Cé:enc(Ci_l,B%,Bf,...,Bf). (2)

To show equivariance, it is enough to show that each entry of the r.h.s. tuple is equivariant. For its
first entry: (g - 0171)1, = C;j(i). For the other entries, consider w.1.o.g. B:

f(g-C7 ;13 e N;@)} ={CTij 15 € Ny} ={Cj" |5 € Ni(g'(8))} =B . ;).

We get that feeding k-WL update rule with g - €'~ we get as output Ci]_l(i) = (g-C";.
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3 Proof of Theorem[l

Proof. We will prove a slightly stronger claim: Assume we are given some finite set of graphs. For
example, we can think of all combinatorial graphs (i.e., graphs represented by binary adjacency
matrices) of n vertices . Our task is to build a k-order network F' that assigns different output
F(G) # F(G") whenever G, G’ are non-isomorphic graphs distinguishable by the k-WL test.

Our construction of F" has three main steps. First in Section [3.1] we implement the initialization step.
Second, Section [3.2]we implement the coloring update rules of the k-WL. Lastly, we implement a
histogram calculation providing different features to k-WL distinguishable graphs in the collection.

3.1 Input and Initialization

Input. The input to the network can be seen as a tensor of the form B € R®* (e+1) encoding
an input graph G = (V, E, d), as follows. The last channel of B, namely B..ct1 (2 stands for
all possible values [n]) encodes the adjacency matrix of G according to E. The first e channels
B. . 1. are zero outside the diagonal, and B; ; 1.. = d(v;) € R® is the color of vertex v; € V. Our

assumption of finite graph collection means the set {2 C R X (e+1) of possible input tensors B is
finite as well. Next we describe the different parts of £-WL implementation with k-order network.

For brevity, we will denote by B € R"" X the input to each part and by C € R"" b the output.

Initialization. We start with implementing the initialization of k-WL, namely computing a coloring
representing the isomorphism type of each k-tuple. Our first step is to define a linear equivariant

operator that extracts the sub-tensor corresponding to each multi-index 2: let L : R > (e+1)
R™* xk*x(e+2) pe the linear operator defined by

L(X)i,r,s,w = Xir,is,wa w e [6 + 1]

L(X)i,r,s,e+2 = {

1 4, =i
0 otherwise

fori € [n]*,r, s € [k].
L is equivariant with respect to the permutation action. Indeed, for w € [e + 1],

(9 : L(x))i,r,s,w = L(x)gfl(i),r,s,w = ngl(i,‘),gfl(is),w = (9 . X)i'rwisxw = L(Q ' x)i,ns,w-
For w = e + 2 we have

1 gil(ir) :gil(is) 1 ir :is
-L(X irsw:LX =1(3),r,s,w = . = . =1L 'Xirsu)~
(g-LX))i.rs, X)g=2),r.s, {O otherwise 0 otherwise (9-X)s.rs,

Since L is linear and equivariant it can be represented as a single linear layer in a k-order net-
work. Note that L(B); . . 1.(c+1) contains the sub-tensor of B defined by the k-tuple of vertices
(viy,...,0i,), and L(B); . . .12 represents the equality pattern of the k-tuple ¢, which is equivalent
to the equality pattern of the k-tuple of vertices (v;,,...,v;, ). Hence, L(B); ... represents the
isomorphism type of the k-tuple of vertices (v;,, ..., v;, ). The first layer of our construction is
therefore C = L(B).

3.2 k-WL update step

We next implement Equation We achieve that in 3 steps. As before let B € R"" X4 be the input
tensor to the the current k-WL step.

First, apply the polynomial function 7 : R* — R®, b = ("%!) entrywise to B, where 7 is defined

by 7(z) = (%) |a|<n (note that b is the number of multi-indices c such that || < n). This gives
Y € R™" *? where Y;. =7(B;.) € Rt
Second, apply the linear operator

n

CZ,T = Lj(Y)iﬂ' = Z Yilv"'7ij—17i/aij+17~~-vik'17" XS [n}kvr € [b]

/=1



L is equivariant with respect to the permutation action. Indeed, L;(g - Y);,» =

n n

Z(Q'Y)il,---,ij_l,i/,i_7~+1 ----- = Z Yg_l(h)-“,9_1(%'—1),1”79_1(ij+1)»~~~7T = LJ'(Y)Q_l(i)’T = (g'LJ(Y))ivT'

ir=1 ir=

Now, note that

Ci:’: =L;(Y);. = Z T(Biy, iy r i iggnsin,) = Z 7(Bj,:) = u(X),

=1 JEN; (%)

where X = B i,: as desired.

U1yl — 1558541500,
Third, the k-WL update step is the concatenation: (B, c,..., Ck).

To finish this part we need to replace the polynomial function 7 with an MLP m : R® — R®. Since
there is a finite set of input tensors €2, there could be only a finite set T of colors in R® in the input
tensors to every update step. Using MLP universality (Cybenko, [1989; Hornik, [1991)) , let m be
an MLP so that ||7(xz) — m(z)|| < € for all possible colors x € Y. We choose ¢ sufficiently small
so that for all possible X = (B; | j € N;(i)) € R™% i € [n]*,j € [k], v(X) = X cp m(@:)
satisfies the same properties as u(X) = >_,c(, 7(2;) (see Proposition , namely v(X) = v(X’)
iff 3g € S, so that X’ = g - X. Note that the *if” direction is always true by the invariance of the
sum operator to permutations of the summands. The ’only if” direction is true for sufficiently small
e. Indeed, |[v(X) — u(X)|| < nmax;epy [|m(z;) — 7(2;)|| < ne, since z; € Y. Since this error
can be made arbitrary small, u is injective and there is a finite set of possible X then v can be made
injective by sufficiently small € > 0.

