
A Missing Proofs in Section 2

A.1 Proof of Lemma 2.1

Proof. Let Z ∈ Rn×n be a random matrix. For each i, j ∈ [n], define random variable Zi,j as

Zi,j =

{
|∆i,j |, if |∆i,j | ≤ n;
n, otherwise.

For i, j ∈ [n], by Markov’s inequality, we have

Pr[|∆i,j | ≥ n] = Pr[|∆i,j |p ≥ np] ≤ E[|∆i,j |p]/np = O(1/np). (2)

Notice that

E[|∆i,j |p] =

∫ n

0

xpf(x)dx+

∫ ∞
n

xpf(x)dx = O(1)

where f(x) is the probability density function of |∆i,j |. Thus we have∫ ∞
n

xf(x)dx ≤
∫ ∞
n

xp/np−1 · f(x)dx = O(1/np−1).

Because E[|∆i,j |] = 1, we have∫ ∞
0

xf(x)dx = E[|∆i,j |]−
∫ ∞
n

xf(x)dx ≥ 1−O(1/np−1). (3)

By Equation (3), we have

E[Zi,j ] =

∫ n

0

xf(x)dx+ n · Pr[|∆i,j | ≥ n] ≥
∫ n

0

xf(x)dx ≥ 1−O(1/np−1).

By Equation (2) and E[|∆i,j |p] ≤ O(1), we have

E[Z2
i,j ] =

∫ n

0

x2f(x)dx+ n2 Pr[|∆i,j | ≥ n] ≤ O(n2−p) +O(n2−p) = O(n2−p).

By the inequality of [31],

Pr[E[‖Z‖1]− ‖Z‖1 ≥ εE[‖Z‖1]/2] ≤ exp

(
−ε2 E[‖Z‖1]2/4

2
∑
i,j E[Z2

i,j ]

)

≤ exp

(
−ε2(n2 −O(n3−p))2/4

2n2 ·O(n2−p)

)
≤ e−Θ(n)

Thus with probability at least 1 − e−Θ(n), ‖Z‖1 ≥ (1 − ε/2)E[‖Z‖1] ≥ (1 − ε)n2 where the
last inequality follows by E[‖Z‖1 ≥ n2 − O(n3−p)] and 1/ε = no(1). Since ‖∆‖1 ≥ ‖Z‖1, we
complete the proof.

A.2 Proof of Lemma 2.2

Proof. Let Z ∈ Rn×t be a random matrix where Zi,j are i.i.d. random variables with probability
density function:

g(x) =

{
f(x)/Pr[|∆1,1| ≤ n1/2+1/(2p)], if |x| ≤ n1/2+1/(2p);
0, otherwise.

where f(x) is the probability density function of ∆1,1. (Note that in the above equation, Pr[|∆1,1| ≤
n1/2+1/(2p)] > 0.) Now, we have ∀a ≥ 0,

Pr

∥∥∥∥∥∥
t∑

j=1

αj∆j

∥∥∥∥∥∥
1

≤ a
∣∣∣∣ ∀i ∈ [n], j ∈ [t], |∆i,j | ≤ n1/2+1/(2p)

 = Pr

∥∥∥∥∥∥
t∑

j=1

αjZj

∥∥∥∥∥∥
1

≤ a

 .
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Now we look at the i-th row of
∑t
j=1 αjZj . We have

E

∣∣∣∣∣∣
t∑

j=1

αjZi,j

∣∣∣∣∣∣
 =

E

∣∣∣∣∣∣
t∑

j=1

αjZi,j

∣∣∣∣∣∣
p1/p

≤ E

∣∣∣∣∣∣
t∑

j=1

αjZi,j

∣∣∣∣∣∣
p1/p

≤ E



 t∑
j=1

α2
jZ

2
i,j

1/2

p

1/p

≤ E

 t∑
j=1

|αjZi,j |p
1/p

≤

 t∑
j=1

E[|αjZi,j |p]

1/p

≤

 t∑
j=1

E[|Zi,j |p]

1/p

≤ O(t1/p), (4)

where the first inequality follows by Jensen’s inequality, the second inequality follows by Remark
3 of [32], the third inequality follows by ‖x‖2 ≤ ‖x‖p for p < 2, the fourth inequality follows
by |αj | ≤ 1, the fifth inequality follows by E[|Zi,j |p] = E[|∆i,j |p | |∆1,1| ≤ n1/2+1/(2p)] ≤
E[|∆i,j |p] = O(1). For the second moment, we have

E


∣∣∣∣∣∣
t∑

j=1

αjZi,j

∣∣∣∣∣∣
2
 =

t∑
j=1

E
[
α2
jZ

2
i,j

]
+
∑
j 6=k

E[αjαkZi,jZi,k]

=
t∑

j=1

α2
j E
[
Z2
i,j

]
+
∑
j 6=k

αjαk E[Zi,j ]E[Zi,k]

≤
t∑

j=1

E
[
Z2
i,j

]
= t · 2

∫ n1/2+1/(2p)

0

x2f(x)/Pr
[
|∆i,j | ≤ n1/2+1/(2p)

]
dx

≤ 2t/Pr
[
|∆i,j | ≤ n1/2+1/(2p)

]
· (n1/2+1/(2p))2−p

∫ n1/2+1/(2p)

0

xpf(x)dx

≤ O(tn2−p), (5)

where the second inequality follows by independence ofZi,j andZi,k. The first inequality follows by
|αj | ≤ 1 and E[Zi,j ] = E[Zi,k] = 0. The third equality follows by the probability density function
of Zi,j . The second inequality follows by x2−p ≤ (n1/2+1/(2p))2−p when 0 ≤ x ≤ n1/2+1/(2p).

The last inequality follows by E[|∆i,j |p] = O(1), p > 1 and Pr[|∆i,j | ≤ n1/2+1/(2p)] ≥ 1 −
E[|∆i,j |p]/(n1/2+1/(2p))p = 1−O(1/np/2+1/2) ≥ 1/2.
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For i ∈ [n], define Xi = |
∑t
j=1 αjZi,j |. Then, by Bernstein’s inequality

Pr

∥∥∥∥∥∥
t∑

j=1

αjZj

∥∥∥∥∥∥
1

−E

∥∥∥∥∥∥
t∑

j=1

αjZj

∥∥∥∥∥∥
1

 ≥ 0.5t1/pn


= Pr

[
n∑
i=1

Xi −E

[
n∑
i=1

Xi

]
≥ 0.5t1/pn

]

≤ exp

(
− 0.5 · 0.52t2/pn2∑n

i=1 E[X2
i ] + 1

3n
1/2+1/(2p) · 0.5t1/pn

)
≤ e−n

Θ(1)

.

The last inequality follows by Equation (5). According to Equation (4), with probability at least
1− e−nΘ(1)

, ∥∥∥∥∥∥
t∑

j=1

αjZj

∥∥∥∥∥∥
1

≤ E

∥∥∥∥∥∥
t∑

j=1

αjZj

∥∥∥∥∥∥
1

+ 0.5t1/pn ≤ O(t1/pn).

A.3 Proof of Lemma 2.3

Proof. For i, j ∈ [n], we have

Pr
[
|∆i,j | > n1/2+1/(2p)

]
= Pr

[
|∆i,j |p > np/2+1/2

]
≤ E [|∆i,j |p] /np/2+1/2 ≤ O(1/np/2+1/2).

For column j, by taking a union bound,

Pr[j ∈ H] = Pr
[
∃i ∈ [n], |∆i,j | > n1/2+1/(2p)

]
≤ O(1/np/2−1/2).

Thus, E[|H|] ≤ O(n1−(p−1)/2). By applying Markov’s inequality, we complete the proof.

