A Further Related Work

The framework of online convex optimization (OCO) dates back to [S0], where a regret bound of
O(V/T) was attained. The regret bound was improved to log(T) for strongly convex losses in [31]].
The RFTL algorithm was proposed independently in [41}!42]. The projection-free algorithm Online
Conditional Gradient was proposed in [28| 32]. The model of Bandit Convex Optimization (BCO)
was introduced in [23]], and followed by plenty of works [21} (3,113} [11]. Various regret bounds were
achieved by adding extra assumptions (e.g., strong convexity) in [35} 2| 40, |29} [14, 22} 30, [15]]. The
first computationally efficient projection-free BCO algorithm was proposed in [20]]. For strongly
convex and smooth losses, a lower bound of Q(+/T) for regret was proved in [43]. Bandit linear
optimization was studied in [1} 15} [12]. Interested readers are referred to [[13]] for a survey on BCO.

Bach [6] derived connections between continuous submodularity and convexity. Bian et al. [9] studied
the offline continuous DR-submodular maximization and proposed a variant of the Frank-Wolfe
algorithm to achieve the tight (1 — 1/e) approximation ratio. In the online setting, maximization of
submodular set functions was studied in [44} 27]. Adaptive submodular bandit maximization was
analyzed in [25]]. The linear submodular bandit problems were studied in [49, 48]].

B Proof of Theorem

Proof. Since yy = x4 = ngH), which is a convex combination of vél),v,(f), e ,v((]K), and

vék) € K,Vk € [K], we have y; € K. Then we proceed to prove the theorem.

The key idea of Algorithm[T]is to use the average function of a bunch of functions in certain group
(e.g., the block) to represent the functions. Note the regret is calculated by the sum of all the reward
functions, and the sum of average functions is exactly the sum of all the functions divided by the
block size, so we can use the average function to analyze the regret.

Let

= ZZK: th.i(‘r)
Fop(z) = '}?—4{;

denotes the average function of the remaining (K — k) functions after round k in the ¢-th block.
Recall that (t4.1, ..., %4 &) is a random permutation of ((¢ — 1)K, ¢ K] NZ, thus Fy () is a random
function. Also, by definition, we have the expected regret

ke{0,1,---,K -1}

T Q

E[) (1 —1/e)Fy(x") = Filag)] = E[Y_ K[(1 —1/e)Fyo(a*) — Fyo(ay)ll, S
t=1 q=1

where z* = argmax, ¢ Zle F(z). We also note that on the left hand side of Eq. , q is actually
a function of ¢. Specifically , ¢ is the index of the block which contains F;.

Lemma 3 (Eq.(9) in [17]). If F} is monotone continuous DR-submodular and Lo-smooth, x£k+1) =
x,(ek) +1/K - vgk) fork € [K], then

Fy(z*) — F@F ) <1 = 1/K)[Fi(a*) - F ()]

1,1 )y _ g2 BYD ey wy oy LeD?
- E[_Qﬁ(’“) IVF(2y) — di || T 9 +(dy vy — 2] + K2’
where {8 (k)} is a sequence of positive parameters to be determined.
Lemma 4. If F} is monotone continuous DR-submodular and L-smooth for all t, xékﬂ) = xgk) +

1/K - vgk) fork € |K], and z, = a:((IKH), then we have

K

- = 1 1 D2 LyD?
E[(1 - 1/e)Fyo(e*) = Fro(e,)] SE[EZ[Qﬁ<k>Agk)+B s+ 5
k=1

K
+1/K Y (1= 1/K)SFE[(dP), 2 — o)),
k=1
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where AJY = |V, k1 () — d |2
Proof of LemmaM] Since F; is monotone continuous DR-Submodular and L,-smooth, then so is

Fyr-1.By Lemma we have

E[Fq,o(x*) - Fq,o(x((lkJrl))] :E[Fq,k_l(l‘*) _ Fq,k—1($ék+1))]

L,D?
<E[(1 —1/K)[Fyia (@) = Fypmr ()] + T
1 1 B D2 .
~ &g 1V Faa (o) = 0P ===+ (i = )

&)

Note that E [Fq,k_l(x*) - ka_l(x((]k)) =E[F, k—2(z*) - F}I,k_g(mék))], so we can apply Eq.
recursively for k € {1,2,---, K}, and get

_ _ K (k)
E[Fy (") — Fyolag)] <E[(1 — 1/KY<[Fyo(a®) — Fyole®)] + L3 [ aw B0

LyD?
2K

K
/K (= 1K) RBAD, 2 — o),

+

where A = [[VF o (24”) — di) |2
Recall that F, o(2\") = F, 0(0) > 0 and (1 — 1/K)K < 1/e, VK > 1, so we have

K

_ _ 1 1 £F) D2 L,D?
_ Y _ — (k)
E[(1 —1/€)Fyo(x*) = Fyo(zq)] <E[7 ;[W) AP+ N+ 5%
K
+1/KY (1= 1/K)SFE[(dP), 2 — o).
k=1
O
Combine Eq. @) and Lemmaf] we have that the expected regret of Algorithm [I]satisfies:
T
E[Rr] = E[Y_(1-1/e)Fy(z") - Fi(z,)]
t=1
Q — —
=E[Y  K[(1—1/e)Fyo(a*) = Fyo(w,)]]
q=1
Q K K
SE[Z[Z[2ﬂ(k)Aq + ]+ N+>°3 (1= /KK FE[dP, o — vl
g=1 k=1 q=1k=1
SES ), D k) . L2D?
—E Al 22
[;;W - Q;B J+=-Q

K Q
+) (1= 1/ K)KTFED (@), 2t — o).
qg=1

k=1

(k)

Since vq ’ is the output of the online linear maximization oracle £ (*) at round q, we have
Q
k) o x k £
> (@l 2 — o) <R,
q=1

14



and thus we have
K Q K
k:l q:l =

Therefore,

S ING) L,D?
_E[Zzw(k) +—Q2ﬂ + KRG+ =5-Q. (6)

q=1k=1

Note Rg is the regret of oracle £ at horizon (), which is of order O(1/Q), so in order to get an upper
bound for the expected regret of Algorithm the key is to bound E[Aék)].

