431

432

433

434
435
436

437
438

440
441

442

443

444

445

446
447
448
449

Appendix

A Details of the transformation between GBN and BN

The definition of GBN is as follows:

~ Zin — S g
227% Zoutqu(’yz—i_ﬁ)? ¢ERC

\/0123+67

According to [26], the magnitude of v provides the information about the filter ranking. We can take
advantage of this information through the following transformation. First, we convert the BN to GBN
using the following formula:

=2 O ©y
I
= ol =

Then we fix ~y by setting it to non-updatable during the pruning. When the pruning is finished, we
convert GBN back to BN by merging ¢ into v and 3:

Il
-y

’}/Z
8= 8o

Il
i)

B The Design of Gated Convolution

Let W € Re*k¥F denote a k x k convolution kernel of a filter, and X, Y € R*"*% denote the input
and output tensors, respectively. We note the convolution operation as:

Y=XaW
We use the following formula to convert the filter to the gated version:

_Wlls
’ ck?

And we modify the convolution operation to:

Y =¢(X W)

When the pruning is finished, we merge ¢ into W:
W = oW

C Segmentation Instances

We tested the effect of the proposed method on the semantic segmentation task by pruning an FCN-
32s [136]] network on the extended PASCAL VOC 2011 dataset [29,19]. Since there is no BN layer
in the FCN-32s network structure, we replace the convolution layer with the Gated Convolution
designed in Appendix B. Our code is taken from [42] and follow its default training settings. When

12



450
451
452
453
454
455

456

457

458
459
460
461

aeroplane L 3 & background

background

aeroplane background

boat

background

(b) Pruned (mloU: 62.88)

Figure 6: The segmentation instances.

training the baseline, the batch size is set to 1, and the learning rate is set to 10~19, In the TICK
phase, the learning rate is set to 1071, In the Tock phase, we are using a 1-cycle strategy [40], and
the learning rate linearly varies from 107! to 10710, In the Fine-tune stage, we still used 10~ *°
learning rates to train the network for 10 epochs. Figure[6 shows the segmentation results from (a)
the baseline network and (b) the pruned network. The pruned network reduces the FLOPs by 27%
and the parameters amount by 73% while maintain the mIoU (62.84%—62.86%)

D Structure of Pruned ResNet-50 (GBN-60).

100 - - 100
#-*-¢ bottleneck block

01><100nv
- *3><3LOHV - 80
A7><7conv

& (=) [
(=] (=] (=]
T T

Channel Pruned Ratio (%)

O»—‘»—n—-»—n—-»—n—a_»—aI\)NI\)NI\)I\)NNNNI\JNmmmmwmmmkﬁ&»(ﬁ&ﬂkﬁlﬁkﬁummALJ}A.&A.&A.&
it ittt R NI B 09 L2 L0 it i = RO RO R W0 G0 G0 B A B = = = R NN W W W A B R NN NN O — = — N R B L0 Lo W)

Convolution Layer Index

Figure 7: The channel pruning percentage of each convolutional layer (excluding the shortcut) of the
GBN-60 network in Table 2l The index "a-b" indicates the residual block in which the convolutional
layer is located. For example, "3-6" indicates the convolution layer is located in the conv3_6 [11]].

E Structures of the Pruned Networks in Table 3|

Figure[§]shows the structures of the pruned network in Table [3|at 80% FLOPs reduced. The minimum
number of channels is set to 9. We can get the following observations: On the one hand, the One-Shot
mode cannot accurately perform network pruning. On the other hand, the network structures obtained
by the Tick-Only and Tick-Tock modes is similar.

13



One-Shot

Tick-Only

Tick-Tock

DataParallel(
(module): VGG(
(features): Sequential(
(0): Conv2d(3, 25)

DataParallel(
(module): VGG (
(features): Sequential(
(0): Conv2d(3, 22)

DataParallel(
(module): VGG (
(features): Sequential(

(1): BatchNorm2d(25)
(2): ReLU()

(3): Conv2d(25, 61)
(4): BatchNorm2d(61)
(5): ReLU()

(6): MaxPool2d()

(7): Conv2d(61, 76)
(8): BatchNorm2d(76)
(9): ReLU()

(10): Conv2d(76, 126)
(11): BatchNorm2d(126)
(12): RelLU()

(13): MaxPool2d()
(14): Conv2d(126, 83)
(15): BatchNorm2d(83)
(16): RelLU()