A.4 Proof of Lemma 2.4

Proof. For l ∈ N≥0, define Gl = {j | ‖∆j‖1 ∈ (n · 2l, n · 2l+1]}. We have

E[|Gl|] ≤
n∑
j=1

Pr
[
‖∆j‖1 ≥ n · 2l

]
= nPr

[
‖∆1‖1 ≥ n · 2l

]
≤ nPr

[
n1−1/p‖∆1‖p ≥ n · 2l

]
= nPr

[
np−1‖∆1‖pp ≥ np · 2lp

]
≤ nE

[
np−1‖∆1‖pp

]
/(np · 2lp)

≤ O(n/2lp).

The first inequality follows by the definition of Gl. The second inequality follows since ∀x ∈
Rn, ‖x‖1 ≤ n1−1/p‖x‖p. The third inequality follows by Markov’s inequality. The last inequality
follows since ∀i, j ∈ [n],E[|∆i,j |p] = O(1).
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Let l∗ ∈ N≥0 satisfy 2l
∗
< εr and 2l

∗+1 ≥ εr. We have

E

 ∑
j:‖∆j‖1≥n2l∗

‖∆j‖1

 ≤ E

[ ∞∑
l=l∗

|Gl| · n2l+1

]
=

∞∑
l=l∗

E[|Gl|] · n2l+1

≤
∞∑
l=l∗

O(n/2lp) · n2l+1 =

∞∑
l=l∗

O(n2/2l(p−1))

= O(n2/2l
∗(p−1)) = O(n2/(εr)p−1)

= O(εn2).

By Markov’s inequality, with probability at least .999,
∑
j:‖∆j‖1≥n2l∗ ‖∆j‖1 ≤ O(εn2). Condi-

tioned on
∑
j:‖∆j‖1≥n2l∗ ‖∆j‖1 ≤ O(εn2), for any S ⊂ [n] with |S| ≤ n/r, we have∑
j∈S
‖∆j‖1 ≤ |S| · n2l

∗
+

∑
j:‖∆j‖1≥n2l∗

‖∆j‖1 ≤ εn2 +O(εn2) = O(εn2).

The second inequality follows because |S| ≤ n/r, 2l
∗ ≤ εr and

∑
j:‖∆j‖1≥n2l∗ ‖∆j‖1 ≤ O(εn2).

A.5 Proof of Lemma 2.5

Proof. Let M = n1/2+1/(2p). Let Z ∈ Rn be a random vector where Zi are i.i.d. random variables
with probability density function

g(x) =

{
f(x)/Pr[|∆1| ≤M ] if 0 ≤ x ≤M ;
0 otherwise.

where f(x) is the probability density function of |∆1|. Then ∀a > 0

Pr [‖∆‖1 ≤ a | ∀i ∈ [n], |∆i| ≤M ] = Pr [‖Z‖1 ≤ a] .

For i ∈ [n], because E[|∆i|] = 1, it holds that E[Zi] ≤ 1.We have E[
∑n
i=1 Zi] ≤ n. For the second

moment, we have

E[Z2
i ] =

∫ M

0

x2f(x)/Pr[|∆1| ≤M ]dx

≤M2−p/Pr[|∆1| ≤M ]

∫ M

0

xpf(x)dx

≤ O(M2−p)

≤ O(n2−p)

where the second inequality follows by E[|∆1|p] = O(1), and Pr[|∆1| ≤ M ] ≥ 1 −
E[|∆1|p]/Mp ≥ 1/2.

Then by Bernstein’s inequality, we have

Pr

[
n∑
i=1

Zi − E

[
n∑
i=1

Zi

]
≥ εn

]

≤ exp

(
−0.5ε2n2∑n

i=1 E[Z2
i ] + 1

3M · εn

)
≤ e−n

Θ(1)

.

Thus,

Pr [‖∆‖1 ≤ (1 + ε)n | ∀i ∈ [n], |∆i| ≤M ] = Pr [‖Z‖1 ≤ (1 + ε)n] ≥ 1− e−n
Θ(1)

.
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A.6 Proof of Lemma 2.10

Proof. Recall that (S1, S2, · · · , St, i) is equivalent to (S[t], i). Let (S[t], i) be an (A∗, q, t, 1/2)-

good tuple which satisfies H ∩
(⋃t

j=1 Sj

)
= ∅. Let C be the core of (S[t], i). Let (x1, x2, · · · , xt)

be the coefficients tuple corresponding to (S[t], i). Then we have that∥∥∥∥∥∥ 1

|C|

t∑
j=1

ASjxj −Ai

∥∥∥∥∥∥
1

=

∥∥∥∥∥∥ 1

|C|

t∑
j=1

(
A∗Sj

+ ∆Sj

)
xj − (A∗i + ∆i)

∥∥∥∥∥∥
1

≤

∥∥∥∥∥∥ 1

|C|

t∑
j=1

A∗Sj
xj −A∗i

∥∥∥∥∥∥
1

+ ‖∆i‖1 +
1

|C|

∥∥∥∥∥∥
t∑

j=1

∆Sjxj

∥∥∥∥∥∥
1

= ‖∆i‖1 +
1

|C|

∥∥∥∥∥∥
t∑

j=1

∆Sjxj

∥∥∥∥∥∥
1

≤ ‖∆i‖1 +
2

t

∥∥∥∥∥∥
t∑

j=1

∆Sjxj

∥∥∥∥∥∥
1

≤ ‖∆i‖1 +O

(
1

t
· (qt)1/pn

)
= ‖∆i‖1 +O

(
q1/p/t1−1/pn

)
holds with probability at least 1− 2−n

Θ(1)

. The first equality follows using A = A∗ + ∆. The first
inequality follows using the triangle inequality. The second equality follows using the definition of
the core and the coefficients tuple (see Definition 2.7 and Definition 2.9). The second inequality
follows using Definition 2.7. The third inequality follows by Lemma 2.2 and the condition that
H ∩

(⋃t
j=1 Sj

)
= ∅.

Since the size of
∣∣∣{i} ∪ (⋃tj=1 Sj

)∣∣∣ = qt + 1, the total number of (A∗, q, t, 1/2)−good tuples is

upper bounded by nqt+1 ≤ 2n
o(1)

. By taking a union bound, we complete the proof.

A.7 Proof of Lemma 2.11

Proof. For j ∈ [t], by symmetry of the choices of Sj and i, we have Pr[i ∈ RA∗(Sj ∪ {i})] ≤
k/(q + 1). Thus, by Markov’s inequality,

Pr[|{j ∈ [t] | i ∈ RA∗(Sj ∪ {i})}| > 0.5t]

≤ E[|{j ∈ [t] | i ∈ RA∗(Sj ∪ {i})}|]/(0.5t)
≤ 2k/q.

Thus,

Pr[|{j ∈ [t] | i 6∈ RA∗(Sj ∪ {i})}| ≥ 0.5t] ≥ 1− 2k/q.

A.8 Proof of Lemma 2.12

Proof. For S1, S2, · · · , St ∈
(

[n]
q

)
with

∑t
j=1 |Sj | = qt, define

P(S1,S2,··· ,St) = Pr
i∈[n]\(

⋃t
j=1 Sj)

[(S1, S2, · · · , St, i) is an (A∗, q, t, 1/2)−good tuple ].
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Let set T be defined as follows:(S1, S2, · · · , St)
∣∣∣∣ S1, S2, · · · , St ∈

(
[n]

q

)
with

t∑
j=1

|Sj | = qt

 .