Lemma 5. Under the setting of Theorem|[I| we have

~ G
EAP] < plo® + (1= o BN V14 (U= ) ey
G
1_ 2! 0~ ]E A(k 1)
+( pk) |:O[k(K—]€+2)2+ak [ q ]

where {ay} is a sequence of positive parameters to be determined, 0> = L? + 03, and G =
(LaR +2L1)2
Proof of Lemma[3] By the definition of dl(lk) , we have
D= | VE k-1 (@) = (1= pr)dd ™) — o VE, , (@)
= [lor[VEg o1 () = VE, (2] + (1= o) [V o1 (@) = VEy ez (2 )]
+ (1= o) [V Eg (gt V) = dF V|2
= Pl Vg1 (@l) = VF, @) P +(1 = pr)? AT
+ (1= o) I VE o (@) = VE a2 1)1?
+20k(1 = pp)(VEgp—1(a)) = VE, , (@), VEy 1 (2lP) = VFy o (z{F71))
+206(1 = p) (VEy o1 (z)) = VF, , (@ (k)) VFq,k 2 (V) —diFY)
+2(1 = pp) (VEq -1 (alF)) = VF oo (alF 1), VF oo (aD) — alF =),
)

For further analysis, we first denote JF ;. to be the o-field generated by ¢, 1,%4,2, " - -, t4,x- Then by
law of iterated expectations,

E[|VFyr-1(z¥) = VF,,  (z (’“))HQ]
=E[E[|VFyx-1(z{P) — Vth,x NP Fg k1]
=E[E[|VFyr-1(z{F) = VF,, (@) P+IVE,, (28)) = VE, , ()]

+ 2V Ey o (2 )) - Vth,k (@), VE, (@) = VE, , (@) | Fpr-1]l.

®)

By Assumption[2] and F; is L;-Lipschitz implies that sup,, ¢ x | VF; ()| < L1, we have
B[V Fy-1(e)) = Y, , (00|21 F 1)) =EVar(VF, , (20) | Fypor)]
<E[|VF,,, ()] ©)
<Ij.
By Assumption[3] we have
E[E[|VE,, (@) = VE, , (@) ?|Fqn-1]]

E[|VF, . () = VF, ()]
E[E [IIVth,k(xq'“ ) = VE;,, (@) Fyll

2
0p-

| /\

(10)
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Moreover, we have

EE(VFy-1(z() - VE, @), VE, , ( <’“>) o @SN F g eal]
=E[(VFyr1(z{)) - VF, ( (o >VFt (= #) — (2 )
=EE[(VF () - VF, (), VF, , (z{) - Vthk<xgk>>>| ]
=E[(VFys1(z{") = VF, (5 ). E[VE, () = VE, (@) Fyu))]
=0

where the last equation holds because V F} is an unbiased estimator of V F} for all .
By Egs. (8) to (TT)), we have
E[||V Fpir () = VF,  (aP)|?) < L3 + 02 2 o2,

Similarly, by law of iterated expectations and the unbiasedness of V F}, we have
E[(VFy-1(z{) = VE, (@), VEx-1(2) = VEy gz (2 )]
=E[E(VFy -1 (z{") = VE, (), VE 1 (2) = Vg2 (2 )) | Fy il

( (

q q
=E[(E[VE, 1 (a)) = VF, , (@) Fypa], Vo1 (20) = VE o (a0))]

q q

EKVFQ,]C—I(]:(IC)) - @th,k (x(k))’ VFq,k—Q(l‘(k_l)) _ dt(lk_l)”
k—l)) _ d,(zk_l)>|]:q,k71, d((]k—l)]]
o) Fo -1, dd V] Vo (@l ~D) — dF D)

Also, by Young’s Inequality, we have
(VEy g1 (x0)) =V Fygoma (2 D), VE poa (@ ~D) —d )

1 _ a
< 5 IVE k(@) = VE o (o) P+ AF Y.
20[k
Now we turn to bound ||V F, 41 (z57) = VE, o_o(2{F1)|]22 22 - In fact, we have

E[z] 4] = E[E[|VE x—1(2z(P) — VE 2 ()12 Fyr—2]]
Zz‘K:k Vthi(xr(zk)) Zfik—l Vth (ng 1))

=E|E 2 _ 2 B
k k— k
ey St VFu )~ VF, () SR, )
K —k+2 K —k+1)(K —k+2)
Vth,k—l( Slk 1)) 2
R LA
k—
ZHVthz .'Eq )_Vth,i(ajg 1))H+iH thq z(:C‘(I )) H
K k+2 2K =k + 1)K —k+2)
VE,, (g )
+ || Kk k+2 ||)2|fq~,k)72]]'

where the inequality comes from the Triangle Inequality of norms.

16

(1)

(12)

(13)

(14)

15)



(kfl)_i_ 1, (k—1)

,(Ik) = Ty 7 Vq and the assumption that F} is Ly-smooth,

Recall the update rule where x
we have

ol _ LR

k k—1
I9Fs, (@) = VF, (o D)< Lot = 222,

q

Also by Assumption |VF, . (mgk_l)) |I< Ly. Therefore, we have

LQR 1 L1 Ll
E[z2,]<[(K—-k+1 K—-k+1 2
ol S =k ) et e T E M Vw1
LoR+2L1\?
“\K-k+2
a G
(K —k+2)2
(16)
Combining Egs. (7), (I2), (13), (T4), (13) and (I6), we have
G
E[AF] < p262% + (1 — pp)PE[AFD] 4+ (1 — pp) 2o
[ q]—pka +( pk) [ q ]+( pk) (K—k-f—?)z
G
1—pp)? | ————— E[AF-D
+( Pk) Oék(K—k+2)2+ak [ q ]
O
Applying Lemma [5|and setting a, = %5, Vk € 1,2, - -, K, we have
EIAP] < pho® + (1= ) (14— ) + EIAG I - p? (14 25).
= (K —k+2)? Pk a 2
Note that if 0 < p;, < 1, then we have
2 2
(1—pp)? (1+> < <1+)
Pk Pk
and
2 Pk
_ R <« _ .
(1= px) (1+ 2)_(1 Pk)
So in this case, we have
2
EAM] < pio?+ —— (1 + = ) + E[A¥ D)1 = pp). 17
[ q]—pk0+(K_k/,+2)2 +pk + [ q ]( pk) ( )

Lemma 6. Under the setting of Theorem([I| we have

(k) (k+4)2/3 1 whenl < k < %
]E[Aq]g N when K 41 <k < K
(K—k+1)2/3> ) <k<K.

where N = max{5%/3(L; + My)?,40° + 32G, 2.2502 + 7G//3}.
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Proof of Lemmal6] When 1 < k < % + 1, since pp =

W, we have 0 < pr < 1, and by

Eq.
E[AP] < (kf';)m + %[1 + (k+3)*3] + E[AFY] (1 - (/<+23)2/3>
o S () s o)
< o+ S Bl ) (1 )
< v+ e o - Ee (1 )
~ e O (1 )
G EE (1 )

Recall that A(k) = ||VE, p-1(x (k))

d" |12, and thus

A((ll) = ||VE,0(0) — cl,(11)||2
>t VF,.(0) 2 ¢ 2
— i= 9, _ F
|| K (1+3)2/3V q,l(o)”
2
(Zn O 259 Fu00 >||>

Set N1 = max{5%/3(L; 4+ My)?, Ny}, then we claim that ]E[A(k)]

L 2
< | K— + M,
_( K+ o>

= (L1 + My)?.

