
Controlling Neural Level Sets

Matan Atzmon, Niv Haim, Lior Yariv, Ofer Israelov, Haggai Maron, Yaron Lipman
Weizmann Institute of Science

Rehovot, Israel

1 Additional Experiments

Initialization Method Chamfer Hausdorf
Uniform [-0.35,0.35] 0.011 0.141

Normal σ = 0.01 0.006 0.017
Normal σ = 0.05 0.01 0.132

(a) Normal σ = 0.05 (b) Uniform

Figure A1: Distribution of samples on d = 2 neural level set.

1.1 Distribution of points on the level set.

Achieving well distributed samples of neural level set is a challenge, especially for high dimensions.
In the inset we quantify the quality of distribution in low dimension, d = 2, (where ground truth
dense sampling of the level set is tractable). The table in Figure A1 logs the Chamfer and Hausdorff
distances of the resulting sampling distribution and the level set of a neural network trained with
Xent loss in 2 dimensions ((a) and (b)) where projected points (red) are initialized using a uniformly
distributed points (gray, (b)) or normally perturbed level set samples (gray, (a)).

Figure A2: Level sets of a network F from the experiment described in Section 5.3 shown along a
cross-cut. Note how the iso-levels are equispaced, as encouraged by the loss in Equation 13.

1.2 Level sets of reconstruction networks resemble signed distance function

Figure A2 shows iso-levels of one of the networks from the experiment described in Section 5.3.
Note how the level sets resemble the level sets of a signed distance function.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

2 Implementation details

All experiments are conducted on a Tesla V100 Nvidia GPU using PYTORCH framework [6].

ConvNet-2a ConvNet-2b ConvNet-4a ConvNet-4b FC-1 FC-2

CONV 16 4x4+2 CONV 32 5x5+1 CONV 32 3x3+1 CONV 32 3x3+1 FC 512 FC 509
CONV 32 4x4+2 MAXPOOL 2x2 CONV 32 3x3+1 CONV 32 4x4+2 FC 512 FC + SKIP 509
FC 100 CONV 64 5x5+1 MAXPOOL 2x2 CONV 64 3x3+1 FC 512 FC + SKIP 509
FC 10 MAXPOOL 2x2 CONV 64 3x3+1 CONV 64 4x4+2 FC 1 FC + SKIP 509

FC 512 CONV 64 3x3+1 FC 512 FC + SKIP 509
FC 10 MAXPOOL 2x2 FC 512 FC + SKIP 509

FC 200 FC 10 FC + SKIP 509
FC 200 FC 1
FC 10

Table A1: Our architectures. CONV kw × h+ s corresponds to a convolution layer with k channels,
a kernel of size w × h and stride s. FC n correspond to a fully connected layer with n outputs. FC
+ SKIP indicates a skip connection to the input layer. Each CONV/FC layer is followed by a ReLU
activation except for the last fully connected layer.

2.1 Parameters of experiments shown in Figure 1

We train a 4-layer MLP F (x; θ) : R2 × Rm → R2, as in architecture FC-1, for 1000 epochs using
the ADAM optimizer [4] with learning rate 0.001. For the geometrical SVM loss we use λ = 0.001.
Training set is composed of 16 points in R2, all of which lie inside [0, 0.5]2. Batch size is 1. The
sample network makes a maximum of 20 iterations for the projection procedure.

2.2 Classification generalization

In Table A2 we summarize all hyper-parameters used in the generalization experiments (Section 5.1).
For cross-entropy and hinge losses we checked learning rates of 0.001, 0.005, 0.01, 0.02 and chose the
ones that performed best. All models were trained using SGD (Nesterov) optimizer with momentum
0.9 and weight decay 10−4.

Params

Dataset
MNIST Fashion-MNIST CIFAR10

Architecture ConvNet-2b ConvNet-2b ConvNet-4b

Geometric

SVM λ

λ grows linearly from

0.01 to 0.2 over 50 epochs

λ grows linearly from

0.01 to 0.2 over 50 epochs

λ grows linearly from

0 to 0.01 over 50 epochs

Epochs 200 200 100

Batch size 256 (32 for fraction ≤ 0.3) 32 32

Iterations for

projection proc.
20 20 20

Initial

learning rate
0.02 0.02 0.01

Learning rate

decay

multipled by 0.5 at epochs

50, 100, 120, 140, 160, 180

multipled by 0.5 at epochs

50, 100, 120

multipled by 0.5 at epoch

50

Table A2: Generalization experiments hyperparameters

2

2.3 Adversarial robustness

We describe the parameters used in the experiments shown in Secion 5.2.

Training parameters

We use the networks described in Table A1, labeled ConvNet-4a and ConvNet-4b (following [7]) for
the MNIST and CIFAR10 experiments respectively. Additionally, for CIFAR10 we add an experiment
with ResNet-18 architecture as in [8]. All networks are trained with batches of size 128. For the
projection on the zero levelset procedure, we used the false-position method with a maximum of
40 iterations per batch. The standard models are trained using cross-entropy loss for 200 epochs on
MNIST and CIFAR10 respectively (batch-size and learning rates are similar to the above mentioned
models). All our models are trained using ADAM optimizer [4].

