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Proof of Lemma 1. Suppose that P1(A) = 0. By definition of conditional measures we have that
PY(A) = / P!(A)dQ"(t). However, if the above is zero, then it must be the case that P} (A4) = 0

for all ¢ except possibly on a set of Q! measure zero. By the assumed equivalence of Q! and Q? as
well as the conditional measures, it follows that P?(A) = 0 for all ¢ except possibly on a set of Q?

measure zero. Therefore P?(A) = / PZ(A)dQ*(t) = 0. Since we can swap the roles of P! and

P2 it follows that they agree on the zero sets. O

Proof of Theorem 2. The first direction is easier. Namely, if 41 — o resides in the Cameron-Martin
space of C then it resides in the Cameron-Martin space of any vC' for v > 0. To see this, note that
C and vC' induce equivalent norms; the latter is just scaled by v compared to the former. Since
the norms are equivalent, the resulting Cameron-Martin spaces are the same. Thus, conditioned on
the mixture V = v, the measures are equivalent for all v (Bogachev, 1998 Theorem 2.4.5 ). Thus
Lemma 1 implies they are equivalent.

The harder part is the reverse. If the mixture is discrete, i.e. V' takes on at most a countable number
of values, then we could, in principle, piece together a countable number of appropriate spaces (since
o-algebras are closed under countable unions). However, when V' is continuous, this approach won’t
work as it requires considering an uncountable number of sets. Thus, we have to be more explicit
in terms of our construction. We consider, without loss of generality, X; ~ £(0,C, 1) versus
Xo ~ &(u, C,1) where p is not in H, the Cameron-Martin space of C. To show that the two
measures are orthogonal, it is enough to show that, for any fixed € € (0, 1) we can construct a set
A such that P(X; € A) > 1 — e while P(X; € A) < e. Since y is not in H, it implies that
the functional 7}, : K — R defined as T),(f) = f(u) is not continuous, or equivalently, it is not
bounded. So we can construct a sequence gi, g2, - - - € K such that T, (g;) = g;(p) = oo asi — oo,
but [|g;[[c = 1.

Now the random variable ¢g;(X;) € R has the same distribution as Vg;(Z) and ¢;(X2) the same
as gi(pi) + Vgi(Z), where g;(Z) has, by construction, a standard normal distribution. Let ¢, be a
finite constant such that
P(Vgi(Z)<c)>1—gk,
which does not depend on i since g;(Z) is standard normal for all i. Define A; as
A= {zeX:g(z) < e,

which is a measurable set since any element of K is either an element of X* or an appropriate limit.
Then, for any c. we have that

P(gi(X2) € Ai) = P(gi(1) + Vgi(Z) <) = 0 as i — 00,

since g;(11) — 00. So, we can choose ¢ and A = A; such that P(g;(X2) € A;) < e and thus the
distributions of X; and X5 must be orthogonal. O

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



Proof of Theorem 3. Since oY is also a valid covariance matrix, we can always combine the two
into one matrix, and thus, without loss of generality, we take ¢ = 1. To show e-DP it suffices to
check that the ratio of the densities is bounded by exp(e), since the two are equivalent (Awan et al.,
2019). Let D, D' € D be fixed adjacent databases, D ~ D’. Denote p1 = T'(D) and po = T(D’)
and then the ratio of densities is given by

ap L& =) S @ = )
vera [((x = p2) T8 (2 = p2))
Since X has full rank, we can make the following change of variables without changing the maxi-
mization problem: y = £ ~'/2(z — p5), which yields
FIEY2y + gy — ) TSNSy + o — )
sup - .
yern flyTy)

Let u = X~ %2(uy — 1), then we equivalently have the maximization
 flly—uw) " (y—u)
sup - .
yERN flyTy)

Next, notice that for any y, we can increase the ratio by rotating ¥ to point in the direction of u. This
is because f is decreasing and

—u) (y—u) =y y—2y u+u'u,

will be made smaller if T u is made larger, and the largest it can be while fixing the length ||y||2 = ¢
is when y = cu/||u||2. So, we can express the maximization problem as

f(e = 2d|full + [lull®) sup 1= lu)*)

jied £(e2) =0 f(e)

Since f is monotonically decreasing the above is finite if and only if f(0) < oo and
limsup,_, ., f((c — |lul])?)f(c*)~! is finite. We can also restrict the supremum to ¢ > ||lul| as the
supremum will never occur when 0 < ¢ < ||u]|. To see this, consider a € R such that 0 < a < ||ul|,
and its reflection about ||u|| given by b = 2|lu|| — a, which satisfies b > ||u||. Then we have the nu-
merators are the same, f((a— ||u||)?) = f((b—||u||)?), but the denominators satisfy f(b?) < f(a?)
since f is strictly decreasing, which implies the ratio at ¢ = b is larger than at ¢ = a.

Finally, u still depends on y; and po. However,

u|| < A and using that f is monotonially decreas-

ing, we have
f(e—lul))?) flle=2)?)
sup ————— < sup ————— = exp{¢}.
>l f(c?) e>a f(c?)
To obtain different values of ¢ we can replace A with c~'A and adjust ¢ until the desired e is
achieved. O

Proof of Theorem 4. We can assume that Tp € H as otherwise Tp and Tp- are orthogonal (in
which case it is trivial that DP doesn’t hold). The key issue is that, in infinite dimensions, one
learns too much about the mixing coefficient. In particular, consider functionals g; € X such that
C(9i,9;) = d;;5. One can find an infinite number of such functionals as long as C does not have
finite rank. Then consider

1~ 1o IR N
Vo, = -~ Zgi(TD>2 =- Zgz‘(TD)2 + 2‘/5 Zgi(Z) + VQE ZTZ‘(ZV’
i=1 i=1 i=1 i=1

n 4
Now notice that, by Parceval’s identity, >, g:(f(D))* < | f(D)||x and that g;(Z) are iid standard
normal. Thus the first two terms converge to 0 with probability 1, while the second term converges
to V2. So, if we observe T then we can reconstruct V perfectly (since V' > 0) and thus, in the DP
calculation it can be treated as fixed, V' = v. Now notice that Tp|V = v is simply Gaussian and

does not achieve e-DP, meaning, for any € > 0 we can find a set A, where P(f(D) € A,|V =v) >

e‘P(f(D’") € A,|V = v). Thus the mechanism is not e-DP. O



Proof of Theorem 5. Notice that conditioned on V' = v, we have that f(D) = f(D) + ovZ and

2log(2/6’
o? = %AQ. So, the noise is scaled by v. If we absorb this into the ¢’ then vlog(2/6") =
€

log((2/6")?). Finally,
P(f(D) € A) = /P(f(D) € AV = v)dy(v) < e“P(f(D') € A) +2E[(5'/2)"]
= ¢“P(f(D') € A) 4+ 2My (log(8'/2)) = e*P(f(D') € A) + 6. O
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