W for any £ satisfying

1<k< % + 1. We prove it by induction. It holds for k = 1 because of the definition of N;. Assume

it holds for k — 1, i.e., E[AY ™) < 2

[(EEE then

Ny b1 2
gy (1 )

< o e (L g
= (k+3)4 " (k+3)2° (k +3)2/3
_ Mi[(k+3)*% -1

(k+3)'73

Since (k+4)? = k2 +8k+16 < k2 +6k+9+1+3(k+3) < k2 +6k+9+1+3(k+3)3+3(k+

3)2/3
which implies that [(k + 3)2/3 —
(k+3)2/3 1 1

(k+3)173 = (k+4)2/3"

= [(k+3)2/3+1], by taking the cube roots of both sides, we have (k+4)%/3 <

So we have ]E[A(k)] My

(k43)%/3 41,

1(k+4)%/3 < [(k+3)%3 —1][(k+3)%/3 +1] < (k+3)%3, ie.,

W By induction, we have

Ny K
G el

E[A(] < 5

+1]. (18)
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Now we turn to consider the case where & + 2 < k < K. Here we set pj, = w, note that
0<pp < 212—/53 < 1, then we have
2.2502 G 4
E[AR)] < 1+ (K —k+2)%3
A s T YR oE e L T3E D)
I 1.5 T
EIAG=D1 11 —
e A gy 37
2.2502 N G N 4 G
T(K—-k+2)4  (K—-k+2)*3  3(K—-k+2)43
I 1.5 T
EAG-DI |1 - -
FEAT I s s
2.2502 +7G/3 1.5
—2e T RIAGR-D o
K —hropn B I - s
a Ny (k—1) 1.5
K —kron TEA - e

Define N = max{Ny, N3}, then we claim that ]E[Agk)] < (K_kjil 275, for any k satisfying §-+1 <
k < K, we will prove it by induction. When k = % + 1, by Eq. , we have
Ny N N

(K/2+1+4)2/3 = (K/2)2/3 (K — (K/2+1)+1)2/3"

E[AgK/2+1)} <

When it holds for k — 1, i.e., E[Aflk_l)] < we have

N
(K—k+2)2/3>
N N (K —k+2)%%-15
< -
T(K—k+2)43  (K—-k+2)?23 (K-k+2)2/3
N[(K — k+2)%/3 —0.5]
(K — k + 2)4/3

Since [(K — k +2)%/3 — 0.5](K — k +1)?/3 < [(K — k+2)%% - 0.5][(K — k +2)?/3 +0.5] <

. K—k+2)%/3-0.5 k
(K — k +2)43 e, ! (K_kl2)4/3 < (K_klﬂ)z/g_, so we have E[AM] < W By

induction, we have
N

mﬁ/ke{K/2+1,K/2+2,...,K}.

E[AP] <

Since N7 < N, by Eq. (T8), we also have

N K
Wy« N K
E[A] < (k+4)2/3,v1ce 5 + 1
O
Recall that in Eq. (6)), we have
Q K s K )
1 Ky, D " e LoD
B[R] <> ) samBIAN )+ 5@ 8% + KRG+ —5—0.
q=1k=1 Pt
So if we set
B = (k+4)~1/3 whenl <k < &,
TO(K —k+1)7Y8, When§+1§k§[(;
then by Lemma(6] we have
%E[Agk)] _ Ii/:z N 15/22 N _ /K/2 N 3N <K>z/3 s
ko= /3 = 1/3 = 73° = 9 o = )
k=1 B k:l(k+4)/ kzlk/ 0 zl/ 2 2
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and

K (k) K K/2
E[Ag”] N N 2/3.
O DF VS
kK = _ 1/3 i1/3 =
k=K/2+1 p® k=K/2+1 (K —k+1)Y i=1 e
Similarly, we have
K/2 K/2

1
Zﬁ(k) = Z (k + 4)1/3 < K?/3

and
K K 1
Z B = Z 13§K2/3'
k=K /241 k=K /2+1 (K —k+1)Y

Therefore, we have

Lo D?

Q 2
D
R NK2/3+7Q-2K2/3+KR5+ Q

LyD?
2

= (N + D*)QK?? + KR, + Q.

Set Q = T?/5, K = T3/, and recall that Rg < CV/Q = CT"/5, we have

T2/5

LoD?
E[R7] < (N + C + D*)T* + 22

C Properties of Smoothed Functions

Lemma 7. If F' is monotone, continuous DR-submodular, Li-Lipschitz, and Lo-smooth, then so is
Fys, and for all x we have |Fs(x) — F(z)|< L10.

Proof. By Lemmas 1 and 2 of [19], we conclude that Fy is also monotone continuous DR-submodular,
L, -Lipschitz and it holds that
|Fs(z) — F(x)|< L16.

For any x, y in the domain of Fy, we have

IVEs(z) — VE5(y)l| = | VE[F (2 + 6v)] = VE[F(y + 6v)]|
= |E[VF(z + év)] = E[VF(y + v)]]|
= |E[VF(z + dv) — VF(y + dv)]||
< E[|VF(z 4 6v) — VF(y + év)||]
< E[Lzfz — yl]
= Loz — .
So 13’(5 is also Lo-smooth. O

D Construction of /-Interior

Fig.[T)is the illustrations of d-interior and the construction method as discussed in Lemmal[T}

Now we turn to prove Lemma[l] We first show the following auxiliary lemma.
Lemma 8. Consider a ball centered at the origin o. If point a resides on the sphere but not in the
non-negative orthant, there must exist a point b on the sphere such that all the components of ab are

positive and all the components of ob are non-negative.
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K K

) 7

K': -interior 51 K.

(a) Example of §-interior (b) Construction of §-interior

Figure 1: d-interior

Proof of Lemma(8] Without loss of generality, we assume the Cartesian coordinates of a are
(—€1,—€2, -+, —€ky €1, -, €4), Where ¢; > 0,Vi € [k],e; > 0,V5 € {k+1,---,d},and k € [d].
In order to find a point b, we first define the symmetric point &' = (€1, €2, -, €x, €xt1, ", €d)-

If k = d, we can set b = b/, then b is on the sphere, b; — a; = 2¢; > 0, and b; = ¢; > 0,Vi € [d].

