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Abstract

We study the problem of top-k selection over a large domain universe subject to user-level
differential privacy. Typically, the exponential mechanism or report noisy max are the algorithms
used to solve this problem. However, these algorithms require querying the database for the
count of each domain element. We focus on the setting where the data domain is unknown,
which is different than the setting of frequent itemsets where an apriori type algorithm can help
prune the space of domain elements to query. We design algorithms that ensures (approximate)
(ε, δ > 0)-differential privacy and only needs access to the true top-k̄ elements from the data for
any chosen k̄ ≥ k. This is a highly desirable feature for making differential privacy practical,
since the algorithms require no knowledge of the domain. We consider both the setting where a
user’s data can modify an arbitrary number of counts by at most 1, i.e. unrestricted sensitivity,
and the setting where a user’s data can modify at most some small, fixed number of counts
by at most 1, i.e. restricted sensitivity. Additionally, we provide a pay-what-you-get privacy
composition bound for our algorithms. That is, our algorithms might return fewer than k
elements when the top-k elements are queried, but the overall privacy budget only decreases by
the size of the outcome set.
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1 Introduction

Determining the top-k most frequent items from a massive dataset in an efficient way is one of the
most fundamental problems in data science, see Ilyas et al. [17] for a survey of top-k processing
techniques. For example, consider the task of returning the 10 most popular articles that users
engaged with. However, it is important to consider users’ privacy in the dataset, since results from
data mining approaches can reveal sensitive information about a user’s data [20]. Simple thresh-
olding techniques, e.g. k-anonymity, do not provide formal privacy guarantees, since adversary
background knowledge or linking other datasets may cause someone’s data in a protected dataset
to be revealed [24]. Our aim is to provide rigorous privacy techniques for determining the top-k so
that it can be built on top of highly distributed, real-time systems that might already be in place.

Differential privacy has become the gold standard for rigorous privacy guarantees in data ana-
lytics. One of the primary benefits of differential privacy is that the privacy loss of a computation on
a dataset can be quantified. Many companies have adopted differential privacy, including Google
[15], Apple [1], Uber [18], Microsoft [9], and LinkedIn [21], as well as government agencies, like
the U.S. Census Bureau [8]. For this work, we hope to extend the use of differential privacy in
practical systems to allow analysts to compute the k most frequent elements in a given dataset.
We are certainly not the first to explore this topic, yet the previous works require querying the
count of every domain element, e.g. report noisy max [10] or the exponential mechanism [25], or
require some structure on the large domain universe, e.g. frequent item sets (see Related Work).
We aim to design practical, (approximate) differentially private algorithms that do not require any
structure on the data domain, which is typically the case in exploratory data analysis. Further,
our algorithms work in the setting where data is preprocessed prior to running our algorithms, so
that the differentially private computation only accesses a subset of the data while still providing
user privacy in the full underlying dataset.

We design (ε, δ > 0)-differentially private algorithms that can return the top-k results by query-
ing the counts of elements that only exist in the dataset. To ensure user level privacy, where we
want to protect the privacy of a user’s entire dataset that might consist of many data records, we
consider two different settings. In the restricted sensitivity setting, we assume that a user can mod-
ify the counts by at most 1 across at most a fixed number ∆ of elements in a data domain, which is
assumed to be known. An example of such a setting would be computing the top-k countries where
users have a certain skill set. Assuming a user can only be in one country, we have ∆ = 1. In the
more general setting, we consider unrestricted sensitivity, where a user can modify the counts by
at most 1 across an arbitrary number of elements. An example of the unrestricted setting would
be if we wanted to compute the top-k articles with distinct user engagement (liked, commented,
shared, etc.). We design different algorithms for either setting so that the privacy parameter ε needs
to scale with either ≈ ∆ in the restricted sensitivity setting or ≈

√
k in the unrestricted setting.

Thus, our differentially private algorithms will ensure user level privacy despite a user being able
to modify the counts of any arbitrary number of elements.

The reason that our algorithms require δ > 0, and are thus approximate differentially private,
is that we want to allow our algorithms to not have to know the data domain, or any structure
on it. For exploratory analyses, one would like to not have to provide the algorithm the full data
domain beforehand. The mere presence of a domain element in the exploratory analysis might be
the result of a single user’s data. Hence, if we remove a user’s data in a neighboring dataset, there
are some outcomes that cannot occur. We design algorithms such that these events occur with very
small δ probability. Simultaneously, we ensure that the private algorithms do not compromise the
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efficiency of existing systems.
As a byproduct of our analysis, we also include some results of independent interest. In par-

ticular, we give a composition theorem that essentially allows for pay-what-you-get privacy loss.
Since our algorithms allow for outputting fewer than k elements when asked for the top-k, we allow
the analyst to ask more queries if the algorithms return fewer than k outcomes, up to some fixed
bound. Further, we define a condition on differentially private algorithms that allows for better
composition bounds than the general, optimal composition bounds [19, 26]. Lastly, we show how
we can achieve a one-shot differentially private algorithm that provides a ranked top-k result and
has privacy parameter that scales with

√
k, which uses a different noise distribution than work

from Qiao, et al. [14].
We see this work as bringing together multiple theoretical results in differential privacy to arrive

at a practical privacy system that can be used on top of existing, real-time data analytics platforms
for massive datasets distributed across multiple servers. Essentially, the algorithms allow for solving
the top-k̄ problem first with the existing infrastructure for any chosen k̄ ≥ k, and then incorporate
noise and a threshold to output the top-k, or fewer outcomes. In our approach, we can think of the
existing system, such as online analytical processing (OLAP) systems, as a blackbox top-k solver
and without adjusting the input dataset or opening up the blackbox, we can still implement private
algorithms.

1.1 Related Work

There are several works in differential privacy for discovering the most frequent elements in a
dataset, e.g. top-k selection and heavy hitters. There are different approaches to solving this
problem depending on whether you are in the local privacy model, which assumes that each data
record is privatized prior to aggregation on the server, or in the trusted curator privacy model,
which assumes that the data is stored centrally and then private algorithms can be run on top of
it. In the local setting, there has been academic work [3, 4] as well as industry solutions [1, 16]
to identifying the heavy hitters. Note that these algorithms require some additional structure on
the data domain, such as fixed length words, where the data can be represented as a sequence of
some known length ` and each element of the sequence belongs to some known set. One can then
prune the space of potential heavy hitters by eliminating subsequences that are not heavy, since a
subsequence is frequent only if it is contained in a frequent sequence.

We will be working in the trusted curator model. There has been several works in this model
that estimate frequent itemsets subject to differential privacy, including [5, 23, 28, 22, 29]. Similar
to our work, Bhaskar et al. [5] first solve the top-k̄ problem nonprivately (but with restrictions on
the choice of k̄ ≥ k which can be d for certain databases) and then use the exponential mechanism
to return an estimate for the top-k. The primary difference between these works and ours is that
the domain universe in our setting is unknown and not assumed to have any structure. For itemsets,
one can iteratively build up the domain from smaller itemsets, as in the locally private algorithms.