Let G be the set of all the (A∗, q, t, 1/2)−good tuples. Then, we have

Pr
(S1,S2,··· ,St)∼T

[∣∣{i ∈ [n] \
(
∪tj=1Sj

)
| (S1, S2, · · · , St, i) ∈ G

}∣∣ ≥ (1− 4k/q)(n− qt)
]

=
1

|T |
∣∣{(S1, S2, · · · , St) | (S1, S2, · · · , St) ∈ T and P(S1,S2,··· ,St) ≥ 1− 4k/q

}∣∣
=

1

|T |
∑

(S1,S2,··· ,St)∈T
P(S1,S2,··· ,St)≥1−4k/q

1

≥ 1

|T |
∑

(S1,S2,··· ,St)∈T
P(S1,S2,··· ,St)≥1−4k/q

P(S1,S2,··· ,St)

≥ 1− 2k/q − 1

|T |
∑

(S1,S2,··· ,St)∈T
P(S1,S2,··· ,St)<1−4k/q

P(S1,S2,··· ,St)

≥ 1− 2k/q − (1− 4k/q)

≥ 2k/q.

The second inequality follows from Lemma 2.11

1

|T |
∑

(S1,S2,··· ,St)∈T
P(S1,S2,··· ,St)<1−4k/q

P(S1,S2,··· ,St) +
1

|T |
∑

(S1,S2,··· ,St)∈T
P(S1,S2,··· ,St)≥1−4k/q

P(S1,S2,··· ,St) ≥ 1− 2k/q.

B Hardness Result

An overview of the hardness result. Recall that we overcame the column subset selection lower
bound of [24], which shows for entrywise `1-low rank approximation that there are matrices for
which any subset of poly(k) columns spans at best a kΩ(1)-approximation. Indeed, we came up
with a column subset of size poly(k(ε−1 + log n)) spanning a (1 + ε)-approximation. To do this,
we assumed A = A∗ + ∆, where A∗ is an arbitrary rank-k matrix, and the entries are i.i.d. from a
distribution with E[|∆i,j |] = 1 and E[|∆i,j |p] = O(1) for any real number p strictly greater than 1.

Here we show an assumption on the moments is necessary, by showing if instead ∆ were drawn
from a matrix of i.i.d. Cauchy random variables, for which the p-th moment is undefined or infinite
for all p ≥ 1, then for any subset of no(1) columns, it spans at best a 1.002 approximation. The input
matrix A = nC1 · 1> + ∆, where C > 0 is a constant and we show that nΩ(1) columns need to be
chosen to obtain a 1.001-approximation, even for k = 1. Note that this result is stronger than that in
[24] in that it rules out column subset selection even if one were to choose no(1) columns; the result
in [24] requires at most poly(k) columns, which for k = 1, would just rule out O(1) columns. Our
main goal here is to show that a moment assumption on our distribution is necessary, and our result
also applies to a symmetric noise distribution which is i.i.d. on all entries, whereas the result of [24]
requires a specific deterministic pattern (namely, the identity matrix) on certain entries.

Our main theorem is given in Theorem B.20. The outline of the proof is as follows. We first
condition on the event that ‖∆‖1 ≤ 4.0002

π n2 lnn, which is shown in Lemma B.2 and follows form
standard analysis of sums of absolute values of Cauchy random variables. Thus, it is sufficient
to show if we choose any subset S of r = no(1) columns, denoted by the submatrix AS , then
minX∈Rr×n ‖ASX−A‖1 ≥ 4.01

π ·n
2 lnn, as indeed then minX∈Rr×n ‖ASX−A‖1 ≥ 1.002‖∆‖1
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and we rule out a (1 + ε)-approximation for ε a sufficiently small constant. To this end, we instead
show for a fixed S, that minX∈Rr×n ‖ASX − A‖1 ≥ 4.01

π · n
2 lnn with probability 1 − 2−n

Θ(1)

,
and then apply a union bound over all S. To prove this for a single subset S, we argue that for every
“coefficient matrix” X , that ‖ASX −A‖1 ≥ 4.01

π · n
2 lnn.

We show in Lemma B.6, that with probability 1 − (1/n)Θ(n) over ∆, simultaneously for all X , if
X has a column Xj with ‖Xj‖1 ≥ nc for a constant c > 0, then ‖ASXj − Aj‖1 ≥ .9n3, which
is already too large to provide an O(1)-approximation. Note that we need such a high probability
bound to later union bound over all S. Lemma B.6 is in turn shown via a net argument on all Xj (it
suffices to prove this for a single j ∈ [n], since there are only n different j, so we can union bound
over all j). The net bounds are given in Definition B.4 and Definition B.5, and the high probability
bound for a given coefficient vector Xj is shown in Lemma B.3, where we use properties of the
Cauchy distribution. Thus, we can assume ‖Xj‖1 < nc for all j ∈ [n]. We also show in Fact B.1,
conditioned on the fact that ‖∆‖1 ≤ 4.002

π n2 lnn, it holds that for any vector Xj , if ‖Xj‖1 < nc

and |1 − 1>Xj | > 1 − 10−20, then ‖ASX − A‖1 ≥ ‖ASXj − Aj‖1 > n3. The intuition here is
A = nc01 · 1> + ∆ for a large constant c0, and Xj does not have enough norm (‖Xj‖1 ≤ nc) or
correlation with the vector 1 (|1− 1>Xj | > 1− 10−20) to make ‖ASXj −Aj‖1 small.

Given the above, we can assume both that ‖Xj‖1 ≤ nc and |1−1>Xj | ≤ 1−10−20 for all columns
j of our coefficient matrix X . We can also assume that ‖ASX −A‖1 ≤ 4n2 lnn, as otherwise such
an X already satisfies ‖ASX −A‖1 ≥ 4.01

π · n
2 lnn and we are done. To analyze ‖ASX −A‖1 =∑

i,j |(ASX − A[n]\S)i,j | in Theorem B.20, we then split the sum over “large coordinates” (i, j)

for which |∆i,j | > n1.0002, and “small coordinates” (i, j) for which |∆i,j | < n.9999, and since we
seek to lower bound ‖ASX − A[n]\S‖1, we drop the remaining coordinates (i, j). To handle large
coordinates, we observe that since the column span of AS is only r = no(1)-dimensional, as one
ranges over all vectors y in its span of 1-norm, say,O(n2 lnn), there is only a small subset T , of size
at most n.99999 of coordinates i ∈ [n] for which we could ever have |yi| ≥ n1.0001. We show this in
Lemma B.9. This uses the property of vectors in low-dimensional subspaces, and has been exploited
in earlier works in the context of designing so-called subspace embeddings [2, 3]. We call T the “bad
region” for AS . While the column span of AS depends on ∆S , it is independent of ∆[n]\S , and thus
it is extremely unlikely that the large coordinate of ∆S “match up” with the bad region ofAS . This is
captured in Lemma B.13, where we show that if ‖ASX−A[n]\S‖1 ≤ 4n2 lnn (as we said we could
assume above), then

∑
large coordinates i,j |(ASX − A[n]\S)i,j | is at least 1.996

π n2 lnn. Intuitively, the
heavy coordinates make up about 2

πn
2 lnn of the total mass of ‖∆‖1, by tail bounds of the Cauchy

distribution, and for any set S of size no(1), AS fits at most a small portion of this, still leaving us
left with 1.996

π n2 lnn in cost. Our goal is to show that ‖ASX − A[n]\S‖1 ≥ 4.01
π · n

2 lnn, so we
still have a way to go.