If ¥ < d, we can add some perturbations on o’. Let ¢ = min{ej,€ea,---,€e,} > 0,4 =
7262%12"71“2 >0,andsetb = + (—¢,—¢, -, —¢, \/ﬁei“ — €ty AT E —€q) =
(e1—€,e2—€,- - ex—€,\JA+ €l 4, -, \/A+ €3). Note that |ob|*= Zi;l(ei—ey—i—zgl:kﬂ(fl-l-
e?) Zle € — 2 Zle €; + ke? + 2 Zle €; — ke? + Z;l:k_H 6? = Zld:l e = |oa
also on the sphere. Moreover, b; — a; = 2¢; — € > 0,Vi € [k],b; —a; = /A + ef —€; >0,Vj5 €

{k+1,,d},andb; = e —€>0,Vi € [k],b; = \JA+ >0, € {k+1,---,d}.

2 50bis

Therefore, all the scalar components of 3 are positive, and all the scalar components of % are
non-negative. O

(b)

b

J >0
a bek
= a € int(K)

©

Figure 2: Illustrations for Proof of Lemma

Proof of Lemma |Z| Since K is convex, compact, and down-closed, and only shrinkage and translation
are involved, so K’ is also convex, compact, and down-closed. In order to prove that X' is a d-interior
of K, note that thanks to the J1 translation, the distance between /' and the face which contains 0
(i.e., the set 3°K = {z € OK|Ji € [d] such that z; = 0}), is no less than &. In other words, for every
a* € K', we have inf ,cgoxc d(x, a*) > 4.

So we only need to consider the remaining points on K, which we denote as 9*K = 9K \ 0°K =
{z € OK|Vi € [d],x; > 0}. We also denote the closure of 0*K as cl(0*K), which is a subset of OK.
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Since for every point a* € K', there is a point «’ = a* — §1 € K, and |a’a*|= V/d§, we can first
analyze infcg+c d(s,a’), and then upper bound infsc g« d(s, a*) by triangle inequality.

For any point a’ € K, suppose the point a € cl(9*K) sa_t)isﬁes laa’|= inf ok d(z, a’) (Fig. 2a).
We claim that all the scalar components of the vector a’a are non-negative. We will prove it by
contradiction. Consider a ball with a’ as the center and |a’a| as the radius. If we regard o’ as the

origin o, then the assumption that a’a has negative scalar component is equivalent to that @ is not in
the non-negative orthant.

By Lemma there exists a point b, such that |a’b|= |a’al, all the scalar components of ab are positive,

and all the scalar components of a’b are non-negative (Fig. [2b). Then we claim b € C, which will be
also proved by contradiction. If b ¢ IC, since a € cl(0*K) implies a; > 0, Vi, the fact that all the

scalar components of ab are positive implies b; > 0, V.

Since a’ € K,, there must be a point ¢ # a’ in the line segment a’b such that ¢ € 9K. To
prove it, note that o’ € K, = da’ € (1 — a)K, and (Vd + 1)(53%0 = arB%O C ak. So,
a + (Vd+ 1)6BL; C (1 — @)K + ak = K by the convexity of . On the other hand, since

— _
all the scalar components of a’b are non-negative, the intersection between the line segment a’b
and the set a’ + (v/d + 1)§ B, must contains point other than a’. We denote this point as ¢/, then

¢ €d +(Vd+1)5BL, C K. By the convexity of K, the continuity of the line segment a’b, and the
assumption that b ¢ K, there must be a point ¢ # a’ in @’b such that ¢ € OK.

Then ¢ # d',a} > 0,b; > 0,c € a’b imply that ¢; > 0, Vi, thus ¢ € 9*K. Moreover, since
we assume b ¢ C, we have |a/c|< |a’b|= |a’a|, which is contradictory with the assumption that
|a’a|= inf ok d(z,a’).

So we must have b € K. Since the scalar components of c% all all positive, and K is down-closed
(0<z<y,yeKk = z e K), we conclude that a is an interior point of K (Fig.[2c), which is
contradictory to the assumption that a € cl(0*K). So we have proved that all the scalar components

of the vector a’a are non-negative.

‘%
(\/lgtlll)‘s a’a, and p be the point such

Then we proceed to show |a’a|> (v/d + 1)8. Let v be the vector

H . .
that a’p = v (Fig. . Then |v|= (v/d + 1)6 and all the scalar components of v are non-negative, i.e.,
v E (\/&—i-l)éBdZO = arBdZO C ak. Wealsohaved’ € K, = (1—a)K, thusp € (1—a)K+ak =
K by the convexity of K. Since a € cl(0*K), we have |a’a|> |a’p|= |v|= (Vd + 1)d.

Let a* = da' + 01 be the translated point of a’. Then for any point s € 9*K, by trian-
gle inequality, we have |a*s|> |a's|—|a’a*|> |d'a|—|a'a*|> (Vd + 1)§ — Vd§ = 5. So
infepsxc d(x,a*) > 4. Since a' can be arbitrary point in K, the inequality holds for every
point a* € K'. Recall that we have proved that for every a* € K',inf cgoxc d(z,a*) > J, where
K = {x € 0K|Fi € [d] such that z; = 0} = OK \ 9*K. Therefore, we conclude that for every
point a* € K',inf.coxc d(z,a*) > 6.

So we only need to prove K’ C K. For every a* € K, since a’ = a* — §1 € K, there must be
a positive 3, such that a = o’ + 1 € 9*K (Fig. 2d). We have shown that inf,cox d(z,a’) >
(vVd +1)3,s0 8 > %(5 > 6. So a* = a’ + §1 must be in the segment of a’a. Then we have
a* € K, by the fact that a’,a@ € K, and the convexity of K. Therefore, K’ C K, and thus K’ is a
d-interior of /C.

Now we turn to analyze d(K,K’). For any point € K, we define 2’ = (1 — a)z € K,, and
have |z2'|= aloz|< aR. Let 2* = 2’ + 01 € K, then |za*|< |za!|4|2'2*|< aR + Vdé =
V(R + 1) + EJ6. Thus d(K, K7) < V(2 +1) + ZJ. :
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E Analysis of Algorithm 2]

E.1 General Constraint Set

We first state a necessary assumption on the d-interior K'.

Assumption 8. For sufficiently small 6 > 0, the §-interior K' is convex and compact, and has lower
bound u such thatVx € K', x > u. We also assume that the discrepancy satisfies d(IC,K') < ¢167,
where c1,v > 0.

Note that we have sup,, ,cx ||z — y[|< D, sup, i ||z — u||< R, where D, R are the diameter and
radius of K. In other words, the bounds for X also hold for K’.