Bounded Attack (Table 1) We use the advertorch library [3]. The attacks parameters are, for
MNIST: εattack = 0.3, PGD-iterations 40 and 100 and step size 0.01. For CIFAR10: εattack = 8/255,
PGD-iterations 20 and step size 0.003. All models are evaluated at epoch 200, except for Madry
defense with ResNet-18 architecture evaluated at epoch 50.

(a) Robust Accuracy Xent

Target
Source

Standard Madry Trades Ours

Madry 98.96% 96.04% 97.76% 99.21%
Trades 98.57% 97.46% 96.78% 98.87%
Ours 99.04% 97.78% 97.95% 99.23%

(b) Robust Accuracy Margin

Target
Source

Standard Madry Trades Ours

Madry 98.95% 96.11% 97.81% 98.78%
Trades 98.56% 97.5% 96.74% 98.46%
Ours 99.04% 97.87% 97.99% 97.35%

Table A3: MNIST: Comparison of our method and baseline methods under black-box PGD40 attack
with εattack = 0.3. Rows (target) are the attacked models. All models are trained with ConvNet-4a
architecture. Diagonal represents white-box attacks.

(a) Robust Accuracy Xent

Target
Source

Standard Madry Trades Ours

Madry 61.5% 41.53% 49.76% 50.97%
Trades 67.84% 54.72% 41.89% 53.11%
Ours 68.43% 56.71% 54.47% 38.45%

(b) Robust Accuracy Margin

Target
Source

Standard Madry Trades Ours

Madry 61.46% 39.13% 39.14% 51.08%
Trades 67.58% 53.15% 38.25% 53.1%
Ours 68.42% 55.85% 54.04% 38.54%

Table A4: CIFAR10: Comparison of our method and baseline methods under black-box PGD20 attack
with εattack = 0.031. Rows (target) are the attacked models. All models are trained with ConvNet-4b
architecture. Diagonal represents white-box attacks.

2.4 Surface Reconstruction

We describe the parameters used for the experiments in Section 5.3. For the Faust benchmark, the
network architecture is set to FC-2 (similarly to [2, 5]) and is used both for our model and AtlasNet.
The optimization is done using the ADAM optimizer, batch size set to 10 and the initial learning
rate is set to 0.001 (decreased by half at epochs 500,1500,3500). Some additional implementation
details are: first, we set the parameter λ in our reconstruction loss to grow linearly from 1 to 5 over
1000 epochs. Next, to generate samples of St we add Gaussian noise (σ = 0.1) to the input batch,
randomly sample half of the points and use it as initialization for the projection procedure to S0. The
other half is used to sample various level sets St (see Equation 13). The number of iterations for the
projection procedure is set to 10.

For the curve reconstruction experiment, the architecture used is FC-1 with the minor difference that
the last layer output size is 2. The ground truth is generated by randomly sampling 6 points in space
and generating a curve passing through the points, using cubic spline interpolation. We generate the
input point cloud by sampling the ground truth curve and adding small Gaussian noise. The sample
size is 300 and sample points are chosen using Farthest Point Sampling. We generate samples from

3

S0 using the same procedure described above with the minor difference that the entire batch is used
as initialization for the projection procedure (other, non-zero level sets are not sampled).

3 Proofs

Lemma 1. Let `(x) = Ax + b, A ∈ Rl×d, b ∈ Rl, ` < d, and A is of full rank l. Then
Equation 4 applied to F (x) = `(x) is an orthogonal projection on the zero level-set of `, namely, on
{x | `(x) = 0}.

Proof. Let p ∈ Rd be the starting point. A single generalized Newton iteration (Equation 4) is

pnext = p−A†(Ap+ b). (1)

First, pnext is indeed on the level set because: `(pnext) = A(p− A†(Ap + b)) + b = 0, where we
used the fact that AA†A = A, and AA† = I (since rank(A) = l). Furthermore, from Equation 1 we
read that pnext − p ∈ ImA† and therefore pnext − p ∈ ImAT . This implies that pnext − p ⊥ KerA.
But KerA is the tangent space of the level set {x | `(x) = 0}, so pnext is the orthogonal projection of
p on the zero level set of `.

Lemma 2. The columns of the solution in Equation 8, namely Dθp(θ0), are in the orthogonal space
to the level set S(θ0) at p0.

Proof. Dθp ∈ Rd×m describes the speed of p w.r.t. each of the parameters in θ. If we assume
A := DxF (p; θ0) is of full rank l, which is the generic case, then the Moore-Penrose inverse has the
form A† = AT (AAT)−1. This indicates that the columns of Dθp(θ0) = −A†DθF (p; θ0) ∈ Rd×m
belong to ImAT , which in turn implies that they are orthogonal to KerA, which is the tangent space
of the level set at the point p0

Theorem 1. Any watertight, not necessarily bounded, piecewise linear hypersurfaceM⊂ Rd can
be exactly represented as the neural level set S of a multilayer perceptron with ReLU activations,
F : Rd → R.