We assume no structure on the domain, as one would assume without considering privacy
restrictions. This is a highly desirable feature for making differential privacy practical, since the
algorithms can work over arbitrary domains. Chaudhuri et al. [7] considers the problem of returning
the argmax subject to differential privacy, where their algorithm works in the range independent
setting. That is, their algorithms can return domain elements that are unknown to the analyst
querying the dataset. However, their large margin mechanism can run over the entire domain
universe in the worst case. The algorithms in [7] and [5] share a similar approach in that both
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use the exponential mechanism on elements above a threshold (completeness). In order to obtain
pure-differential privacy (δ = 0), [5] samples uniformly from elements below the threshold, whereas
[7] never sample anything from this remaining set and thus satisfy approximate-differential privacy
(δ > 0). Our approach will also follow this high-level idea, but set the threshold in a different
manner to ensure computational efficiency. To our knowledge, there are no top-k differentially
private algorithms for the unknown domain setting that never require iterating over the entire
domain.

When the data domain is known and we want to compute the top-k most frequent elements,
then the usual approach is to first either use report noisy max [10], which adds Laplace noise to
each count and reports the index of the largest noisy count, or use the exponential mechanism [25].
Then we can use a peeling technique, which removes the top element’s count and then uses report
noisy max or the exponential mechanism again. There has also been work in achieving a one-shot
version that adds Laplace noise to the counts once and can return a set of k indices, which would
be computationally more efficient, [14].

There have been several works bounding the total privacy loss of an (adaptive) sequence of
differentially private mechanisms, including basic composition [12, 10], advanced composition (with
improvements) [13, 11, 6], and optimal composition [19, 26]. There has also been work in bounding
the privacy loss when the privacy parameters themselves can be chosen adaptively — where the
previous composition theorems cannot be applied — with pay-as-you-go composition [27]. In this
work, we provide a pay-what-you-get composition theorem for our algorithms which allows the
analyst to only pay for the number of elements that were returned by our algorithms in the overall
privacy budget. Because our algorithms can return fewer than k elements when asked for the top-k,
we want to ensure the analyst can ask many more queries if fewer than k elements have been given.

2 Preliminaries

We will represent the domain as [d] := {1, · · · , d} and a user i’s data as xi ∈ 2[d] =: X . We then
write a dataset of n users as x = {x1, · · · , xn}. We say that x,x′ are neighbors if they differ in the
addition or deletion of one user’s data, e.g. x = x′ ∪ {xi}. We now define differential privacy [12].

Definition 2.1 (Differential Privacy). An algorithm M that takes a collection of records in X to
some arbitrary outcome set Y is (ε, δ)-differentially private (DP) if for all neighbors x,x′ and for
all outcome sets S ⊆ Y, we have

Pr[M(x) ∈ S] ≤ eε Pr[M(x′) ∈ S] + δ

If δ = 0, then we simply write ε-DP.

In this work, we want to select the top-k most frequent elements in a dataset x. Let hj(x) ∈ N
denote the number of users that have element j ∈ [d], i.e. hj(x) =

∑n
i=1 1 {j ∈ xi}. We then

sort the counts and denote the ordering as hi(1)
(x) ≥ · · · ≥ hi(d)(x) with corresponding elements

i(1), · · · , i(d) ∈ [d]. Hence, from dataset x, we seek to output i(1), · · · , i(k) where we break ties in
some arbitrary, data independent way.

Note that for neighboring datasets x and x′, the corresponding neighboring histograms h = h(x)
and h′ = h(x′) can differ in all d positions by at most 1, i.e. ||h − h′||∞ ≤ 1. In some instances,
one user can only impact the count on at most a fixed number of coordinates. We then say that
h,h′ are ∆-restricted sensitivity neighbors if ||h− h′||∞ ≤ 1 and ||h− h′||0 ≤ ∆.
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The algorithms we describe will only need access to a histogram h(x) = (h1(x), · · · , hd(x)) ∈ Nd,
where we drop x when it is clear from context. We will be analyzing the privacy loss of an
individual user over many different top-k1, top-k2, · · · queries on a larger, overall dataset. Consider
the example where we want to know the top-k1 articles that distinct users engaged with, then we
want to know the top-k2 articles that distinct users engaged with in Germany, and so on. A user’s
data can be part of each input histogram, so we want to compose the privacy loss across many
different queries.

In our algorithms, we will add noise to the histogram counts. The noise distributions we
consider are from a Gumbel random variable or a Laplace random variable where Gumbel(b) has
PDF pGumbel(z; b), Lap(b) has PDF pLap(z; b), and

pGumbel(z; b) =
1

b
· exp

(
−(z/b+ e−z/b)

)
and pLap(z; b) =

1

2b
· exp (−|z|/b) . (1)

3 Main Algorithm and Results

We now present our main algorithm for reporting the top-k domain elements and state its privacy
guarantee. The limited domain procedure LimitDomk,k̄ is given in Algorithm 1 and takes as input a
histogram h ∈ Nd, parameter k, some cutoff k̄ ≥ k for the number of domain elements to consider,
and privacy parameters (ε, δ). It then returns at most k indices in relative rank order. At a high
level, our algorithm can be thought of as solving the top-k̄ problem with access to the true data,
then from this set of histogram counts, adds noise to each count to determine the noisy top-k
and include each index in the output only if its respective noisy count is larger than some noisy
threshold. The noise that we add will be from a Gumbel random variable, given in (1), which has
a nice connection with the exponential mechanism [25] (see Section 4). In later sections we will
present its formal analysis and some extensions.

Algorithm 1 LimitDomk,k̄; Top-k from the k̄ ≥ k limited domain

Input: Histogram h; privacy parameters ε, δ.
Output: Ordered set of indices.
Sort h(1) ≥ h(2) ≥ · · · .
Set h⊥ = h(k̄+1) + 1 + ln(min{∆, k̄}/δ)/ε.1
Set v⊥ = h⊥ + Gumbel(1/ε).
for j ≤ k̄ do

Set v(j) = h(j) + Gumbel(1/ε).

Sort {v(j)} ∪ v⊥.
Let vi(1)

, ...., vi(j) , v⊥ be the sorted list up until v⊥.
Return {i(1), ..., i(j),⊥} if j < k, otherwise return {i(1), ..., i(k)}.

We now state its privacy guarantee.