Also, if the constraint set K satisfies Assumption [T]and is down-closed, Lemma I] shows that one can
construct a d-interior K’ that obeys Assumption [3]

Now with the assumption on the reward functions F; (Assumptions [2]and[6), and those on K and
K’ (Assumptions 1] and [8), we show Algorithm [2] achieves a sublinear (1 — 1/¢)-regret bound of

34+5min{1,~}

O(TsFomnitaT),

R N
Theorem 4. Under Assumptlons l l I Eland I if we set § = ¢TI 3+6min{iaY Q)

2min{l,v} 344 min{l,y Fmin{l,~y 9
T'3+6min{1,77 L — ['3+6min{T, ’y} K — T1+2mm{1 «,},nk — K,pk — m’

a constant such that 6 is sufficiently small as required by Assumptlon@ then the expected (1 — 1/e)-
regret of Algorithm2)is at most

where co > 0 is

-4Y6q2 M2 3D? 5 min{1.7)
E[RT] < (]. — 1/6)0162.[/1 + (2 — 1/6)02L1 + 2M, + 3 L + ?:1 +C Tgigmin{;"{}
Co C9o

2 2 5 min{1,y 2 min{1,vy
-+ 362[2L1 + (jﬁiR + 2L1) ]Tiiammgy% + LZD T1+2m§r:ll{1,}"{}.

Proof of Theorem] Since xfll) = u and nk = 1/K, xgk) is actually a convex combination of
U, vél),vé ). --,vékfl). Thenu e K vq € K',Vi € [K] implies qu € K'\Vk € [K +1].
So for k € [K],ys,, = q )+ dugr € Ky fort € {(¢q— 1)L +1,---,qL} \ {tg1, . tqx}

Y =Tg = x((JKH) € K’ C K. In other words, all the points that we play fall on the constraint set .

We also note that as discussed before, the regret bound for online linear oracle, Rf < C'v/t can be
achieved by algorithms such as Online Gradient Descent.

Then we define
By 5(x) = Eyopa[Fy(x + 60)]

as the d-smoothed version of F;. We omit the § in the subscript for simplicity in the rest of the proof.
Since F} is L;-Lipschitz, by Lemma[7]in Appendix [C} we have

|Fi(x) = Fy(2)|< Lad.
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Therefore, if we define 2* = arg max, cx Zthl Fy(x), x5 = argmax,cx Zthl Fy(z), the (1 —
1/e)-regret with horizon T is

T

Rr = [(1-1/e)F(") = Fy(y)]

1

o~
Il

Il
M=

[(1=1/e)Fy(z") — (1 = 1/e)Fi(w5) + (1 — 1/e) Fi(ws) — Fi(ye)]

o~
Il

1

= (1-1/e) [(1—1/e)Fy(x5) — Fi(ye)]

M=
N

[Fi(27) — Fi(5)] +

~~
Il
-
o~
Il

1

[Fi(ye) — Ft(yt)]

Mﬂ

+Z (1 —1/e)[Fy(x}) — Fy(x})] —
=1 !

~
I

(1= 1/€)Bu(a}) — Byly)] + T(1 = 1/€) L6+ TLyd

E
[M]=

<A —-1/e) ) [Fi(a") — Fi(w3)] +

o~
Il
—

t

Il
—

[(1—1/e)E,(2%) — Fy(ye)] + (2 — 1/e) L1 T6.

[M]=
[M]=

= (1 =1/e) p_[Fi(z7) — Fi(z5)] +

~
Il
-
~
Il

1

Suppose 2’ € K’ such that ||z* — o'||= d(x*,2) = d(z*,K") < d(K,K") < 167, then we have
T T

> [Fila®) = Fua3)] = Y _[Fi(z*) — () + Fy(2') — Fi(x)]
. T T
[Fy(z*) = Fy(@)] + > Fi(a') = Y Fi(a3)]

<D L™ —a'|] +

t=1
S clLlT(W,

where the first inequality holds thanks to the optimality of x5 and the assumption that F; is Lq-
Lipschitz.

~
Il
-

Il
“Mﬂ

S
_

Moreover, we have

Re £ ) [(1-1/e)Fy(x5) - Fu(y)]

M=

o~
Il
—

[th,k(xq) - ptq.k(ytq,k)}

1[]e
= I~

(L —1/e)Fy, ,(a5) = By, (24)] +

Il
Mo
M=

Q L Q
<D MM =1/e)F,  (@5) = B, (z)] + > Y [2M]
g=11i=1 q=1 k=1

[(1-1/e)F, .(x5) = Fi, , (wg)] + 2M1QK

I
Me
Mh

=)
Il
-
-
Il
_

where the inequality holds since

| Fta (@)= [Bon o [Fye, (2 + 60)]|< Bl Fy,p, (2 + 60)[] < M.

So by now, we have

Q L
Rr < (1-1/e)er LT85+ (2—1/e)LaT5 +2M1QK +> > [(1—1/e)Fy, (x5) — F, ,(zg)].

q=1i=1
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In order to upper bound Z - Zl (1 —1/e)E; o (Ts) — thﬂ. (x4)], we first define the average
function:

- Y B (@)
Fyr(r) = kgl_]z .

Recall that (¢4,1, - -, ¢4 i) is a random sub-sequence of {(¢ — 1)L + 1,---,¢L}, and is used for
“exploration”.

We first claim that similar result to Lemma 3]in Appendix [B]still holds for Algorithm 2]

Lemma 9. If F; is monotone contmuous DR-submodular and Ly-smooth, x(kH) gk) + % (v,fk) —

w) for k € K|, where vzgk), x4 ) € K, wis the lower bound of K, then

Fy(z}) — (") <1 - 1/K)[Fy(a}) — Fy(z(")]

1,1 Wy e BPD gy Ly, LeD?
_E[_WHVFt(xt ) —d || _T+<dt ) Vg —$5>]+Wa

where {8 (k)} is a sequence of positive parameters to be determined.

Proof of Lemma(9] Since F} is Ly-smooth and x(kH) xgk) + %(vt(k) — u), we have

L
F(a*™) > F (M) + <vm<x<’“>>, oD g™y - et )2

t

2
k k L k
= Fi(z") + < V), o ) — 2ol — ul? (19)
k k LyD?
> F(e) + 2 (VE (@), o) —u) ~ 22

(’f)) vt(k)

We can rewrite the term (V F}(x; — u) as

(VE(x), 0" — u) = (VE, (") = d® o) + (), o) — (VF,(2(), )
= (VE(a{") — d" o — a}) + (VF, (") — d{ z3)
+(d? oMy — (VE(?), u)
= (VF(z") = di" oY — a3) + (VE @), 25 — u) + (df" oY) — 7).
(20)

Denote y5 = x5 —u yt(k) = xgk) u, then y5 > 0, y(k) > 0, by the definition of lower bound u, and

k
the fact =3, = ( ) € K. Since F, is monotone and is concave along non-negative directions, we have

Fy(a}) — Fy(@™) = Fu(ys +u) — F(y™ +w)
[

< F(ys +u) vV (5" + w)] - Fy® +w)

< (VE " +u), (05 +u) v " +w)] — " +w)