We next analyze
∑

small coordinates i,j |(ASX−A[n]\S)i,j |. Via Bernstein’s inequality, in Lemma B.14
we argue that for any fixed vector y and random vector ∆j of i.i.d. Cauchy entries, roughly half of the
contribution of coordinates to ‖∆j‖1 will come from coordinates j for which sign(yj) =sign(∆j)
and |∆j | ≤ n.9999, giving us a contribution of roughly .9998

π n lnn to the cost. The situation we
will actually be in, when analyzing a column of ASX − A[n]\S , is that of taking the sum of two
independent Cauchy vectors, shifted by a multiple of 1>. We analyze this setting in Lemma B.16,
after first conditioning on certain level sets having typical behavior in Lemma B.15. This roughly
doubles the contribution, gives us roughly a contribution of 1.996

π n2 lnn from coordinates j for
which (i, j) is a small coordinate and we look at coordinates i on which the sum of two independent
Cauchy vectors have the same sign. Combined with the contribution from the heavy coordinates,
this gives us a cost of roughly 3.992

π n2 lnn, which still falls short of the 4.01
π · n

2 lnn total cost we
are aiming for. Finally, if we sum up two independent Cauchy vectors and look at the contribution
to the sum from coordinates which disagree in sign, due to the anti-concentration of the Cauchy
distribution we can still “gain a little bit of cost” since the values, although differing in sign, are
still likely not to be very close in magnitude. We formalize this in Lemma B.17. We combine all
of the costs from small coordinates in Lemma B.18, where we show we obtain a contribution of at
least 2.025

π n lnn. This is enough, when combined with our earlier 1.996
π n2 lnn contribution from

the heavy coordinates, to obtain an overall 4.01
π · n

2 lnn lower bound on the cost, and conclude the
proof of our main theorem in Theorem B.20.
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In the remaining sections, we will present detailed proofs.

B.1 A Useful Fact

Fact B.1. Let c0 > 0 be a sufficiently large constant. Let u = nc0 · 1 ∈ Rn and ∆ ∈ Rn×(d+1).

If
∑d+1
i=1 ‖∆i‖1 ≤ n3 and if α ∈ Rd satisfies |1 − 1>α| > 1/nc1 and ‖α‖1 ≤ nc, where 0 < c <

c0 − 10 is a constant and c1 > 3 is another constant depending on c0, c, then

‖u− u1>α+ ∆d+1 −∆[d]α‖1 > n3.

Proof.

‖u− u1>α+ ∆d+1 −∆[d]α‖1
≥ |1− 1>α| · ‖u‖1 − ‖∆d+1‖1 − ‖∆[d]α‖1
≥ |1− 1>α| · n · nc0 − n3 − n4‖α‖1
≥ |1− 1>α| · n · nc0 − n5+c

≥ nc0+1−c1 − n5+c

≥ n3.

The first inequality follows by the triangle inequality. The second inequality follows since u =

nc0 · 1 ∈ Rn and
∑d+1
i=1 ‖∆i‖1 ≤ n3. The third inequality follows since ‖α‖1 ≤ nc. The fourth

inequality follows since |1− 1>α| > 1/nc1 . The last inequality follows since c0 − c1 > c+ 5.

B.2 One-Sided Error Concentration Bound for a Random Cauchy Matrix

Lemma B.2 (Lower bound on the cost). If n is sufficiently large, then

Pr
∆∼{C(0,1)}n×n

[
‖∆‖1 ≤

4.0002

π
n2 lnn

]
≥ 1−O(1/ log log n).

Proof. Let ∆ ∈ Rn×n be a random matrix such that each entry is an i.i.d. C(0, 1) random Cauchy
variable. Let B = n2 ln lnn. Let Z ∈ Rn×n and ∀i, j ∈ [n],

Zi,j =

{
|∆i,j | |∆i,j | < B
B Otherwise .

For fixed i, j ∈ [n], we have

E[Zi,j ] =
2

π

∫ B

0

x

1 + x2
dx+ Pr[|∆i,j | ≥ B] ·B

=
1

π
ln(B2 + 1) + Pr[|∆i,j | ≥ B] ·B

≤ 1

π
ln(B2 + 1) + 1

where the first inequality follows by the cumulative distribution function of a half Cauchy random
variable. We also have E[Zi,j ] ≥ 1

π ln(B2 + 1). For the second moment, we have

E[Z2
i,j ] =

2

π

∫ B

0

x2

1 + x2
dx+ Pr[|∆i,j | ≥ B] ·B2

=
2

π
(B − tan−1B) + Pr[|∆i,j | ≥ B] ·B2

≤ 2

π
B +B

≤ 2B
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where the first inequality follows by the cumulative distribution function of a half Cauchy random
variable. By applying Bernstein’s inequality, we have

Pr [‖Z‖1 −E[‖Z‖1] > 0.0001E[‖Z‖1]]

≤ exp

(
− 0.5 · 0.00012 E[‖Z‖1]2

n2 · 2B + 1
3B · 0.0001E[‖Z‖1]

)
≤ exp(−Ω(lnn/ ln lnn))

≤ O(1/ lnn). (6)
The first inequality follows by the definition of Z and the second moment of Zi,j . The second
inequality follows from E[‖Z‖1] = Θ(n2 lnn) and B = Θ(n2 ln lnn). Notice that

Pr

[
‖∆‖1 >

4.0002

π
n2 lnn

]
= Pr

[
‖∆‖1 >

4.0002

π
n2 lnn | ∀i, j, |∆i,j | < B

]
Pr [∀i, j, |∆i,j | < B]

+ Pr

[
‖∆‖1 >

4.0002

π
n2 lnn | ∃i, j, |∆i,j | ≥ B

]
Pr [∃i, j, |∆i,j | ≥ B]

≤ Pr

[
‖∆‖1 >

4.0002

π
n2 lnn | ∀i, j, |∆i,j | < B

]
+ Pr [∃i, j, |∆i,j | ≥ B]

≤ Pr

[
‖Z‖1 >

4.0002

π
n2 lnn

]
+ Pr [∃i, j, |∆i,j | ≥ B]

≤ Pr

[
‖Z‖1 >

4.0002

π
n2 lnn

]
+ n2 · 1/B

≤ Pr [‖Z‖1 > 1.0001E[‖Z‖1]] + n2 · 1/B
≤ O(1/ log(n)) +O(1/ log log n)

≤ O(1/ log log n)

The second inequality follows by the definition of Z. The third inequality follows by the union
bound and the cumulative distribution function of a half Cauchy random variable. The fourth in-
equality follows from E[‖Z‖1] ≤ n2(1/π · ln(B2 + 1) + 1) ≤ 4.0000001/π · n2 lnn when n is
sufficiently large.

B.3 “For Each” Guarantee

In the following Lemma, we show that, for each fixed coefficient vector α, if the entry of α is too
large, the fitting cost cannot be small.
Lemma B.3 (For each fixed α, the entry cannot be too large). Let c > 0 be a sufficiently large
constant, n ≥ d ≥ 1, u ∈ Rn be any fixed vector and ∆ ∈ Rn×d be a random matrix where
∀i ∈ [n], j ∈ [d],∆i,j ∼ C(0, 1) independently. For any fixed α ∈ Rd with ‖α‖1 = nc,

Pr
∆∼{C(0,1)}n×d

[‖(u · 1> + ∆)α‖1 > n3] > 1− (1/n)Θ(n).

Proof. Let c be a sufficiently large constant. Let α ∈ Rd with ‖α‖1 = nc. Let u ∈ Rn be any fixed
vector. Let ∆ ∈ Rn×d be a random matrix where ∀i ∈ [n], j ∈ [d],∆i,j ∼ C(0, 1). Then ∆α ∈ Rn
is a random vector with each entry drawn independently from C(0, ‖α‖1). Due to the probability
density function of standard Cauchy random variables,

Pr[‖∆α‖1 < n3] ≥ Pr[‖∆α+ u · 1>α‖1 < n3].