1Note that if k̄ becomes comparable to d, then we can also have d− k̄ in the minimum statement, but we omit for
simplicity. If k̄ = d, then we use write h(d+1) = 0, in which case the algorithm becomes equivalent to the exponential
mechanism with peeling. This emphasizes that k̄ provides a tuning knob between efficiency and utility.
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Theorem 1. Algorithm 1 is (ε′, δ + δ′)-DP for any δ′ ≥ 0 where

ε′ = min

{
kε, kε ·

(
eε − 1

eε + 1

)
+ ε
√

2k ln(1/δ′),
kε2

2
+ ε

√
1

2
k ln(1/δ′)

}
. (2)

Note that our algorithm is not guaranteed to output k indices, and this is key to obtaining
our privacy guarantees. The primary difficulty here is that the indices within the true top-k̄ can
change by adding or removing one person’s data. The purpose of the threshold, ⊥, is then to ensure
that the probability of outputting any index in the top-k̄ for histogram h but not in the top-k̄ for
a neighboring histogram h′ is bounded by δ

min{∆,k̄} . We give more high-level intuition on this in

Section 3.2.
In order to maximize the probability of outputting k indices, we want to minimize our threshold

value. Accordingly, whenever we have restricted sensitivity such that min{∆, k̄} = ∆, we can simply
choose k̄ to be as large as is computationally feasible because that will minimize our threshold
h(k̄+1) +1+ln(min{∆, k̄}/δ)/ε. However, if the sensitivity is unrestricted or quite large, it becomes

natural to consider how to set k̄, as there becomes a tradeoff where h(k̄+1) is decreasing in k̄ whereas

ln(k̄/δ)/ε is increasing in k̄. Ideally, we would set k̄ to be a point within the histogram in which we
see a sudden drop, but setting it in such a data dependent manner would violate privacy. Instead, we
will simply consider the optimization problem of finding index k̄ that minimizes h(k̄+1)+1+ln(k̄/δ)/ε
(and is computationally feasible), and we will solve this problem with standard DP techniques.

Lemma 3.1 (Informal). We can find a noisy estimate of the optimal parameter k̄ for a given
histogram h, and this will only increase our privacy loss by substituting k+1 for k in the guarantees
in Theorem 1.

Pay-what-you-get Composition

While the privacy loss for Algorithm 1 will be a function of k regardless of whether it outputs
far fewer than k indices, we can actually show that in making multiple calls to this algorithm,
we can instead bound the privacy loss in terms of the number of indices that are output. More
specifically, we will instead take the length of the output for each call to Algorithm 1, which is not
deterministic, and ensure that the sum of these lengths does not exceed some k?. Additionally, we
need to restrict how many individual top-k queries can be asked of our system, which we denote
as `?. Accordingly, the privacy loss will then be in terms of k? and `?. We detail the multiple calls
procedure multiLimitDomk

?,`? in Algorithm 2.
From a practical perspective, this means that if we allowed a client to make multiple top-k

queries with a total budget of k?, whenever a top-k query was made their total budget would
only decrease in the size of the output, as opposed to k. We will further discuss in Section 3.1
how this property in some ways can actually provide higher utility than standard approaches that
have access to the full histogram and must output k indices. We then have the following privacy
statement.

Theorem 2. For any δ′ ≥ 0, multiLimitDomk
?,`? in Algorithm 2 is (ε?, 2`?δ + δ′)-DP where

ε? = min

{
k?ε, k?ε ·

(
eε − 1

eε + 1

)
+ ε
√

2k? ln(1/δ′),
k?ε2

2
+ ε

√
1

2
k? ln(1/δ′)

}
. (3)
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Algorithm 2 multiLimitDomk
?,`? ; Multiple queries to random threshold

Input: An adaptive stream of histograms h1,h2, ...., fixed integers k? and `?, along with per
iterate privacy parameters ε, δ.
Output: Sequence of outputs (o1, · · · , o`) for ` ≤ `?.
while k? > 0 and `? > 0 do

Based on previous outcomes, select adaptive histogram hi and parameters ki, k̄i
if ki ≤ k? then

Let oi = LimitDomki,k̄i(hi) with privacy parameters ε and δ
k? ← k? − |oi| and `? ← `? − 1

Return o = (o1, o2, · · · )

Extensions

We further consider the restricted sensitivity setting, where any individual can change at most ∆
counts. Algorithm 1 allowed for a smaller additive factor of ln(∆/δ)/ε on the threshold for this
setting, but the privacy loss for ε was still in terms of k. The primary reason for this is that, unlike
Lap noise, adding Gumbel noise to a value and releasing this estimate is not differentially private.
Accordingly, if we instead run Algorithm 1 with Lap noise, then we can achieve a ∆ dependency
on the ε. We note that adding Lap noise instead will not allow us to provably achieve the same
guarantees as Theorem 1, and we discuss some of the intuition for this later.

Lemma 3.2 (Informal). If we instead add Lap noise to Algorithm 1, and we have ∆-restricted
sensitivity where ∆ < k, then we can obtain (∆ε, (eε∆ + 1)δ̄)-DP where δ̄ = δ

4 · (3 + ln(∆/δ))

In addition, we give a slight variant of Algorithm 1 in Section 6.2 that will achieve the same
privacy guarantees at the cost of some generality, but will be even more practical for implementation.

Improved Advanced Composition

We also provide a result that may be of independent interest. In Section 4, we consider a slightly
tighter characterization of pure (δ = 0) differential privacy, which we refer to as range-bounded, and
show that it can improve upon the total privacy loss over a sequence of adaptively chosen private
algorithms. In particular, we consider the exponential mechanism, which is known to be ε-DP,
and show that it has even stronger properties that allow us to show it is ε-range-bounded under
the same parameters. Accordingly, we can then give improved advanced composition bounds for
exponential mechanism compared to the optimal composition bounds for general ε-DP mechanisms
given in [19, 26] (we show a comparison of these bounds in Appendix A).

3.1 Accuracy Comparisons

In contrast to previous work in top-k selection subject to DP, our algorithms can return fewer
than k indices. Typically, accuracy in this setting is to return a set of exactly k indices such that
each returned index has a count that is at least the k-th ranked value minus some small amount.
There are known lower bounds for this definition of accuracy [2] that are tight for the exponential
mechanism. Relaxing the utility statement to allow returning fewer than k indices, we can show
that our algorithm will achieve asymptotically better accuracy where d is replaced with k̄ because
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our algorithm is essentially privately determining the top-k on the true top-k̄ instead of top-d. In
fact, if we set k̄ = k, then we will only output indices in the top-k and achieve perfect accuracy, but
it is critically important to note that we are unlikely to output all k indices in this parameter setting.
We then provide additional conditions under which we output k indices with probability at least
1−β (these formal accuracy statements are encompassed in Lemma 8.1). This condition requires a
certain distance between h(k) and h(k̄+1), which is comparable to the requirement for determining

k̄ for privately outputting top-k itemsets in [5], and we achieve similar accuracy guarantees under
this condition. The key difference becomes that for some histograms k̄ can be as large as d and
hence less efficient for the algorithm in [5], but it will always return k indices. Conversely, for those
same histograms we maintain computational efficiency because our k̄ is a fixed parameter, but our
routine will most likely output fewer than k indices.