= (VE(u” + ), [(y5 +u) — (") +w)] v 0) @1
= (VE@" +w), (5 — 5) v 0)

< (VE@y" +u).y5)

= (VF(z{")), 2} — u)

Combine Egs. (20) and 1)), we have

(VE(z{), 0" —u) > (VF, (e —d® o —a5) +[Fy(23) — F ()] + (P, o —a3). 22)
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By Young’s ineqaulity, we have

k k) (k . 1 k) k «
(V) = i 0 — af) 2 — 5o VR - a9 ) — P

2

d(k) 2_ﬁ(k)D2

(23)

1 k
m”vﬂ(iﬁg )) -

Now combine Egs. (IE[) (22) and (23), we have

ket 1 K k)2 BMD? . k K) (k) o«
Fe™) 2 gl gam IV = dP P-4 [Fuai) = Fu@)] + (@7, 0" = a3)]
(k)y LyD?
+Fi(”) — S

Or, equivalently,

Fy(z}) — Fy(2{""") <(1 - 1/K)[Fy(2}) — Fy(z(")]

1 NONOIE BRD% ey, L2D?
*?[*Qﬁ(k)\wFt( ) —di | *T+<dt ) Vg *%”*W,
0

Since Ft is monotone continuous DR-submodular and Ls-smooth for all ¢, with Lemma @ and
repeating the proof of Lemma]in Appendix [B] we have

ﬂ(k)Dz L2D2
I+ =%

AP +

K
E[(1—1/e)Fgo(x5) — Fyo(zg)] SE%Z[M(M q 2
k=1
K

+1/K Y (1= 1/K)SFE[(dF), x5 — o))
k=1

where A(k) IVFy p-1(z (k)) dt(zk)||2~

Therefore, we have

Q L
ED D (1 -1/e)F, (z5) — Fi, (z4)]]

=1

Q

I
—

.

Q
= ZLE[(l —1/e)F,0(z5) — Fyo(zy))

QK A(k) K (k) p2 2
L A L D LQL.D

q=1k=1 25" K k=1 2 2K
i é i(l — /K ZQ:EW@“’ x5 — )] (24)
k=1 a=1
SE[% ig QAB%Z))] + % 2 B<k;D2 N LQ2I;D2
+ é i 1-RY
k=1

Q K (k) K p(k) 12 2
L Ay LQ B D LQLyD £
<ElZD ) sl t w25 T e T LRG



Then we have
E[Rr] < (1—-1/e)ey LyT6Y 4 (2 — 1/e)L1T§ +2MQK
K

Q AL (k) 2 2
L L LQ<~P D | LQL:D (25)
+E[?Zzw‘f( Z 2; + LRS,.

Note R is the regret of the online linear maximization oracle £ at horizon @), which is of order
O(\/Q) So in order to get an upper bound for the expected regret of Algorlthml 2| the key is to bound
E[A[(I )]. Here, we have an analogue of Lemmam Appendix

Lemma 10. Under the setting of Theorem[) we have

G G
E[APM] < p26?+(1—pp)*EIAR D+ (1—pp)? ———+(1—pp)? | ———— E[Ak—D
[ q ]_pkO' +( pk) [ q ]+( Pk) (k+2)2+( Pk) Oék(k+2)2 + ag [ q ]
where {ay} is a sequence of positive parameters to be determined, o> = L3 + d g , G =

[BLyR + 2L,

Proof of Lemma(I0} First, the decomposition of Agk) Eq. l| still holds, with @th, . (g (k )) replaced
by 9q,k-
We also denote Fq.k to be the o-field generated by ¢, 1,tq 2, tgk Since Elgy x| Fqr] =

VE, (@) Fyrs we have Elgy x| Fyr-1] = VEy 5 1(mq ))|Fyk—1. Then by law of iterated
expectatlons we can get the results similar to Egs. (8) to

Precisely, we have:

E[E[|VEyk—1(2{?) = VE, , (2))|*|Fyp-1]] = E[Var(VE, k( N Fge-1)]

<E[|VE, ()]

2
1

E[E[|VE,, , () = ggul*| For-1ll =E[IVEy, , (2$F) = gq.x]l°]
=E[E[|VE,, (") — gq.kl*|Fo.r]]
=E[Var(gqk|Fq.r)]

d>*M?
<
S5

IN
h

and
E[E(VFy 1) = VE, (), VE, , (a%)) = ggu)| Fer-1]] = 0.

Thus we have
E[|VFy 1) = gql1%]
=E[E[|VFyr-1(2) = 9ol *1Fgn-1]]
=E[E[|VFy -1 (z{)) = VE, (@) PH|VE,  (25) = gol®

FAVEy 1 (aP) — VE (2P), VEr, , (28) — gy )| Fai 1] (26)
d2M?
2 1
<Li+ 5
£52,
We also have the results similar to Egs. (I3) and (T4):
E[(V Fyr-1(2$) = ggps VEq 1 (z{F) = VF s (2{F1))] = 0, (27)
and .
E(V Fyi-1(@{)) = gg, VEp—a(x{1) — d=1)] = 0. (28)
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Also, by Young’s Inequality, we have

<VFq,k—1($§k))*VF k() Vo (a{F~1) — dlf =)

((1 (29)
k n E—1)\n2, ¥k A (k=1
s IV Fuia @) = VEpia(aff ) P+ AL,

Now we turn to bound ||VFq’k,1(x((1k)) - VFq,k,g(xE]k_l)) |2& 22 - Actually, we have

El2 4] = E[E[[VEyk-1(2{") = VEn-2(f )| Fy 2]

~ k—
ey Szt Vth,xxé’“)) . Zf:k,lwtq,i(xé RITE
L—k+1 L—k+2 k=2

Sk V@) = VE, @) S, V)
L—k+2 (L—k+1)(L—-Fk+2)

VB, @)

L—k+2

= E[E[|

I Fg k2]

lew’f (@)~ Vh, (@) H+ZH Vh, @)
L kt2 Lkt (L —kt2)

k—1
Vhiuant Doz, o)
L—k+2 ko2l

where the inequality comes from the Triangle Inequality of norms.

