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Appendix

A Details of the transformation between GBN and BN

The definition of GBN is as follows:

~ Zin — S g
227% Zoutqu(’yz—i_ﬁ)? ¢ERC

\/0123+67

According to [26], the magnitude of v provides the information about the filter ranking. We can take
advantage of this information through the following transformation. First, we convert the BN to GBN
using the following formula:

=2 O ©y
I
= ol =

Then we fix ~y by setting it to non-updatable during the pruning. When the pruning is finished, we
convert GBN back to BN by merging ¢ into v and 3:

Il
-y

’}/Z
8= 8o

Il
i)

B The Design of Gated Convolution

Let W € Re*k¥F denote a k x k convolution kernel of a filter, and X, Y € R*"*% denote the input
and output tensors, respectively. We note the convolution operation as:

Y=XaW
We use the following formula to convert the filter to the gated version:

_Wlls
’ ck?

And we modify the convolution operation to:

Y =¢(X W)

When the pruning is finished, we merge ¢ into W:
W = oW

C Segmentation Instances

We tested the effect of the proposed method on the semantic segmentation task by pruning an FCN-
32s [136]] network on the extended PASCAL VOC 2011 dataset [29,19]. Since there is no BN layer
in the FCN-32s network structure, we replace the convolution layer with the Gated Convolution
designed in Appendix B. Our code is taken from [42] and follow its default training settings. When
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Figure 6: The segmentation instances.

training the baseline, the batch size is set to 1, and the learning rate is set to 10~19, In the TICK
phase, the learning rate is set to 1071, In the Tock phase, we are using a 1-cycle strategy [40], and
the learning rate linearly varies from 107! to 10710, In the Fine-tune stage, we still used 10~ *°
learning rates to train the network for 10 epochs. Figure[6 shows the segmentation results from (a)
the baseline network and (b) the pruned network. The pruned network reduces the FLOPs by 27%
and the parameters amount by 73% while maintain the mIoU (62.84%—62.86%)

D Structure of Pruned ResNet-50 (GBN-60).

100 - - 100
#-*-¢ bottleneck block

01><100nv
- *3><3LOHV - 80
A7><7conv

& (=) [
(=] (=] (=]
T T

Channel Pruned Ratio (%)
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Convolution Layer Index

Figure 7: The channel pruning percentage of each convolutional layer (excluding the shortcut) of the
GBN-60 network in Table 2l The index "a-b" indicates the residual block in which the convolutional
layer is located. For example, "3-6" indicates the convolution layer is located in the conv3_6 [11]].

E Structures of the Pruned Networks in Table 3|

Figure[§]shows the structures of the pruned network in Table [3|at 80% FLOPs reduced. The minimum
number of channels is set to 9. We can get the following observations: On the one hand, the One-Shot
mode cannot accurately perform network pruning. On the other hand, the network structures obtained
by the Tick-Only and Tick-Tock modes is similar.
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One-Shot

Tick-Only

Tick-Tock

DataParallel(
(module): VGG(
(features): Sequential(
(0): Conv2d(3, 25)

DataParallel(
(module): VGG (
(features): Sequential(
(0): Conv2d(3, 22)

DataParallel(
(module): VGG (
(features): Sequential(

(1): BatchNorm2d(25)
(2): ReLU()

(3): Conv2d(25, 61)
(4): BatchNorm2d(61)
(5): ReLU()

(6): MaxPool2d()

(7): Conv2d(61, 76)
(8): BatchNorm2d(76)
(9): ReLU()

(10): Conv2d(76, 126)
(11): BatchNorm2d(126)
(12): RelLU()

(13): MaxPool2d()
(14): Conv2d(126, 83)
(15): BatchNorm2d(83)
(16): RelLU()

(17): Conv2d(83, 83)
(18): BatchNorm2d(83)
(19): ReLU()

(20): Conv2d(83, 77)
(21): BatchNorm2d(77)
(22): RelLU()

(23): MaxPool2d()
(24): Conv2d(77, 9)
(25): BatchNorm2d(9)
(26): RelLU()

(27): Conv2d(9, 9)
(28): BatchNorm2d(9)
(29): ReLU()

(30): Conv2d(9, 9)
(31): BatchNorm2d(9)
(32): RelLU()

(33): MaxPool2d()
(34): Conv2d(9, 9)
(35): BatchNorm2d(9)
(36): RelLU()

(37): Conv2d(9, 9)
(38): BatchNorm2d(9)
(39): ReLU()

(40): Conv2d(9, 9)
(41): BatchNorm2d(9)
(42): RelLU()

(43): MaxPool2d()
(44): AvgPool2d()

)

(classifier): Linear(9, 100)

)
)

(1): BatchNorm2d(22)
(2): ReLU()

(3): Conv2d(22, 48)
(4): BatchNorm2d(48)
(5): ReLU()

(6): MaxPool2d()

(7): Conv2d(48, 69)
(8): BatchNorm2d(69)
(9): ReLU()

(10): Conv2d(69, 97)
(11): BatchNorm2d(97)
(12): RelLU()

(13): MaxPool2d()
(14): Conv2d(97, 130)
(15): BatchNorm2d(130)
(16): RelLU()

(17): Conv2d(130, 124)
(18): BatchNorm2d(124)
(19): ReLU()

(20): Conv2d(124, 120)
(21): BatchNorm2d(120)
(22): RelLU()

(23): MaxPool2d()
(24): Conv2d(120, 103)
(25): BatchNorm2d(103)
(26): ReLU()

(27): Conv2d(103, 67)
(28): BatchNorm2d(67)
(29): ReLU()

(30): Conv2d(67, 36)
(31): BatchNorm2d(36)
(32): RelLU()

(33): MaxPool2d()
(34): Conv2d(36, 24)
(35): BatchNorm2d(24)
(36): RelLU()

(37): Conv2d(24, 30)
(38): BatchNorm2d(30)
(39): ReLU()

(40): Conv2d(30, 96)
(41): BatchNorm2d(96)
(42): RelLU()

(43): MaxPool2d()
(44): AvgPool2d()

)

(classifier): Linear(96, 100)

)
)

(0): Conv2d(3, 18)
(1) : BatchNorm2d(18)
(2): ReLU()

(3): Conv2d(18, 46)
(4): BatchNorm2d(46)
(5): ReLU()

(6): MaxPool2d()

(7): Conv2d(46, 66)
(8): BatchNorm2d(66)
(9): ReLU()

(10): Conv2d(66, 99)
(11): BatchNorm2d(99)
(12): ReLU()

(13): MaxPool2d()
(14): Conv2d(99, 133)
(15): BatchNorm2d(133)
(16): ReLU()

(17): Conv2d(133, 132)
(18): BatchNorm2d(132)
(19): RelLU()

(20): Conv2d(132, 127)
(21): BatchNorm2d(127)
(22): RelU()

(23): MaxPool2d()
(24): Conv2d(127, 117)
(25): BatchNorm2d(117)
(26): RelU()

(27): Conv2d(117, 76)
(28): BatchNorm2d(76)
(29): RelLU()

(30): Conv2d(76, 38)
(31): BatchNorm2d(38)
(32): RelU()

(33): MaxPool2d()
(34): Conv2d(38, 32)
(35): BatchNorm2d(32)
(36): RelU()

(37): Conv2d(32, 11)
(38): BatchNorm2d(11)
(39): ReLU()

(40): Conv2d(11i, 41)
(41): BatchNorm2d(41)
(42): ReLU()

(43): MaxPool2d()
(44): AvgPool2d()

)

(classifier): Linear(41, 100)

)
)

Figure 8: Structures of the pruned networks in Table
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