Even for those histograms in which we are unlikely to return k indices, we see this as the primary
advantage of our pay-what-you-get composition. If there are a lot of counts that are similar to the
k̄-th ranked value, our algorithm will simply return a single ⊥ rather than a random permutation
of these indices, and the analyst need only pay for a single ⊥ outcome rather than for up to k
indices in this random permutation. Essentially, the indices that are returned are normally the
clear winners, i.e. indices with counts substantially above the (k̄+1)th value, and then the ⊥ value
is informative that the remaining values are approximately equal where the analyst only has to pay
for this single output as opposed to paying for the remaining outputs that are close to a random
permutation. We see this as an added benefit to allowing the algorithm to return fewer than k
indices.

3.2 Our Techniques

The primary difficulty with ensuring differential privacy in our setting is that initially taking the
true top-k̄ indices will lead to different domains for neighboring histograms. More explicitly, the
indices within the top-k̄ can change by adding or removing one user’s data, and this makes ensuring
pure differential privacy impossible. However, the key insight will be that only indices whose value
is within 1 of h(k̄+1), the value of the (k̄ + 1)th index, can go in or out of the top-k̄ by adding or
removing one user’s data. Accordingly, the noisy threshold that we add will be explicitly set such
that for indices with value within 1 of h(k̄+1), the noisy estimate exceeding the noisy threshold will
be a low probability event. By restricting our output set of indices to those whose noisy estimate are
in the top-k and exceed the noisy threshold, we ensure that indices in the top-k̄ for one histogram
but not in a neighboring histogram will output with probability at most δ

min{∆,k̄} . A union bound

over the total possible indices that can change will then give our desired bound on these bad events.
We now present the high level reasoning behind the proof of privacy in Theorem 1.

1. Adding Gumbel noise and taking the top-k in one-shot is equivalent to iteratively choosing
the subsequent index using the exponential mechanism with peeling, see Lemma 4.2.2

2. To get around the fact that the domains can change in neighboring datasets, we define a
variant of Algorithm 1 that takes a histogram and a domain as input. We then prove that

2Note that we could have alternatively written our algorithm in terms of iteratively applying exponential mecha-
nism (and all of our analysis will be in this context), but instead adding Gumbel noise once is computationally more
efficient.

9



this variant is DP for any input domain, see Corollary 5.1, and for a choice of domain that
depends on the input histogram, it is the same as Algorithm 1, see Lemma 5.4

3. Due to the choice of the count for element ⊥, we show that for any given neighboring datasets
h,h′, the probability that Algorithm 1 evaluated on h can return any element that is not
part of the domain with h′ occurs with probability δ, see Lemma 5.5.

We now present an overview of the analysis for the pay-what-you-get composition bound in
Theorem 2.

1. Because Algorithm 1 can be expressed as multiple iterations of the exponential mechanism,
we can string together many calls to Algorithm 1 as an adaptive sequence of DP mechanisms.

2. With multiple calls to Algorithm 1, if we ever get a ⊥ outcome, we can simply start a new
top-k query and hence a new sequence of exponential mechanism calls. Hence, we do not
need to get k outcomes before we switch to a new query.

3. To get the improved constants in (3), compared to advanced composition given in Theorem 3
[13], we introduce a tigher range-bounded characterization, which the exponential mechanism
satisfies, that enjoys better composition, see Lemma 4.4.

4 Existing DP Algorithms and Extensions

We now cover some existing differentially private algorithms and extensions to them. We start with
the exponential mechanism [25], and show how it is equivalent to adding noise from a particular
distribution and taking the argmax outcome. Next, we will present a stronger privacy condition
than differential privacy which will then lead to improved composition theorems than the optimal
composition theorems [19, 26] for general DP.

Throughout, we will make use of the following composition theorem in differential privacy.

Theorem 3 (Composition [10, 13] with improvements by [19, 26]). Let M1,M2, · · · ,Mt be each
(εi, δi)-DP, where the choice of Mi may depend on the previous outcomes of M1, · · · ,Mi−1, then
the composed algorithm M(x) = (M1(x),M2(x), · · · ,Mt(x)) is (ε′(δ′),

∑t
i=1 δi + δ′)-DP for any

δ′ ≥ 0 where

ε′(δ′) = min


t∑
i=1

εi,
t∑
i=1

εi ·
(
eεi − 1

eεi + 1

)
+

√√√√2

t∑
i=1

ε2
i ln(1/δ′)

 .

4.1 Exponential Mechanism and Gumbel Noise

The exponential mechanism takes a quality score q : X×Y → R and can be thought of as evaluating
how good q(x, y) is for an outcome y ∈ Y on dataset x. For our setting, we will be using the following
quality score q(h, i) = hi in the exponential mechanism.

Definition 4.1 (Exponential Mechanism). Let EMq : X → Y be a randomized mapping where for
all outputs y ∈ Y we have

Pr[EMq(x) = y] ∝ exp( ε
∆(q)q(x, y))

10



where ∆(q) is the sensitivity of the quality score, i.e. for all neighboring inputs x,x′ we have
supy∈Y |q(x, y)− q(x′, y)| ≤ ∆(q)

We say that a quality score q(·, ·) is monotonic in the dataset if the addition of a data record
can either increase (decrease) or remain the same with any outcome, e.g. q(x, y) ≤ q(x ∪ {xi}, y)
for any input and outcome y. Note that q(h, i) = hi is monotonic in the dataset. We then have
the following privacy guarantee.

Lemma 4.1. The exponential mechanism EMq is 2ε-DP. Further, if q is monotonic in the dataset,
then EMq is ε-DP.

We point out that the exponential mechanism can be simulated by adding Gumbel noise
Gumbel(∆(q)/ε) to each quality score value and then reporting the outcome with the largest noisy
count.This is similar to the report noisy max mechanism [10] except Gumbel noise is added rather
than Laplace. We define pEMkq to be the iterative peeling algorithm that first samples the outcome
with the largest quality score then repeats on the remaining outcomes and continues k times. We
further define Mk

Gumbel(q(x)) to be the algorithm that adds Gumbel(∆(q)/ε) to each q(x, y) for
y ∈ Y and takes the k indices with the largest noisy counts. We then make the following connec-
tion between pEMk andMk

Gumbel, so that we can compute the top-k outcomes in one-shot. We defer
the proof to Appendix B.1

Lemma 4.2. For any input x ∈ X the peeling exponential mechanism pEMkq (x) is equal in distri-

bution to Mk
Gumbel(q(x)). That is for any outcome vector (o1, · · · , ok) ∈ [d]k we have

Pr[pEMkq (x) = (o1, · · · , ok)] = Pr[Mk
Gumbel(q(x)) = (o1, · · · , ok)]

We next show that the one-shot noise addition is (≈
√
kε, δ)-DP using Theorem 3. Previous

work [14] considered a one-shot approach for top-k selection subject to DP with Laplace noise
addition and in order to get the

√
kε factor on the privacy loss, their algorithm could not return

the ranked list of indices. Using Gumbel noise allows us to return the ranked list of indices in
one-shot with the same privacy loss.