+1

Recall the update rule where ;z:(k) qk Dyl ( (k1) _ w) and that F} is Ly-smooth, we have

(k=1)

— v —u LoR
HVFt(“(x ) VF i( ((]k 1))||§ L2H q 7” < L2

K - K

Also by Assumption 2| |VF, ,(2)||< Ly for all z € K, thus |VE, (a3)|< L,
Hthq,k—l( ((Zk 1) )||< Ly. Therefore, we have

LQR 1 Ll Ll 2
— + (L — 1
K L—k+2+( k+1) + ]

(L—k+1)(L—-k+2) L—k+2
L—k+1LsR 2L, 2
L-k+2 K 'L—k+2

E[z34] <[(L—k+1)

Since we assume L > K, we can always choose L, K such that L > 2K. So we have Lii;& <
2L 2L 2L L—k+1 LsR ~ LoR _ K+2 LsR LyR _ 3LsR
RT3 = K2 < o Also, 7 kii < gt = 82 Kz S3%% S e
Therefore, we have
3LyR  2L; \’
E[22,] <
gl < (k+2 * k—|—2>
2
k+2
s_G
(k+2)?
Combining Egs. (26) to (30), we have
G
E[APM] < p26?+(1—pi)?EIA* D+ (1—pp)? ———+(1—p)? | ———— E[AF-D]| .
[ q ]_pkO' +( pk) [ q ]+( Pk) (k+2)2+( Pk) Oék(k+2)2 + ag [ q ]

O
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Applying Lemma and setting oy, = &5, Vk € 1,2,---, K, we have

B G
E[AY] < pho” + (1= ) EIAT 1+ (1= 20" g
G
el G (k—1)
+ (1= p) LMk+%2+m£mq ﬂ

_ 2.2
=pro” + 9

Note that if 0 < p;, < 1, then we have

wr (e 2) < ()

(1 —pr)? (1 + %k) < (1= pw)

and

So in this case, we have

G 2 _
E[AR] < pho® + (FTIH <1 + pk) +E[AFY)(1 - pp).

Lemma 11. Under the setting of Theorem{d] we have
Ny

EIA®) < 0
2071 < s

p Vk € [K],

where Ny = 4%/3(202 + G).

Proof of Lemmal(Il} Since pj, = Ty e have 0 < pp <1, and

(k+2
EA®] < 47 L4 (k4223 + BAG-D] (1 — 2
AT s Gy T rr i F R DT BRI - G
402 G G 2
< A=1) -~
S B hros (k+2)4/3 +EA, ]( (k+2)2/3>
_ 40‘2 +2G [A(k 1)] _
EDC (k+2)2/3
2/3
- (40” + 2G) NS
T - G
4213(20% + G) 2
Gy HER I G

>

a N k(-2
_(k:+2)4/3+E[Aq I (k+2)2/3)"

Recall that Agk) = ||VFq’k,1(xék)) - d((lk)||2, and thus
D = ||V Eyo(w) — dP|?

I ~
_ o 2im1 V() 2 2
- H L 32/39(171)”

2
thbf
s(E] Hﬂymﬁﬂ>

Ly 2d._\°

d
< (Ly + ng)Q-
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& f2>2 (1— pr)? (1 + pi) +E[AF (1 — py)? (1 + @) .
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Now we claim that E[A,Sk)} <
have

(kﬁéﬁ for any k € [K]. We prove it by induction. When & = 1, we

__No
(1+3)2/8

d2M?
52

M

=202+ G 2200 = 2(LE+ T2 > (1, +

where the second inequality holds since 2(a? + b%) > (a + b)?.

Assume the statement holds for k — 1, i.e., E[A(k 1)] then

__No__
(k+2)2/3°

N 2
k 0 k—
EIA] < gy AT (1 e 2)2/3)

No No 2
2378 (ot 2 <1 TG 2)2/3>
_ No[(k+2)*% -1
L

Since (k+3)% = k24+6k+9 < k2 +4k+4+14+3(k+2) < (k+2)2+1+3(k+2)Y/343(k+2)?/3 =
[(k + 2)?/3 4-1]3, by taking the cube roots of both sides, we have (k 4 3)%/3 < (k + 2)?/% +1,
which implies that [(k +2)%/% — 1](k + 3)%/% < [(k +2)%/% = 1][(k +2)*/3 + 1] < (k +2)*3, ie.,

2/3
(1?:1)2)4/31 < (k+§)2/3' Thus we have
Ny
(k) _ -0
BIA] < e i e [K].
O
Recall that in Eq. (23), we have
E[Rr] < (1 —1/e)e1 LTS + (2 — l/e)L T6 +2M1QK
QK A(k) (k) 12 2
L Al LQ & D2 LQLyD .
+E[Z D > GL +?Z s T TIRG
qg=1 k=1 k=1
So if we set B(F) = W, then by Lemma we have
K (k) K K
Z E[Ag Z k 1/3 - Z Iii\/fg S/ 552“ _ 362ZVoK2/3_
k=1 s k:l t 3 =1 U
Similarly,
K K 9/3
Zﬂ(k) = Z : i S SK(;/ :
pt — 5(k+3) 2
Therefore, we have
ONoL D?L LQL,D?
E[Ry] < (1—1/€)er L1 T8 +(2—1/€) L1 T64+-2M; QK 40 @ 3DLQ  LQL, +LR,.

AKY3 T 4SKIB T 2K
2min{1,~v} 3+4min{l,~} 1+min{1l,~v}

By setting § = ¢y~ sFomintiaT 9= Tsromntiag | [, = Tstomniial K = TTremmniaT and

recall that RE, < C/Q = CTTemmiiar, Ny = 42/3(20% 4+ G) = 42/3(2L2 + 2201 4 &) where
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G = (3LaR + 2Ly )? is a constant, we have

3+5min{1,v}

E[Rr] <(1 — 1/€)c1c) 1 T' " 5FmntiaT + (2 — 1/e)caLy Tt~ FFomintiaT 4 2M T 5tomntia)

. 2/3 2 145 mi 1, . 2/3 2 2 345 mi 1, 2 345 mi 1,
3 42U + G) iy | 3 ATPATMY st 3D7 ) aenmingio)
4 202 402
L2 D2 min{1,vy 34+5min{1,v}
v}

+ T1+2 nun{l 'y} + CT 346 min{1,
2

_ min{1,7} _ min{1,5}
S(l . 1/6)0163L1T1 3+6min{’1,7} + (2 _ 1/€)CQL1T1 3+6min{’lyl,'y}

3. 42/3d2M2 3D2 3+5min{1,y}
+ [2M1 + 1 + +C T3+6min{1,z}
262 462
2/3 2 ; 2 .
n 342/ CQEL2L1+G)T% +%T%
3.41/642 pf2 3D? 34+5min{1,7}
— |- vaagL + 2= 1/0nL + 2 + £ 80% o] piinahay
C2 C2
2 2 5min{1,y 2 min{1,y
I 302[2L1 + (3L2R + 2L1) ]T% I LoD Tl-#?rrlfir:ll{l}’y}
41/3
O
E.2 Down-closed Constraint Set
Proof of Theorem[2] Since K satisfies Assumption |1| and is down-closed, o = W%”‘; =
?i;T /9 < 1, by Lemma | we have Assumptionholds with e = Vd(E +1)+ £&,4 =
,u = d1. Then by applying Theoremldlrectly, we can prove Theorem 2] O