Proof. Let hi(x) = aTi x+ bi = 0, i ∈ [k] denote the planes supporting the faces ofM where ai are
chosen to be the outward normals toM. SinceM is watertight, it is the boundary of a d-dimensional
polytope P .

For each λ ∈ {−1, 0, 1}k, let Pλ = ∩i∈[k] {x | λihi(x) ≥ 0}. Simply put, Pλ is a polytope that
is the intersection of closed half-spaces defined by the some of the hyperplanes hi. Out of all the
possible Pλ’s, we’re only interested in those that are contained in P , so we define Λ = {λ | Pλ ⊆ P}.
Now, we wish to show that every point in the interior of the large polytope necessarily also lies in the
interior of some small polytope in our collection, i.e that ∪λ∈ΛP̊λ = P̊ . So let x ∈ P̊ . There are two
cases:

Case 1: hi(x) 6= 0 ∀i ∈ [k]. That is, x does not lie exactly on a hyper-plane. We can take the following
polytope Pλ which contains x in its interior: λi = sign(hi(x)). We note that λ ∈ {−1, 1}k, and we
call such a polytope minimal. We argue that the interior of a minimal polytope is either completely
inside P or completely outside it. This is true because otherwise the minimal polytope will contain two
points that are on two different sides of some hyper-plane, which is inconsistent with λ ∈ {−1, 1}k.
In our case, we know that Pλ and P both contain x in their interior, so necessarily Pλ ⊆ P , which
means that λ ∈ Λ.

Case 2: ∃ {i1, ..., il} ⊆ [k] s.t. hi(x) = 0 ∀i ∈ {i1, ..., il}, and hi 6= 0 ∀i ∈ [k] \ {i1, ..., il}. In this
case there is no minimal polytope that contains x in its interior, so let us consider all of the minimal
polytopes which contain x on their boundary. Let Pµ be such a minimal polytope. As previously
stated, the interior of Pµ is either completely inside P or completely outside it, but since x is both on
the boundary of Pµ and in the interior of P then necessarily Pµ is completely inside P , i.e, Pµ ⊂ P .
We are interested in the union of all such minimal polytopes. Note that for such a minimal polytope

4

Pµ, necessarily µi = sign(hi(x)) ∀i ∈ [k] \ {i1, ..., il}. For i ∈ {i1, ..., il}, µi may receive any
value in {1,−1}. Thus, the union of all such minimal polytopes is Pλ where:

λi =

{
0 , i ∈ {i1, ..., il}
sign(hi(x)) , otherwise

which clearly contains x in its interior and is itself contained in P (because it is the union of minimal
polytopes which are contained in P), i.e λ ∈ Λ.

We are now ready to define a function which will receive positive values on the interior of P , negative
values outside of P , and will haveM as its levelset:

f(x) = max
λ∈Λ

min
i∈[k]

λihi(x)

f is a piecewise linear function and can, therefore, according to Theorem 2.1 in [1], be encoded as an
MLP with ReLU activations. The idea is to build max operators using linear layers and ReLU via
max {a, b} = σ(a−b)

2 + σ(b−a)
2 + a+b

2 , where σ(x) = max(0, s) is the ReLU activation. Using this
binary max, one can recursively build the max of a vector. min is treated similarly.

References
[1] R. Arora, A. Basu, P. Mianjy, and A. Mukherjee. Understanding deep neural networks with rectified linear

units. arXiv preprint arXiv:1611.01491, 2016.
[2] Z. Chen and H. Zhang. Learning implicit fields for generative shape modeling. arXiv preprint

arXiv:1812.02822, 2018.
[3] G. W. Ding, L. Wang, and X. Jin. AdverTorch v0.1: An adversarial robustness toolbox based on pytorch.

arXiv preprint arXiv:1902.07623, 2019.
[4] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,

2014.
[5] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove. Deepsdf: Learning continuous signed

distance functions for shape representation. arXiv preprint arXiv:1901.05103, 2019.
[6] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and

A. Lerer. Automatic differentiation in pytorch. 2017.
[7] E. Wong and J. Z. Kolter. Provable defenses against adversarial examples via the convex outer adversarial

polytope. arXiv preprint arXiv:1711.00851, 2017.
[8] H. Zhang, Y. Yu, J. Jiao, E. P. Xing, L. E. Ghaoui, and M. I. Jordan. Theoretically principled trade-off

between robustness and accuracy. arXiv preprint arXiv:1901.08573, 2019.

5

	Additional Experiments
	Distribution of points on the level set.
	Level sets of reconstruction networks resemble signed distance function

	Implementation details
	Parameters of experiments shown in Figure 1
	Classification generalization
	Adversarial robustness
	Surface Reconstruction

	Proofs