Corollary 4.1. The one-shot Mk
Gumbel(q(·)) is (ε′, δ)-DP for any δ ≥ 0 where

ε′ = min

{
2kε, 2kε ·

(
e2ε − 1

e2ε + 1

)
+ 2ε

√
2k ln(1/δ)

}
.

Further, if the quality score q is monotonic in the dataset, then Mk
Gumbel(q(·)) is also (ε′′, δ)-DP for

any δ ≥ 0 where

ε′′ = min

{
kε, kε ·

(
eε − 1

eε + 1

)
+ ε
√

2k ln(1/δ)

}
.

4.2 Bounded Range Composition

It turns out that we can actually improve on the total privacy loss for this algorithm and for a wider
class of algorithms in general. We first define a slightly stronger condition than (pure) differential
privacy that can give a tighter characterization of the privacy loss for certain DP mechanisms.
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Definition 4.2 (Range-Bounded). Given a mechanism M that takes a collection of records in X
to outcome set Y, we say that M is ε-range-bounded if for any y, y′ ∈ Y and any neighboring
databases x,x′ we have

Pr[M(x) = y]

Pr[M(x′) = y]
≤ eε Pr[M(x) = y′]

Pr[M(x′) = y′]

where we use the probability density function instead for continuous outcome spaces. 3

It is straightforward to see that this definition is within a factor of 2 of standard differential
privacy.

Corollary 4.2. If a mechanism M is ε-range-bounded, then it is also ε-DP and conversely if M
is ε-DP then it is also 2ε-range-bounded. Furthermore, if M is ε-range-bounded, then we have

sup
y∈Y

ln

(
Pr[M(x) = y]

Pr[M(x′) = y]

)
− inf
y′∈Y

ln

(
Pr[M(x) = y′]

Pr[M(x′) = y′]

)
≤ ε

The final consequence is exactly where our range-bounded terminology comes from because this
implies that for any y ∈ Y there is some fixed t ∈ [0, ε] such that

ln

(
Pr[M(x) = y]

Pr[M(x′) = y]

)
∈ [−t, ε− t].

In contrast, ε-DP only guarantees that for any y ∈ Y

ln

(
Pr[M(x) = y]

Pr[M(x′) = y]

)
∈ [−ε, ε]

where we know that this range is tight for some mechanisms such as randomized response, which
was the mechanism used for proving optimal advanced composition bounds [19, 26]. However, for
other mechanisms this range is too loose. For the exponential mechanism, constructing worst-case
neighboring databases such that some output’s probability increases by a factor of about eε requires
the quality score of that output to increase and all other quality scores to decrease, which implies
that their output probability remains about the same. We then show that exponential mechanism
achieves the same privacy parameters as in Lemma 4.1 for our stronger charaterization.

Lemma 4.3. The exponential mechanism EMq is 2ε-range-bounded, furthermore if q is monotonic
in its dataset then EMq is ε-range bounded.

Proof. Consider any outcomes y, y′ ∈ Y, and take any neighboring inputs x and x′.
Plugging in the specific forms of these probabilities, it is straightforward to see that the denom-

inators will cancel and we are left with the following with the substitution εq = ε
∆(q)

Pr[EMq(x) = y]

Pr[EMq(x′) = y]

Pr[EMq(x
′) = y′]

Pr[EMq(x) = y′]
=

exp(εqq(x, y))

exp(εqq(x′, y))

exp(εqq(x
′, y′))

exp(εq(x, y′))
≤ e2ε.

3We could also equivalently define this in terms of output sets S, S′ ⊆ Y because we are only considering pure
(δ = 0) differential privacy.
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When q is monotonic in the dataset, we have either the case where
exp(εqq(x,y))
exp(εqq(x′,y)) ≤ eε and

exp(εqq(x′,y′))
exp(εqq(x,y′))

≤ 1 or the case where
exp(εqq(x,y))
exp(εqq(x′,y)) ≤ 1 and

exp(εqq(x′,y′))
exp(εqq(x,y′))

≤ eε. Hence the factor of 2

savings in the privacy parameter.

We now show that we can achieve a better composition bound when we compose ε-range-
bounded algorithms as opposed to using Theorem 3, which applies to the composition of general
DP algorithms. Intuitively this composition will save a factor of 2 because the range that will
maximize the variance is [− ε

2 ,
ε
2 ] due to the fact that if the range was instead skewed towards ε

(i.e. a range of [−o(1), ε− o(1)]) then almost all of the probability mass has to be on events with
log-ratio around −o(1). Rather than using Azuma’s inequality on the sum of the privacy losses, as
is done in the original advanced composition paper [13], we use the more general Azuma-Hoeffding
bound.

Theorem 4 (Azuma-Hoeffding4). Let (Xt) be a martingale with respect to the filtration (Ft).
Assume that there exist Ft−1 measurable variables At, Bt and a constant ct such that

At ≤ Xt −Xt−1 ≤ Bt Bt −At ≤ ct.

Then for any β > 0 we have

Pr[Zt − Z0 ≥ β] ≤ exp

(
−2β2∑t
i=1 c

2
i

)
.

In fact, our composition bound for range-bounded algorithms improves on the optimal compo-
sition theorem for general DP algorithms [19, 26]. See Appendix A for a comparison of the different
bounds. We defer the proof, which largely follows a similar argument to [13], to Appendix B.2.

Lemma 4.4. Let M1,M2, · · · ,Mt each be εi-bounded range where the choice of Mi may depend
on the previous outcomes of M1, · · · ,Mi−1, then the composed algorithm M(x) of each of the
algorithms M1(x),M2(x), · · · ,Mt(x) is (ε′′(δ), δ)-DP for any δ ≥ 0 where

ε′′(δ) = min


t∑
i=1

εi,

t∑
i=1

εi ·
(
eεi − 1

eεi + 1

)
+

√√√√2

t∑
i=1

ε2
i ln(1/δ),

t∑
i=1

ε2
i

2
+

√√√√1

2

t∑
i=1

ε2
i ln(1/δ)

 . (4)

Note that in order to see an improvement in the advanced composition bound, we do not
necessarily require that an ε-DP mechanism is also ε-range-bounded, but could be relaxed to showing
it is αε-range-bounded for some α < 2. In particular, this will still give improvements with respect
to the simpler formulation of the advanced composition bound. More specifically, the significant
term that is normally considered in advanced composition is

√
2k ln(1/δ′)ε, which can be replaced

with
√

α2

2 k ln(1/δ′)ε for composing αε-range-bounded mechanisms with α ≤ 2. Consequently, we

believe that this formulation could be useful for mechanisms beyond the exponential mechanism.