It suffices to upper bound Pr[‖∆α‖1 < n3]. If c > 10, then due to the cumulative distribu-
tion function of Cauchy random variables, for a fixed i ∈ [n], Pr[|(∆α)i| < n3] < 1/n. Thus,
Pr[‖∆α‖1 < n3] < ( 1

n )n. Thus,

Pr
∆∼{C(0,1)}n×d

[‖(u · 1> + ∆)α‖1 > n3] > 1− (1/n)n.
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B.4 From “For Each” to “For All” via an ε-Net

Definition B.4 (ε-net for the `1-norm ball). Let A ∈ Rn×d have rank d, and let L = {y ∈ Rn | y =
Ax, x ∈ Rd} be the column space of A. An ε-net of the `1-unit sphere Sd−1 = {y | ‖y‖1 = 1, y ∈
L} ⊂ L is a set N ⊂ Sd−1 of points for which ∀y ∈ Sd−1,∃y′ ∈ N for which ‖y − y′‖ ≤ ε.

[33] proved an upper bound on the size of an ε-net.
Lemma B.5 (See, e.g., the ball B on page 2068 of [33]). Let A ∈ Rn×d have rank d, and let
L = {y ∈ Rn | y = Ax, x ∈ Rd} be the column space ofA. For ε ∈ (0, 1), an ε-net (Definition B.4)
N of the `1-unit sphere Sd−1 = {y | ‖y‖1 = 1, y ∈ L} ⊂ L exists. Furthermore, the size of N is at
most (3/ε)d.

Lemma B.6 (For all possible α, the entry cannot be too large). Let n ≥ 1, d = no(1). Let u =
nc0 · 1 ∈ Rn denote a fixed vector where c0 is a constant. Let ∆ ∈ Rn×d be a random matrix
where ∀i ∈ [n], j ∈ [d],∆i,j ∼ C(0, 1) independently. Let c > 0 be a sufficiently large constant.
Conditioned on ‖∆‖1 ≤ n3, with probability at least 1−(1/n)Θ(n), for all α ∈ Rd with ‖α‖1 ≥ nc,
we have ‖(u · 1> + ∆)α‖1 > 0.9n3.

Proof. Due to Lemma B.5, there is a set N ⊂ {α ∈ Rd | ‖α‖1 = nc} ⊂ Rd with |N | ≤ 2Θ(d logn)

such that ∀α ∈ Rd with ‖α‖1 = nc, ∃α′ ∈ N such that ‖α− α′‖1 ≤ 1/nc
′

where c′ > c0 + 100 is
a constant. By applying Lemma B.3 and union bounding over all the points in N, with probability
at least 1− (1/n)n · |N | ≥ 1− (1/n)n ·2no(1)

= 1− (1/n)Θ(n), ∀α′ ∈ N, ‖(u ·1>+∆)α′‖1 > n3.

∀α ∈ Rd with ‖α‖1 = nc, we can find α′ ∈ N such that ‖α−α′‖1 ≤ 1/nc
′
. Let γ = α−α′. Then,

‖(u · 1> + ∆)α‖1
= ‖(u · 1> + ∆)(α′ + γ)‖1
≥ ‖(u · 1> + ∆)α′‖1 − ‖(u · 1> + ∆)γ‖1
≥ n3 −

√
n‖(u · 1> + ∆)γ‖2

≥ n3 −
√
n(‖u · 1>‖2 + ‖∆‖2)‖γ‖2

≥ n3 − nc0+50/nc
′

≥ 0.9n3.

The first equality follows from α = α′+γ. The first inequality follows by the triangle inequality. The
second inequality follows by the relaxation from the `1 norm to the `2 norm. The third inequality
follows from the operator norm and the triangle inequality. The fourth inequality follows using
‖∆‖2 ≤ ‖∆‖1 ≤ n3, ‖u‖2 ≤ nc0+10, ‖γ‖2 ≤ ‖γ‖1 ≤ (1/n)c

′
. The last inequality follows since

c′ > c0 + 100.

For α ∈ Rn with ‖α‖1 > nc, let α′ = α/‖α‖1 · nc. Then

‖(u · 1> + ∆)α‖1 ≥ ‖(u · 1> + ∆)α′‖1 ≥ 0.9n3.

B.5 Bounding the Cost from the Large-Entry Part via “Bad” Regions

In this section, we will use the concept of well-conditioned basis in our analysis.
Definition B.7 (Well-conditioned basis [33]). Let A ∈ Rn×m have rank d. Let p ∈ [1,∞), and let
‖ · ‖q be the dual norm of ‖ · ‖p, i.e., 1/p+ 1/q = 1. If U ∈ Rn×d satisfies

1. ‖U‖p ≤ α,

2. ∀z ∈ Rd, ‖z‖q ≤ β‖Uz‖p,

then U is an (α, β, p) well-conditioned basis for the column space of A.

The following theorem gives an existence result of a well-conditioned basis.
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Theorem B.8 (`1 well-conditioned basis [33]). LetA ∈ Rn×m have rank d. There exists U ∈ Rn×d
such that U is a (d, 1, 1) well-conditioned basis for the column space of A.

In the following lemma, we consider vectors from low-dimensional subspaces. For a coordinate, if
there is a vector from the subspace for which this entry is large, but the norm of the vector is small,
then this kind of coordinate is pretty “rare”. More formally,

Lemma B.9. Given a matrix U ∈ Rn×r for a sufficiently large n ≥ 1, let r = no(1). Let S =
{y|y = Ux, x ∈ Rr}. Let the set T denote {i ∈ [n] | ∃y ∈ S, |yi| ≥ n1.0001 and ‖y‖1 < 8n2 lnn}.
Then we have

|T | ≤ n0.99999.

Proof. Due to Theorem B.8, let U ∈ Rn×r be the (r, 1, 1) well-conditioned basis of the column
space of U . If i ∈ T, then ∃x ∈ Rr such that |(Ux)i| ≥ n1.0001 and ‖Ux‖1 < 8n2 lnn. Thus, we
have

n1.0001 ≤ |(Ux)i| ≤ ‖U i‖1‖x‖∞ ≤ ‖U i‖1‖Ux‖1 ≤ ‖U i‖1 · 8n2 lnn.

The first inequality follows using n1.0001 ≤ |(Ux)i|. The second inequality follows by Hölder’s
inequality. The third inequality follows by the second property of the well-conditioned basis. The
fourth inequality follows using ‖Ux‖1 < 8n2 lnn. Thus, we have

‖U i‖1 ≥ n1.0001/n2+o(1) ≥ 1/n0.9999−o(1).

Notice that
∑n
j=1 ‖U j‖1 = ‖U‖1 ≤ r. Thus,

|T | ≤ r/(1/n0.9999−o(1)) = n0.9999+o(1) ≤ n0.99999.

Definition B.10 (Bad region). Given a matrix U ∈ Rn×r, we say B(U) = {i ∈ [n] | ∃y ∈
colspan(U) ⊂ Rn s.t. yi ≥ n1.0001 and ‖y‖1 ≤ 8n2 lnn} is a bad region for U .

Next we state a lower and an upper bound on the probability that a Cauchy random variable is in a
certain range,
Claim B.11. Let X ∼ C(0, 1) be a standard Cauchy random variable. Then for any x > 1549,

2

π
· ln(1.001)

x
≥ Pr[|X| ∈ (x, 1.001x]] ≥ 1.999

π
· ln(1.001)

x
.

Proof. When x > 1549, 2
π ·

ln(1.001)
x ≥ 2

π · (tan−1(1.001x)− tan−1(x)) ≥ 1.999
π · ln(1.001)

x .

We build a level set for the “large” noise values, and we show the bad region cannot cover much of
the large noise. The reason is that the bad region is small, and for each row, there is always some
large noise.

Lemma B.12. Given a matrix U ∈ Rn×r with n sufficiently large, let r = no(1), and consider
a random matrix ∆ ∈ Rn×(n−r) with ∆i,j ∼ C(0, 1) independently. Let Lt = {(i, j) | (i, j) ∈
[n] × [n − r], |∆i,j | ∈ (1.001t, 1.001t+1]}. With probability at least 1 − 1/2n

Θ(1)

, for all t ∈
( 1.0002 lnn

ln 1.001 , 1.9999 lnn
ln 1.001 ) ∩ N,

|Lt \ (B(U)× [n− r])| ≥ n(n− r) · 1.998 · ln(1.001)/(π · 1.001t).