F Proof of Lemma

Proof of Lemma|2] We give an example of the matroids which satisfy Lemma Let Q@ = {1, 2}, the
matroid Z = {@, {1}, {2}}. Define set function
0, X =g;
f(X)=qa, X={1}
b, X ={2}, or X ={1,2};
where b > a > 0. It can be verified that f is submodular and its multilinear extension F'(x) =
awy + bry — ar 9, where x = (1, 22) € [0,1]%
Suppose that
{1}, with probability p; (x);
round(z) = < {2}, with probability ps(z);
@,  with probability p3(x).
Then the assumption F'(z) = E[f(round(z)] implies F'(x) = p1(x) - a + p2(z) - b,¥b > a > 0. So
we have p1 (z) = 1 — 2122, p2(x) = 2.
However, if we define f in another way:
0, X=g
f(X)={b X={2}
a, X ={1}, or X ={1,2};
where a > b > 0. Then it can be also verified that f is submodular and its multilinear extension
F(z) = azy + by — bry29, Where x = (21, 12) € [0, 1]%
Again, suppose that
{1}, with probability p; (x);
round(z) = < {2}, with probability ps(z);
&,  with probability ps(x).
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Then the assumption F'(z) = E[f(round(z)] implies F(x) = p1(x) - a + p2(z) - b,Ya > b > 0. So
we have p1(z) = 21, p2(z) = 22 — 2172.

Therefore, for different functions f’s, we have different sampling schemes round(-)’s, which are
subject to the matroid Z constraint, and satisfy F'(z) = E[f(round(x)], i.e., the sampling scheme
does depend on the function. So there does not exist a sampling scheme round : [0, 1]¢ — Z, which

satisfies E[f (round(x))] = F(x),Vx € [0, 1]%, and does not depend on the submodular set function
f, O

G Proof of Theorem

Since Algorithm [3] applies Algorithm [2] on the multilinear extension F}; of f;, a prerequlslte is
that Assumptions [1] i'and I to all hold. The constraint set K is a polytope in [0, 1]¢ that is
convex and compact and contains 0. So Assumption [I]holds. Additionally, we have the diameter

D =sup, ,excllz —ylI< V/d and the radius R = sup, .||z < Vd.

Since each objective function f; is monotone submodular, its multilinear extension F} is monotone
and continuous DR-submodular [16]. If supycq|f:(X)|< M, then Assumption [6| holds for F;
automatically, and the following lemma shows that its multilinear extension F} is Lipschitz and
smooth, which entails Assumption@

Lemma 12 (Lemma 4 in [19]). For a submodular set function f with supxcq|f(X)|< M, its
multilinear extension F is (2M~/d)-Lipschitz and (4M+/d(d — 1))-smooth.

In summary, we only need Assumptions ] [5]and[7] Now we turn to prove Theorem 3]

Proof of Theorem |3} We first define X™* = argmaxy 7 23:1 f+(X), the corresponding fractional

solutionis Z € I, i.e.,

fe(X7) = Fy(2), (32)
where F; is the multilinear extension of f;. We also define 2* = argmax, Zthl Fy(z),z} =
arg max, ¢ xs ZtT:l Fi(z). The (1 — 1/e)-regret with horizon T is

T
Rr =Y [(1—1/e)f(X*) = fi(Y)ly,ez). (33)
t=1
We have
T Q L
DRV yver =YY fr, (Y, )y, ex
t=1 qg=11i=1
Q L Q K Q K
:Z Z ffql( tqz)+ZZth,k(ytqk)7ZZquk(yqu)
q=1i=K+1 q=1 k=1 q=1 k=1
Q K
+sztqk(y;qk)ﬂyt kEI (34)
=1 k=1
Q L Q K Q K Q K
ZZ Z FtQI(yth)+ZZth,k(ytqk)_ZZM1+ZZO
g=1i=K+1 q=1 k=1 q=1 k=1 q=1k=1

T
= Fi(y) — QK M,
t=1
where the second equation holds since for ¢t € {(¢ — 1)L + 1,---,qL} \ {tq1, -, tq.x}, Y2 =
LosslessRound(z,) € Z, and the inequality holds because of the fact that the rounding is lossless
and Assumption[7}

Therefore, by Eqs. (32) to (34) and the optimality of z*, we have
T T

< S [~ 1/e)Fu(#) - Fuly)] + QKM < 3 [(1—1/e)Fy(a”) — Fy(ye)] + QKMy. (35)
t=1 t=1
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Now we can repeat the proof of Theoreml (Appendix to upper bound ZtT LA =1/e)Fy(z*) —

Zt 1 Fi(ye), with Ly = 2M1Vd, Ly = 4M1\/771 ) by Lemma The only difference is
when we turn to bound ]E[A(k)] E[|VF, k-1(z (k)) (k)|| ], where Fy, (z) = El"?i};"”(),

2], where g = 4fi, (Y, ) tqk

we have a larger upper bound for E[|VF, ,k_l(a:gk)) — Gg.k
Precisely, we have

E[IVFyr-1(25") = gl
(k)
q

_ . . d d
:E[”VF (l‘ ") ) - Vth,k(ﬂcl(;k)) + thq,k(:L‘{(Jk)) - gth,k(ytq,k:)u‘Lk + gth,k(ytq,k)uq,k - gq,kHQ]

_ . - d
=EE(|VFu-1() = VE, (@) +HIVE,  (z])) - 5 Fr W) k1

d
+ ”gth,k(ytq,k)u%k - gq,kHQ
M2 M2

2
<Li+ 52 + 52
2d2M?
_ 72 1
=Li+ =,
202

Plug in the new upper bound for o2, and repeat the analysis of Theorem we have

T
s 3r[2L3 4 (3LyR+2L1)% .2  LyD? .
EE:lfl Fy(z*) - F, < NTS 1 T T3, (36
2R = Rl = AT 1B+ 2) T 69
_1/e)r 42/3 2072 .
where N = (l\fliez)r[\/g(§+l)+§]Ll+ (2\/3142) Li+2M; +22 (\/gjz)d Mi +3(\/3;2)D2 +C,

C'is a constant satisfying RS, < Cv/Q.
Combine Egs. and (36), and using QK M, = M,T%/° D < \/d, R < v/d, we conclude

2 2
E[Rr] < NTE + 3r[2LT + (3\/gL2 +2L4) ]T§ " @T%,
- 41/3(/d + 2) 2
—1/e)r 3-42/3(\/d+2)d?> M2 f
where V. = (1fli2 [+ Vd(1+ DLy (2¢Eli2) Ly +3M;+ ( TJF M 4 X +2 +C,
C'is a constant satisfying Rs < CVQ. 0
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