4http://www.math.wisc.edu/~roch/grad-prob/gradprob-notes20.pdf

13

http://www.math.wisc.edu/~roch/grad-prob/gradprob-notes20.pdf


5 Limited Domain Algorithm

In this section we present the analysis of our main procedure in Algorithm 1. We begin by giving
basic properties of histograms when an individual’s data is added or removed, and how this can
change the domain of the true top-k̄. This will be critical for achieving our bounds on the bad
events when an index moves in or out of the true top-k̄ for a neighboring database. Next, we will
give an alternative formulation of our algorithm based upon a peeling exponential mechanism. The
general idea will be to show that once we have bounded the probability of outputting indices unique
to the true top-k̄ of one on the neighboring histograms, then we can just consider the remaining
similar outputs according to this peeling exponential mechanism and bound this in terms of pure
differential privacy. Finally, we will provide a proof of Theorem 1.

5.1 Properties of Data Dependent Thresholds

In this section we will cover basic properties of how the domain of elements above a data dependent
threshold can change in neighboring histograms, i.e. h and h′, where ||h − h′||∞ ≤ 1. In our
algorithm, we will use a data dependent threshold, such as the k̄-th ordered count h(k̄). Our first

property that we use often within our analysis is that the count of the k̄th largest histogram value
will not change by more than one (even though the index itself may change).

Lemma 5.1. For any neighboring histograms h,h′, where w.l.o.g. h ≥ h′, and for any k̄ ≤ d, we
must have either h(k̄) = h′

(k̄)
or h(k̄) = h′

(k̄)
+ 1.

Proof. Let i′(j) be the index for h′(j). By assumption we have h ≥ h′, which implies that for each

index i′(j) we must have hi′
(j)
≥ h′i′

(j)
. Therefore, for each j ≤ k̄, we have hi′

(j)
≥ h′i′

(k̄)

, which implies

h(k̄) ≥ h′(k̄)
.

Similarly, we let i(j) be the index for h(j), and we know that h and h′ are neighboring so for
each index i(j) we must have h′i(j) + 1 ≥ hi(j) . Therefore, for each j ≤ k̄, we have h′i(j) + 1 ≥ hi(k̄)

,

which implies h′
(k̄)

+ 1 ≥ h(k̄).

Instead of considering the entire domain of size d, our algorithms will be limited to a much
smaller domain dk̄(h) for each database and a given value k̄, where

dk̄(h) := {i(j) ∈ [d] : j ≤ k̄ and hi(1)
≥ hi(2)

≥ · · · ≥ hi(d)}. (5)

and assume that there is some arbitrary (data-independent) tie-breaking that occurs for ordering
the histograms. We then have the following result, which bounds how much the change in counts
between neighboring databases can be on elements that are in the set difference of the two domains.

Lemma 5.2. For any ∆-restricted sensitivity neighboring histograms h,h′, and some fixed k̄ < d,
if i ∈ dk̄(h) \ dk̄(h′) then hi ≤ h(k̄+1) + 1 and if i ∈ dk̄(h′) \ dk̄(h) then h′i ≤ h′(k̄+1)

+ 1

Proof. If i ∈ dk̄(h) \ dk̄(h′), then h′i ≤ h′
(k̄+1)

because i /∈ dk̄(h′). We first consider the case

h ≥ h′, which implies h′
(k̄+1)

≤ h(k̄+1) by Lemma 5.1 and because they are neighbors, we must

have hi ≤ h′i + 1. Therefore, hi ≤ h′i + 1 ≤ h′
(k̄+1)

+ 1 ≤ h(k̄+1) + 1 as desired. If instead h′ ≥ h,

then again by Lemma 5.1 we have h′
(k̄+1)

≤ h(k̄+1) + 1, and we must also have hi ≤ h′i. Therefore,

hi ≤ h′i ≤ h′(k̄+1)
≤ h(k̄+1) + 1 as desired.
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The other claim follows symmetrically.

We now show that the set difference between the domain under h and h′ is no more than k̄ and
the restricted sensitivity of the neighboring histograms

Lemma 5.3. For any ∆-restricted sensitivity neighboring histograms h,h′, and some fixed k̄ < d,
then we must have

|dk̄(h) \ dk̄(h′)| ≤ min{∆, k̄, d− k̄}.

Proof. By definition, we have |dk̄(h) \ dk̄(h′)| ≤ min{k̄, d− k̄}, so we will assume ∆ < k̄ and show
for ∆. We assume w.l.o.g. that h ≥ h′, and because we know by construction that |dk̄(h)| = k̄ for
any h, then proving |dk̄(h) \ dk̄(h′)| ≤ ∆ will imply |dk̄(h′) \ dk̄(h)| ≤ ∆. It now suffices to show
that for any i ∈ dk̄(h) \dk̄(h′) we must have hi > h′i. If hi = h′i then the position of index i cannot

have moved up the ordering from h′ to h because we assumed h ≥ h′. Therefore, if i /∈ dk̄(h′) and
hi = h′i we must also have i /∈ dk̄(h).

These properties will ultimately be critical in bounding the probability of indices outside of
dk̄(h)∩dk̄(h′) being output. Note that we typically think of k̄ � d, so we will eliminate d− k̄ from
the minimum statement in Lemma 5.3 throughout the rest of the analysis.

5.2 Limited Domain Peeling Exponential Mechanism

Our main procedure LimitDomk,k̄ is given in Algorithm 1, which involves adding Gumbel noise to
each of the top-k̄ terms in the histogram we are given where k̄ ≥ k. Note that from Section 4
we know that our analysis can be done by considering the exponential mechanism instead of noise
addition.

We now generalize the exponential mechanism we presented in Section 4.

Definition 5.1 (Limited Histogram Exponential Mechanism). We define the Limited Histogram
Exponential Mechanism for any k̄ ≤ d to be LEMk̄ : Nd × 2[d] → [d] ∪ {⊥} such that

Pr[LEMk̄(h,d) = i] =
exp(εhi)

exp(εh⊥) +
∑

j∈d exp(εhj)

for all i ∈ d ∪ {⊥} where d ⊆ [d] and

h⊥ = h(k̄+1) + 1 + ln(min{k̄,∆}/δ)/ε. (6)

From Lemma 4.3 we then have the following result due to the fact that the exponential
mechanism is ε-DP and we are simply adding a new coordinate ⊥ with count h(k̄+1) + 1 +

ln(min{k̄,∆}/δ)/ε.

Corollary 5.1. For any fixed d ⊆ [d] then LEMk̄(·,d) is ε-range bounded and ε-DP.