Proof. Let N = n · (n − r). Then according to Claim B.11, ∀t ∈ ( 1.0002 lnn
ln 1.001 , 1.9999 lnn

ln 1.001 ) ∩ N,
E(|Lt|) ≥ N · 1.999 · ln(1.001)/(π · 1.001t) ≥ nΘ(1). For a fixed t, by a Chernoff bound, with
probability at least 1 − 1/2n

Θ(1)

, |Lt| ≥ N · 1.9989 · ln(1.001)/(π · 1.001t). Due to Lemma B.9,
|B(U)× [n− r]| ≤ n0.99999(n− r) = N/n0.00001. Due to the Chernoff bound, with probability at
least 1− 1/2n

Θ(1)

, |Lt ∩ (B(U)× [n− r])| < N/n0.00001 · 2.0001 · ln(1.001)/(π · 1.001t). Thus,
with probability at least 1− 1/2n

Θ(1)

, |Lt \ (B(U)× [n− r])| ≥ N · 1.998 · ln(1.001)/(π · 1.001t).
By taking a union bound over all t ∈ ( 1.0002 lnn

ln 1.001 , 1.9999 lnn
ln 1.001 ) ∩ N, we complete the proof.
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Lemma B.13 (The cost of the large noise part). Let n ≥ 1 be sufficiently large, and let r = no(1).
Given a matrix U ∈ Rn×r, and a random matrix ∆ ∈ Rn×(n−r) with ∆i,j ∼ C(0, 1) independently,
let I = {(i, j) ∈ [n] × [n − r] | |∆i,j | ≥ n1.0002}. If ‖∆‖1 ≤ 4n2 lnn, then with probability at
least 1− 1/2n

Θ(1)

, for all X ∈ Rr×n, either∑
(i,j)∈I

|(UX −∆)i,j | >
1.996

π
n2 lnn,

or

‖UX −∆‖1 > 4n2 lnn

Proof. ∑
(i,j)∈I

|(UX −∆)i,j |

≥
∑

(i,j)∈I\B(U)

|(UX −∆)i,j |

≥
∑

(i,j)∈I\B(U)

|(∆)i,j | −
∑

(i,j)∈I\B(U)

|(UX)i,j | (7)

Let N = n(n − r). By a Chernoff bound and the cumulative distribution function of a Cauchy
random variable, with probability at least 1− 1/2n

Θ(1)

, |I| ≤ 1.1 ·N/n1.0002. If ∃(i, j) ∈ I \B(U)
which has |(UX)i,j | > n1.0001, then according to the definition of B(U), ‖UX‖1 ≥ ‖(UX)j‖1 ≥
8n2 lnn. Due to the triangle inequality, ‖UX − ∆‖1 ≥ ‖UX‖1 − ‖∆‖1 ≥ 4n2 lnn. If ∀(i, j) ∈
I \ B(U) we have |(UX)i,j | ≤ n1.0001, then∑

(i,j)∈I\B(U)

|(UX)i,j | ≤ |I| · n1.0001 ≤ 1.1 ·N/n0.0001. (8)

Due to Lemma B.12, with probability at least 1− 1/2n
Θ(1)

,∑
(i,j)∈I\B(U)

|(∆)i,j |

≥
∑

t∈( 1.0002 ln n
ln 1.001 , 1.9999 ln n

ln 1.001 )∩N

1.001t ·N · 1.998 · ln(1.001)/(π · 1.001t)

≥ 1.997

π
·N lnn. (9)

We plug (8) and (9) into (7), from which we have∑
(i,j)∈I

|(UX −∆)i,j | ≥
1.996

π
n2 lnn.

B.6 Cost from the Sign-Agreement Part of the Small-Entry Part

We use −y to fit ∆ (we think of ASα = A∗Sα− y, and want to minimize ‖ − y −∆‖1). If the sign
of yj is the same as the sign of ∆j , then both coordinate values will collectively contribute.
Lemma B.14 (The contribution from ∆i when ∆i and yi have the same sign). Suppose we are
given a vector y ∈ Rn and a random vector ∆ ∈ Rn with ∆j ∼ C(0, 1) independently. Then with
probability at least 1− 1/2n

Θ(1)

, ∑
j : sign(yj)=sign(∆j) and |∆j |≤n0.9999

|∆j | >
0.9998

π
n lnn.
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Proof. For j ∈ [n], define the random variable

Zj =

{
∆j 0 < ∆j ≤ n0.9999

0 otherwise .

Then, we have

Pr

 ∑
j : sign(yj)=sign(∆i,j) and |∆j |≤n0.9999

|∆j | >
0.9998

π
n lnn

 = Pr

 n∑
j=1

Zj >
0.9998

π
n lnn

 .
Let B = n0.9999. For j ∈ [n],

E[Zj ] =
1

π

∫ B

0

x

1 + x2
dx =

1

2π
ln(B2 + 1).

Also,

E[Z2
j ] =

1

π

∫ B

0

x2

1 + x2
dx =

B − tan−1(B)

π
≤ B.

By Bernstein’s inequality,

Pr

E
 n∑
j=1

Zj

− n∑
j=1

Zj > 10−5 E

 n∑
j=1

Zj


≤ exp

− 0.5 ·
(

10−5 E
[∑n

j=1 Zj

])2

∑n
j=1 E[Z2

j ] + 1
3B · 10−5 E

[∑n
j=1 Zj

]


≤ exp

(
− 5 · 10−11n2 ln2(B2 + 1)/(4π2)

nB + 1
3B · 10−5n ln(B2 + 1)/(2π)

)
≤ e−n

Θ(1)

.

The last inequality follows since B = n0.9999. Thus, we have

Pr

 n∑
j=1

Zj < 0.9998/π · n lnn

 ≤ Pr

 n∑
j=1

Zj < 0.99999n ln(B2 + 1)/(2π)

 ≤ e−nΘ(1)

.

Lemma B.15 (Bound on level sets of a Cauchy vector). Suppose we are given a random vector
y ∈ Rn with yi ∼ C(0, 1) chosen independently. Let

L−t = {i ∈ [n] | − yi ∈ (1.001t, 1.001t+1]} and L+
t = {i ∈ [n] | yi ∈ (1.001t, 1.001t+1]}.

With probability at least 1− 1/2n
Θ(1)

, for all t ∈ ( ln 1549
ln 1.001 ,

0.9999 lnn
ln 1.001 ) ∩ N,

min(|L−t |, |L+
t |) ≥ 0.999n · 1

π

ln 1.001

1.001t
.

Proof. For i ∈ [n], t ≥ ln 1549
ln 1.001 , according to Claim B.11, Pr[yi ∈ (1.001t, 1.001t+1]] ≥ 0.9995/π ·

ln(1.0001)/1.001t. Thus, E[|L+
t |] = E[|L−t |] = n · 0.9995/π · ln(1.0001)/1.001t. Since t ≤

0.9999 lnn
ln 1.001 , 1.001t ≤ n0.9999, we have E[|L+

t |] = E[|L−t |] ≥ nΘ(1). By applying a Chernoff bound,

Pr[|L+
t | > 0.999n/π · ln(1.0001)/1.001t] ≥ 1− 1/2n

Θ(1)

.

Similarly, we have

Pr[|L−t | > 0.999n/π · ln(1.0001)/1.001t] ≥ 1− 1/2n
Θ(1)

.