3.3 Histogram computation

So far we have shown we can construct a k-order equivariant network H = Lyoco---o000 14
implementing d steps of the k-WL algorithm. We take d sufficiently large to discriminate the graphs
in our collection as much as k-WL is able to. Now, when feeding an input graph this equivariant
network outputs H(B) € R"" %@ which matches a color H (B);,. (i.e., vector in R*) to each k-tuple
i€ [n]k.

To produce the final network we need to calculate a feature vector per graph that represents the
histogram of its k-tuples’ colors H(B). As before, since we have a finite set of graphs, the set of
colors in H (B) is finite; let b denote this number of colors. Let m : R* — R? be an MLP mapping
each color x € R? to the one-hot vector in R? representing this color. Applying m entrywise after

H, namely m(H (B)), followed by the summing invariant operator h : R %t 5 RP defined by
h(Y); = > icnpr Yi,j» J € [b] provides the desired histogram. Our final k-order invariant network is

F=homoLjooco---o0olLj.

4 Proof of Theorem

Proof. The second claim is proved in Lemma[I] Next we construct a network as in Equation []
distinguishing a pair of graphs that are 3-WL distinguishable. As before, we will construct the
network distinguishing any finite set of graphs of size n. That is, we consider a finite set of input

tensors () C R x(e+2),

Input. We assume our input tensors have the form B € R™**(e+2) The first e + 1 channels are
as before, namely encode vertex colors (features) and adjacency information. The e + 2 channel is
simply taken to be the identity matrix, thatis B. . .10 = I4.

Initialization. First, we need to implement the 2-FWL initialization (see Section [3.2). Namely,
given an input tensor B € R" % (e+1) construct a tensor that colors 2-tuples according to their



isomorphism type. In this case the isomorphism type is defined by the colors of the two nodes and
whether they are connected or not. Let A := B. . .1 denote the adjacency matrix, and Y := B. . 1.,

the input vertex colors. Construct the tensor C € R *x(e+D) defined by the concatenation of the
following colors matrices into one tensor:
AY. 5, (11T-A)-Y..;, Y.; A Y..; (11T -A), jele],

and B. . .1o. Note that C;, ;, . encodes the isomorphism type of the 2-tuple sub-graph defined by
v, Vi, € V), since each entry of C holds a concatenation of the node colors times the adjacency
matrix of the graph (A) and the adjacency matrix of the complement graph (117 — A); the last channel
also contains an indicator if v;, = v;,. Note that the transformation B — C can be implemented with
a single block B;.

2-FWL update step. Next we implement a 2-FWL update step, Equation |4, which for k = 2 takes
the form C; = enc(B,-, {{(B]—@, B, ;) ‘ Jje [n]}} ) 1 = (i1,1%2), and the input tensor B € R xa,
To implement this we will need to compute a tensor Y, where the coloring Y; encodes the multiset

{{(Bj,mvBihj*) ‘j < [n]}}'

As done before, we use the multiset representation described in section [d] Consider the matrix
X € R"*22 defined by

Xj: = (BjirBiyje), 7€ nl. 3)
Our goal is to compute an output tensor W € R™**?_ where W, i = u(X).

Consider the multi-index set {a | a € [n]*?, || < n} of cardinality b = ("32%7"), and write it

in the form {(8;,v:) | B,~ € [n]%, |81 + |v| < n,l € b}. Now define polynomial maps 71,7 :
R — R by 71 (z) = (2P |l € [b]) and TQ( ) = (2 | € [b]). We apply 7 to the features of B,
namely Y;, i,.1 = 71(B)i,.in0 = (Biy 4,..)P; similarly, Z;, i, 1 := 72(B)i; i1 = (Bi,.i,..)". Now,

Wi is i= (Z:ml 21712 Zzll 2Js lY] izl = Z (B)jﬂ'z,l TQ(B)ihjal
J=1
n n
= Bflig,:lel,j,: = Z(ijiz,H B’Ll N )(ﬁl"n)
Jj=1 Jj=1

hence W, 4, . = u(X), where X is defined in Equation 3]

To implement this in the network we need to replace 7; with MLPs m;, ¢ = 1, 2. That is,
Wi iz Zm jizd m2(B)iy g1 = v(X), @

where X € R"*2¢ jg defined in Equatlonl

As before, since input tensors belong to a finite set {2 C R *(e+1) 50 are all possible multisets X and
all colors, Y, produced by any part of the network. Similarly to the proof of Theorem|[I|we can take (us-
ing the universal approximation theorem) MLPs m, mq so that maxey ;=12 ||7:(x) — m;(2)]| < e
We choose ¢ to be sufficiently small so that the map v(X) defined in Equation |4| maintains the
injective property of u (see Proposition[l): It discriminates between X, X’ not representing the same
multiset.

Lastly, note that taking mg to be the identity transformation and concatenating (B, m;(B) - ma(B))
concludes the implementation of the 2-FWL update step. The computation of the color histogram
can be done as in the proof of Theorem|I] O
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