In order to make our peeling algorithm pLEMk,k̄ in Algorithm 3 equivalent to LimitDomk,k̄ in
Algorithm 1, we will need to iterate over the same set of indices. Recall how we defined the limited
domain dk(h) in (5).
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Lemma 5.4. For any input histogram h, LimitDomk,k̄(h) and pLEMk,k̄(h,dk̄(h)) are equal in dis-
tribution.

Proof. Note that both LimitDomk,k̄(h) and pLEMk,k̄(h,dk̄(h)) will only consider terms in dk̄(h) to
add to the output. We showed in Lemma 4.2 that adding Gumbel noise to all counts in a histogram,
in this case (hj : j ∈ dk̄(h)∪{⊥}), and taking the largest k is equivalent to peeling the exponential
mechanism to return the largest count k times. Lastly, if we select ⊥ as one of the indices, then we
do not return any other indices with smaller count than h⊥.

Algorithm 3 pLEMk,k̄; Peeling Exponential Mechanism version of Algorithm 1

Input: Histogram h, subset d ⊆ [d] of indices; privacy parameters ε, δ.
Output: Ordered set of indices.
Set I = ∅
while |I| < k do

Set o = LEMk̄(h,d \ I)
if o = ⊥ then

Let I ← I ∪ {o} #concatenate o to I to retain the order
Return I

else
Let I ← I ∪ {o} #concatenate o to I to retain the order

Return I

Corollary 5.2. For any fixed d ⊆ [d] and neighboring histograms h,h′, we have that pLEMk,k̄(·,d)
is (ε′, δ′) for any δ′ ≥ 0 where ε′ is given in (2).

We will now fix two neighboring histograms h,h′, and separate out our outcome space into bad
events for h and h′. In particular, these will just be outputs that contain some index in the top-k̄
for one, but not in the top-k̄ for the other.

Definition 5.2. For any neighboring histograms h,h′, then we define S as the outcome set of
pLEMk,k̄(h,dk̄(h)) and the outcome set of pLEMk,k̄(h′,dk̄(h′)) as S ′.

We then define the bad outcomes as

Sδ := S \ S ′ and S ′δ := S ′ \ S

The bulk of the heavy lifting will then be done by the following two lemmas that bound the
bad events, and also give a simpler way to compare the good events in terms of pure differential
privacy. For bounding the bad events, we need to upper bound the probability of outputting an
index in dk(h)\dk(h′). If we consider one call to the exponential mechanism, then we could obtain
an upper bound on the probability of outputting a given index in dk(h) \dk(h′), by restricting the
possible outputs to just that index and ⊥. This will then give us the bound of δ. However, applying
this over the possible k iterative calls will give a bound of kδ, so we will instead need a slightly more
sophisticated argument that accounts for the fact that the iterative process terminates whenever
⊥ is output.
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Lemma 5.5. For any neighboring histograms h,h′,

Pr[pLEMk,k̄(h,dk̄(h)) ∈ Sδ] ≤ δ

We defer the proof to Appendix C. The next lemma will give us a clean way to compare
the good events, that will mainly be due to the fact that conditional probabilities are simpler to
work with in the exponential mechanism. More specifically, if we consider the rejection sampling
scheme of redrawing when we see a bad event, then the resulting probability distribution is actually
equivalent to simply restricting our domain to dk(h)∩dk(h′), the set of indices in the top-k̄ for both
histograms. This will then allow us to compare the probability distributions of both histograms
outputting from the same domain.

Lemma 5.6. For any neighboring histograms h,h′, such that dε = dk̄(h′) ∩ dk̄(h), then we have
that for any o ∈ S ∩ S ′

Pr[pLEMk,k̄(h,dk̄(h)) = o] = Pr[pLEMk,k̄(h,dε) = o] · Pr[pLEMk,k̄(h,dk̄(h)) /∈ Sδ]

We defer the proof to Appendix C. This lemma does not immediately give us pure differential
privacy on outcomes in S ∩S ′ because while we will be able to compare Pr[pLEMk,k̄(h,dε) = o] and
Pr[pLEMk,k̄(h′,dε) = o] using Corollary 5.2, we still need to account for Pr[pLEMk,k̄(h,dk̄(h)) /∈ Sδ]
which we know is at least 1− δ. This will give us a reasonably simple way to achieve a bound of 2δ
on the total variation distance, but with some additional work we can eliminate the factor of two.
In particular, we will use the following general result in the proof of our main result.

Claim 5.1. For any δ1 ∈ [0, 1] and δ2 ∈ [0, 1), and any non-negative x ≤ 1− δ2, we have that

x
1− δ1

1− δ2
+ δ1 ≤ x+ max{δ1, δ2}

Proof. Multiplying each term by (1− δ2) and cancelling like terms gives the equivalent inequality
of

δ2x+ δ1(1− δ2) ≤ δ1x+ max{δ1, δ2}(1− δ2)

If δ1 ≥ δ2, then δ2x ≤ δ1x and we are done. If δ1 < δ2, then our inequality reduces to

δ2x+ δ1(1− δ2) ≤ δ1x+ δ2(1− δ2)

Rearranging terms we get this is equivalent to

δ1(1− δ2 − x) ≤ δ2(1− δ2 − x)

which holds because we assumed x ≤ 1− δ2.

We now combine these lemmas and claim to provide our main result of this section, and we will
then show how Theorem 1 immediately follows from this lemma.

Lemma 5.7. For any neighboring histograms h,h′ and for any S ⊆ S, we have that

Pr[pLEMk,k̄(h,dk̄(h)) ∈ S] ≤ eε′ Pr[pLEMk,k̄(h′,dk̄(h′)) ∈ S] + δ + δ′

for any δ′ ≥ 0, where ε′ = min{kε,
√

2k ln(1/δ′)ε+ kε(eε− 1)/(eε + 1),
√

k
2 ln(1/δ′)ε+ kε2/2}.
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Proof. We will first separate S such that Sδ = S ∩ Sδ and Sε = S \ Sδ . For ease of notation, we
will let

Pr[pLEMk,k̄(h,dk̄(h)) ∈ Sδ] = δh and Pr[pLEMk,k̄(h′,dk̄(h′)) ∈ S ′δ] = δh′

This then implies

Pr[pLEMk,k̄(h,dk̄(h)) ∈ S] = Pr[pLEMk,k̄(h,dk̄(h)) ∈ Sε] + Pr[pLEMk,k̄(h,dk̄(h)) ∈ Sδ]

≤ Pr[pLEMk,k̄(h,dk̄(h)) ∈ Sε] + δh

Applying Lemma 5.6, with dε = dk̄(h′) ∩ dk̄(h), and the fact that Pr[pLEMk,k̄(h,dk̄(h)) ∈
Sδ] + Pr[pLEMk,k̄(h,dk̄(h)) /∈ Sδ] = 1, we have