By taking a union bound over all the L+
t and L−t , we complete the proof.
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Lemma B.16 (The contribution from yi when ∆i and yi have the same sign). Let u = η · 1 ∈ Rn
where η ∈ R is an arbitrary real number. Let y ∈ Rn be a random vector with yi ∼ C(0, β)
independently for some β > 0. Let ∆ ∈ Rn be a random vector with ∆i ∼ C(0, 1) independently.
With probability at least 1− 1/2n

Θ(1)

,∑
i : sign((u+y)i)=sign(∆i) and |∆i|≤n0.9999

|(u+ y)i| ≥ β ·
0.997

π
n lnn.

Proof. For all t ∈ ( ln 1549
ln 1.001 ,

0.9999 lnn
ln 1.001 ) ∩ N, define

L−t = {i ∈ [n] | − yi ∈ (β · 1.001t, β · 1.001t+1]} and L+
t = {i ∈ [n] | yi ∈ (β · 1.001t, β · 1.001t+1]}.

Define
G = {i ∈ [n] | sign((u+ y)i) = sign(∆i) and |∆i| ≤ n0.9999}.

Then ∀i ∈ [n],Pr[i ∈ G] ≥ 0.5− 1/n0.9999 ≥ 0.4999999999. Due to Lemma B.15,

min(|L−t |, |L+
t |) ≥ 0.999n · 1

π

ln 1.001

1.001t
≥ nΘ(1).

By a Chernoff bound and a union bound, with probability at least 1 − 1/2n
Θ(1)

, ∀t ∈
( ln 1549

ln 1.001 ,
0.9999 lnn

ln 1.001 ) ∩ N,
min(|L−t ∩G|, |L+

t ∩G|)

≥ 0.499n · 1

π

ln 1.001

1.001t
. (10)

Then we have ∑
i∈G
|(u+ y)i|

≥
∑

t∈( ln 1549
ln 1.001 ,

0.9999 ln n
ln 1.001 )∩N

 ∑
i∈L+

t ,i∈G

|yi + η|+
∑

i∈L−t ,i∈G

| − yi − η|


≥

∑
t∈( ln 1549

ln 1.001 ,
0.9999 ln n

ln 1.001 )∩N

0.499n · 1

π

ln 1.001

1.001t
· 2 · 1.001t · β

≥ β · 0.997

π
n lnn

The second inequality follows by Equation (10) and the triangle inequality, i.e., ∀a, b, c ∈ R, |a +
c|+ |b− c| ≥ |a+ b|.

B.7 Cost from the Sign-Disagreement Part of the Small-Entry Part

Lemma B.17. Given a vector y ∈ Rn and a random vector ∆ ∈ Rn with ∆i ∼ C(0, 1) indepen-
dently, with probability at least 1− 1/2n

Θ(1)

,∑
i : sign(yi) 6=sign(∆i) and |∆i|<n0.9999

|yi + ∆i| >
0.03

π
n lnn.

Proof. For t ∈ [0, 0.9999 lnn
ln 4 ) ∩ N define

Lt = {i ∈ [n] | sign(yi) 6= sign(∆i), |∆i| ∈ (4t, 4t+1], |∆i| 6∈ [|yi| − 4t, |yi|+ 4t]}.
∀x ≥ 1, y > 0, we have

Pr
X∼C(0,1)

[|X| ∈ (x, 4x], |X| 6∈ [y − x, y + x]]

≥ Pr
X∼C(0,1)

[|X| ∈ (3x, 4x]]

=
2

π
· (tan−1(4x)− tan−1(3x))

≥ 0.1

π
· ln(4)

x

25



Thus, ∀i ∈ [n], t ∈ [0, 0.9999 lnn
ln 4 ) ∩ N,

Pr[i ∈ Lt] ≥
0.05

π
· ln(4)

4t
.

Thus, ∀t ∈ [0, 0.9999 lnn
ln 4 ) ∩ N,E[|Lt|] ≥ 0.05n/π · ln(4)/4t ≥ nΘ(1). By a Chernoff bound and

a union bound, with probability at least 1 − 1/2n
Θ(1) ∀t ∈ [0, 0.9999 lnn

ln 4 ) ∩ N, |Lt| ≥ 0.04n/π ·
ln(4)/4t. Thus, we have, with probability at least 1− 1/2n

Θ(1)

,∑
i : sign(yi) 6=sign(∆i) and |∆i|<n0.9999

|yi + ∆i|

≥
∑

t∈[0, 0.9999 ln n
ln 4 )∩N

|Lt| · 4t

≥ 0.03

π
n lnn.

B.8 Overall Cost of the Small-Entry Part

Lemma B.18 (For each). Let u = η · 1 ∈ Rn where η ∈ R is an arbitrary real number. Let α ∈ Rd
where ‖α‖1 ≥ 1− 10−20. Let ∆ ∈ Rn×(d+1) and ∀(i, j) ∈ [n]× [d+ 1],∆i,j ∼ C(0, 1) are i.i.d.
standard Cauchy random variables. Then with probability at least 1− 1/2n

Θ(1)

,∑
j∈[n],|∆j,d+1|<n0.9999

|(u+ ∆d+1 − (u1> + ∆[d])α)j | ≥
2.025

π
n lnn.

Proof. Let G1 = {j ∈ [n] | |∆j,d+1| < n0.9999, sign((u(1 − 1>α) − ∆[d]α)j) =

sign(∆d+1)j)}, G2 = {j ∈ [n] | |∆j,d+1| < n0.9999, sign((u(1 − 1>α) − ∆[d]α)j) 6=
sign(∆d+1)j)}. Notice that ∆[d]α is a random vector with each entry independently drawn from
C(0, ‖α‖1). Then with probability at least 1− 1/2n

Θ(1)

,∑
j∈[n],|∆j,d+1|<n0.9999

|(u+ ∆d+1 − (u1> + ∆[d])α)j |

=
∑

j∈[n],|∆j,d+1|<n0.9999

|(u(1− 1>α)−∆[d]α+ ∆d+1)j |

=
∑
j∈G1

|(u(1− 1>α)−∆[d]α+ ∆d+1)j |+
∑
j∈G2

|(u(1− 1>α)−∆[d]α+ ∆d+1)j |

=
∑
j∈G1

|(u(1− 1>α)−∆[d]α)j |+
∑
j∈G1

|(∆d+1)j |+
∑
j∈G2

|(u(1− 1>α)−∆[d]α+ ∆d+1)j |

≥ ‖α‖1 ·
0.997

π
· n lnn+

0.9998

π
n lnn+

0.03

π
n lnn

≥ 2.025

π
n lnn

The first inequality follows by Lemma B.16, Lemma B.14 and Lemma B.17. The second inequality
follows by ‖α‖1 ≥ 1− 10−20.

Lemma B.19 (For all). Let c > 0, c0 > 0 be two arbitrary constants. Let u = η · 1 ∈ Rn
where η ∈ R satisfies |η| ≤ nc0 . Consider a random matrix ∆ ∈ Rn×(d+1) with d = no(1) and
∀(i, j) ∈ [n] × [d + 1],∆i,j ∼ C(0, 1) are i.i.d. standard Cauchy random variables. Conditioned
on ‖∆‖1 ≤ n3, with probability at least 1− 1/2n

Θ(1)

, ∀α ∈ Rd with 1− 10−20 ≤ ‖α‖1 ≤ nc,∑
j∈[n],|∆j,d+1|<n0.9999

|(u+ ∆d+1 − (u1> + ∆[d])α)j | ≥
2.024

π
n lnn.
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Proof. Let N be a set of points:

N =
{
α ∈ Rd | 1− 10−20 ≤ ‖α‖1 ≤ nc and ∃q ∈ Zd, such that α = q/nc+c0+1000

}
.