(17): Conv2d(83, 83)
(18): BatchNorm2d(83)
(19): ReLU()

(20): Conv2d(83, 77)
(21): BatchNorm2d(77)
(22): RelLU()

(23): MaxPool2d()
(24): Conv2d(77, 9)
(25): BatchNorm2d(9)
(26): RelLU()

(27): Conv2d(9, 9)
(28): BatchNorm2d(9)
(29): ReLU()

(30): Conv2d(9, 9)
(31): BatchNorm2d(9)
(32): RelLU()

(33): MaxPool2d()
(34): Conv2d(9, 9)
(35): BatchNorm2d(9)
(36): RelLU()

(37): Conv2d(9, 9)
(38): BatchNorm2d(9)
(39): ReLU()

(40): Conv2d(9, 9)
(41): BatchNorm2d(9)
(42): RelLU()

(43): MaxPool2d()
(44): AvgPool2d()

)

(classifier): Linear(9, 100)

)
)

(1): BatchNorm2d(22)
(2): ReLU()

(3): Conv2d(22, 48)
(4): BatchNorm2d(48)
(5): ReLU()

(6): MaxPool2d()

(7): Conv2d(48, 69)
(8): BatchNorm2d(69)
(9): ReLU()

(10): Conv2d(69, 97)
(11): BatchNorm2d(97)
(12): RelLU()

(13): MaxPool2d()
(14): Conv2d(97, 130)
(15): BatchNorm2d(130)
(16): RelLU()

(17): Conv2d(130, 124)
(18): BatchNorm2d(124)
(19): ReLU()

(20): Conv2d(124, 120)
(21): BatchNorm2d(120)
(22): RelLU()

(23): MaxPool2d()
(24): Conv2d(120, 103)
(25): BatchNorm2d(103)
(26): ReLU()

(27): Conv2d(103, 67)
(28): BatchNorm2d(67)
(29): ReLU()

(30): Conv2d(67, 36)
(31): BatchNorm2d(36)
(32): RelLU()

(33): MaxPool2d()
(34): Conv2d(36, 24)
(35): BatchNorm2d(24)
(36): RelLU()

(37): Conv2d(24, 30)
(38): BatchNorm2d(30)
(39): ReLU()

(40): Conv2d(30, 96)
(41): BatchNorm2d(96)
(42): RelLU()

(43): MaxPool2d()
(44): AvgPool2d()

)

(classifier): Linear(96, 100)

)
)

(0): Conv2d(3, 18)
(1) : BatchNorm2d(18)
(2): ReLU()

(3): Conv2d(18, 46)
(4): BatchNorm2d(46)
(5): ReLU()

(6): MaxPool2d()

(7): Conv2d(46, 66)
(8): BatchNorm2d(66)
(9): ReLU()

(10): Conv2d(66, 99)
(11): BatchNorm2d(99)
(12): ReLU()

(13): MaxPool2d()
(14): Conv2d(99, 133)
(15): BatchNorm2d(133)
(16): ReLU()

(17): Conv2d(133, 132)
(18): BatchNorm2d(132)
(19): RelLU()

(20): Conv2d(132, 127)
(21): BatchNorm2d(127)
(22): RelU()

(23): MaxPool2d()
(24): Conv2d(127, 117)
(25): BatchNorm2d(117)
(26): RelU()

(27): Conv2d(117, 76)
(28): BatchNorm2d(76)
(29): RelLU()

(30): Conv2d(76, 38)
(31): BatchNorm2d(38)
(32): RelU()

(33): MaxPool2d()
(34): Conv2d(38, 32)
(35): BatchNorm2d(32)
(36): RelU()

(37): Conv2d(32, 11)
(38): BatchNorm2d(11)
(39): ReLU()

(40): Conv2d(11i, 41)
(41): BatchNorm2d(41)
(42): ReLU()

(43): MaxPool2d()
(44): AvgPool2d()

)

(classifier): Linear(41, 100)

)
)

Figure 8: Structures of the pruned networks in Table

14




	Introduction
	Related work
	Method
	Problem Definition and Gate Decorator
	Tick-Tock Pruning Framework
	Group Pruning for the Constrained Pruning Problem
	Compare to the Similar Work.

	Experiments
	Implementation Details
	Overall Comparisons
	More Explorations

	Conclusion
	Details of the transformation between GBN and BN
	The Design of Gated Convolution
	Segmentation Instances
	Structure of Pruned ResNet-50 (GBN-60).
	Structures of the Pruned Networks in Table 3