Since d = no(1), we have |N | ≤ (n2c+c0+2000)d = 2n
o(1)

. By Lemma B.18 and a union bound,
with probability at least 1− 1/2n

Θ(1) · |N | ≥ 1− 1/2n
Θ(1)

, ∀α ∈ N , we have∑
j∈[n],|∆j,d+1|<n0.9999

|(u+ ∆d+1 − (u1> + ∆[d])α)j | ≥
2.025

π
n lnn.

Due to the construction of N , we have ∀α ∈ Rd with 1− 10−20 ≤ ‖α‖1 ≤ nc, ∃α′ ∈ N such that
‖α− α′‖∞ ≤ 1/nc+c0+1000. Let γ = α− α′. Then∑

j∈[n],|∆j,d+1|<n0.9999

|(u+ ∆d+1 − (u1> + ∆[d])α)j |

=
∑

j∈[n],|∆j,d+1|<n0.9999

|(u+ ∆d+1 − (u1> + ∆[d])(α
′ + γ))j |

≥
∑

j∈[n],|∆j,d+1|<n0.9999

|(u+ ∆d+1 − (u1> + ∆[d])α
′)j | −

∑
j∈[n],|∆j,d+1|<n0.9999

|((u1> + ∆[d])γ)j |

≥
∑

j∈[n],|∆j,d+1|<n0.9999

|(u+ ∆d+1 − (u1> + ∆[d])α
′)j | − ‖(u1> + ∆[d])γ‖1

≥ 2.025

π
n lnn− 1/n500

≥ 2.024

π
n lnn

The first equality follows from α = α′+γ. The first inequality follows by the triangle inequality. The
third inequality follows from ‖γ‖1 ≤ 1/nc+c0+800, ‖u1>‖1 ≤ nc0+10, ‖∆‖1 ≤ n3, and ∀α′ ∈ N ,∑

j∈[n],|∆j,d+1|<n0.9999

|(u+ ∆d+1 − (u1> + ∆[d])α
′)j | ≥

2.025

π
n lnn.

B.9 Main result

Theorem B.20 (Formal version of Theorem 1.2). Let n > 0 be sufficiently large. Let A = η · 1 ·
1> + ∆ ∈ Rn×n be a random matrix where η = nc0 for some sufficiently large constant c0, and
∀i, j ∈ [n],∆i,j ∼ C(0, 1) are i.i.d. standard Cauchy random variables. Let r = no(1). Then with
probability at least 1−O(1/ log log n), ∀S ⊂ [n] with |S| = r,

min
X∈Rr×n

‖ASX −A‖1 ≥ 1.002‖∆‖1

Proof. We first argue that for a fixed set S, conditioned on ‖∆‖1 ≤ 100n2 lnn, with probability at
least 1− 1/2n

Θ(1)

,

min
X∈Rr×n

‖ASX −A‖1 ≥ 1.002‖∆‖1.

Then we can take a union bound over the at most nr = 2n
o(1)

possible choices of S. It suffices to
show for a fixed set S, minX∈Rr×n ‖ASX −A‖1 is not small.

Without loss of generality, let S = [r], and we want to argue the cost

min
X∈Rr×n

‖ASX −A‖1 ≥ min
X∈Rr×n

‖ASX[n]\S −A[n]\S‖1 ≥ 1.002‖∆‖1.

Due to Lemma B.2, with probability at least 1−O(1/ log log n), ‖∆‖1 ≤ 4.0002/π ·n2 lnn. Now,
we can condition on ‖∆‖1 ≤ 4.0002/π · n2 lnn.
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Consider j ∈ [n] \ S. Due to Lemma B.6, with probability at least 1− (1/n)Θ(n), for all Xj ∈ Rr
with ‖Xj‖1 ≥ nc for some constant c > 0, we have

‖ASXj −Aj‖1 = ‖(η · 1 · 1> + [∆S ∆j ])[X
>
j − 1]>‖1 ≥ 0.9n3.

By taking a union bound over all j ∈ [n] \ S, with probability at least 1 − (1/n)Θ(n), for all
X ∈ Rr×n with ∃j ∈ [n] \ S, ‖Xj‖1 ≥ nc, we have

‖ASX −A‖1 ≥ 0.9n3.

Thus, we only need to consider the case ∀j ∈ [n] \ S, ‖Xj‖1 ≤ nc. Notice that we condition on
‖∆‖1 ≤ 4.0002/π ·n2 lnn. By Fact B.1, we have that if ‖Xj‖1 ≤ nc and |1−1>Xj | > 1−10−20,
then ‖ASX −A‖1 ≥ ‖ASXj −Aj‖1 > n3.

Thus, we only need to consider the case ∀j ∈ [n] \ S, ‖Xj‖1 ≤ nc, |1 − 1>Xj | ≤ 1 − 10−20.
∀X ∈ Rr×n with ∀j ∈ [n] \S, ‖Xj‖1 ≤ nc, |1−1>Xj | ≤ 1− 10−20, if ‖ASX[n]\S −A[n]\S‖1 ≤
4n2 lnn, then

‖ASX[n]\S −A[n]\S‖1
= ‖(η · 1 · 1> + ∆S)X[n]\S − (η · 1 · 1> + ∆[n]\S)‖1
≥

∑
i∈[n],j∈[n]\S,|∆i,j |≥n1.0002

|(((η · 1 · 1> + ∆S)X[n]\S − η · 1 · 1>)−∆[n]\S)i,j |

+
∑

i∈[n],j∈[n]\S,|∆i,j |<n0.9999

|((η · 1 · 1> + ∆S)X[n]\S − (η · 1 · 1> + ∆[n]\S))i,j |

≥ 1.996

π
· n2 lnn+

∑
i∈[n],j∈[n]\S,|∆i,j |<n0.9999

|((η · 1 · 1> + ∆S)X[n]\S − (η · 1 · 1> + ∆[n]\S))i,j |

=
1.996

π
· n2 lnn+

∑
j∈[n]\S

∑
i∈[n],|∆i,j |<n0.9999

|((η · 1 · 1> + ∆S)Xj − η · 1−∆j)i|

≥ 1.996

π
· n2 lnn+

∑
j∈[n]\S

2.024

π
n lnn

≥ 1.996

π
· n2 lnn+

2.023

π
n2 lnn

≥ 4.01

π
· n2 lnn

holds with probability at least 1−1/2n
Θ(1). The first equality follows by the definition ofA. The first

inequality follows by the partition by |∆i,j |.Notice that [1 ∆S ] has rank at most r+1 = no(1). Then,
due to Lemma B.13, and the condition ‖ASX[n]\S − A[n]\S‖1 ≤ 4n2 lnn, the second inequality
holds with probability at least 1 − 1/2n

Θ(1)

. The second equality follows by grouping the cost by
each column. The third inequality holds with probability at least 1− 1/2n

Θ(1)

by Lemma B.19, and
a union bound over all the columns in [n] \S. The fourth inequality follows by n− r = n−no(1) ≥
(1− 10−100)n.

Thus, conditioned on ‖∆‖1 ≤ 4.0002/π · n2 lnn, with probability at least 1 − 1/2n
Θ(1)

, we have
minX∈Rr×n ‖ASX−A‖1 ≥ 4.02

π ·n
2 lnn. By taking a union bound over all the

(
n
r

)
= 2n

o(1)

choices
of S,we have that conditioned on ‖∆‖1 ≤ 4.0002

π n2 lnn,with probability at least 1−1/2n
Θ(1)

, ∀S ⊂
[n] with |S| = r = no(1), minX∈Rr×n ‖ASX −A‖1 ≥ 4.02

π · n
2 lnn. Since 4.01/4.0002 > 1.002,

min
X∈Rr×n

‖ASX −A‖1 ≥ 1.002‖∆‖1.

Since ‖∆‖1 ≤ 4.0002
π n2 lnn happens with probability at least 1 − O(1/ log log n), this completes

the proof.
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