Pr[pLEMk,k̄(h,dk̄(h)) ∈ S] ≤ Pr[pLEMk,k̄(h,dε) ∈ Sε](1− δh) + δh

From Corollary 5.2 we know that for δ′ ≥ 0 and ε′ given in (2)

Pr[pLEMk,k̄(h,dε) ∈ Sε] ≤ min{1, eε′ Pr[pLEMk,k̄(h′,dε) ∈ Sε] + δ′}

which implies

Pr[pLEMk,k̄(h,dk̄(h)) ∈ S] ≤ min{1, eε′ Pr[pLEMk,k̄(h′,dε) ∈ Sε] + δ′} · (1− δh) + δh

= min{1− δh′ , eε
′
Pr[pLEMk,k̄(h′,dε) ∈ Sε](1− δh′) + δ′(1− δh′)}

1− δh
1− δh′

+ δh

= min{1− δh′ , eε
′
Pr[pLEMk,k̄(h′,dk̄(h′)) ∈ Sε] + δ′(1− δh′)}

1− δh
1− δh′

+ δh

where the last step follows from Lemma 5.6. We then apply Claim 5.1 5 to get

Pr[pLEMk,k̄(h,dk̄(h)) ∈ S] ≤ min{1−δh′ , eε
′
Pr[pLEMk,k̄(h′,dk̄(h′)) ∈ Sε]+δ′(1−δh′)}+max{δh, δh′}

We further use Lemma 5.5 to bound max{δh, δh′} ≤ δ and obtain

Pr[pLEMk,k̄(h,dk̄(h)) ∈ S] ≤ eε′ Pr[pLEMk,k̄(h′,dk̄(h′)) ∈ Sε] + δ′ + δ

Finally, by definition Pr[pLEMk,k̄∆ (h,dk̄(h)) ∈ Sδ] = 0 which implies our desired bound.

Proof of Theorem 1. From Lemma 5.4 we know that Algorithm 1 is equivalent to the peeling ex-
ponential mechanism. Our privacy guarantees then follow immediately from Lemma 5.7.

5Note that Claim 5.1 doesn’t apply if δh′ = 1, but Lemma 5.5 then implies that δ ≥ 1 and our desired statement
is trivially true.
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6 Variants and Improvements of the Limited Domain Algorithm

In this section, we will discuss some variants of our main algorithm and some improvements.
Specifically, we discuss a variant that adds Laplace noise to the counts, which is similar to the
report noisy max algorithm in Dwork and Roth [10]. This variant of report noisy max allows us
to only pay a ∆ factor on the ε parameter in the ∆-restricted sensitivity setting. We then present
a more practical version of our main algorithm only considers domain elements that are strictly
greater than the (k̄+1)-th value, so it has cardinality at most k̄. We then present a way to optimize
the threshold value k̄ in a data dependent way.

6.1 Laplace Limited Domain Algorithm

We now restrict ourselves to the case in which neighboring histograms can vary in at most ∆
positions so that ||h−h′||∞ ≤ 1 and ||h−h′||0 ≤ ∆, i.e. h,h′ are ∆-restricted sensitivity neighbors.
We want to show that we can see substantial improvements in the privacy loss, where the loss can
instead be written in terms of ∆, rather than k when ∆ < k. Our previous algorithm did achieve
improvement for the restricted sensitivity setting, in that the additive term on the threshold could
instead be written as ln(∆/δ)/ε, but our privacy loss for the ε term was still in terms of k. For this
section, we will then assume min{∆, k̄} = ∆.

Note that the procedure LimitDomk,k̄Lap in Algorithm 4 is nearly equivalent to our main procedure

LimitDomk,k̄ in Algorithm 1, with the critical difference that we use Laplace noise, rather than
Gumbel noise. Our privacy analysis uses the Laplace mechanism [12] to return the top-k over
a limited domain set that is given as input, which we call LapMaxk,k̄. We cannot achieve this
similar privacy guarantee for Gumbel noise because unlike Laplace noise, releasing a count value
with added Gumbel noise is not necessarily differentially private. Conversely, we cannot achieve
the same privacy guarantees from this procedure as we do with Gumbel noise, particularly with
respect to the application of advanced composition.

Algorithm 4 LimitDom
k,k̄
Lap; ∆-Restricted Sensitivity Random Threshold with k, k̄

Input: Histogram h, cut off at k̄ ≥ k, along with parameters ε, δ.
Output: Ordered set of indices S.
Set v⊥ = h(k̄+1) + 1 + ln(∆/ε) + Lap(1/ε)

for i ≤ k̄ do
Set vi = h(i) + Lap(1/ε)

Sort {vi} ∪ v⊥
Let vi(1)

, ...., vi(j) be the sorted list until v⊥
Return {i(1), ..., i(j),⊥} if j < k, otherwise return {i(1), ..., i(k)}

Lemma 6.1. Algorithm 4 is (∆ε, (e∆ε + 1)δ̄)-DP where δ̄ = δ
4(3 + ln(∆/δ))

As in Section 5.2, we will instead write this algorithm with respect to a more generalized version
that considers restricting to an arbitrary subset of indices as opposed to just those with value in
the true top-k̄.

19



Definition 6.1. [Limited Histogram Report Noisy top k] We define the limited histogram report
noisy top k to be LapMaxk,k̄ : Nd × 2[d] → [d] ∪ {⊥} such that

LapMaxk,k̄(h,d) =

{
(i(1), ..., i(j),⊥) if j < k

(i(1), ..., i(k)) otherwise

where (v(1), ..., v(j), v⊥) is the sorted list until b⊥ of vi = h(i) + Lap(1/ε) and v⊥ = h⊥ + Lap(1/ε),
for each i ∈ d and

h⊥ := h(k̄+1) + 1 + ln(∆/ε) (7)

We then have the following result that connects LapMaxk,k̄ with LimitDom
k,k̄
Lap.

Corollary 6.1. For any histogram h, we have that LapMaxk,k̄(h,dk̄(h)) and LimitDom
k,k̄
Lap(h) are

equal in distribution.

If we fix a domain d beforehand, then we have the following privacy statement. Note that
we could allow LapMaxk,k̄(h,d) to release the full noisy histogram, with counts, over the limited
domain d∪⊥, since the privacy analysis follows from the Laplace mechanism [12] being ∆ε-DP. We
just need to ensure that i(k̄+1) /∈ d because then if it was, then changing one index would change
the count of both h(k̄+1) and h⊥.

Lemma 6.2. For any fixed d ⊆ [d] and neighboring histograms h,h′ such that i(k̄+1), i
′
(k̄+1)

/∈ d,

then we have that for any set of outcomes S

Pr[LapMaxk,k̄(h,d) ∈ S] ≤ e∆ε Pr[LapMaxk,k̄(h′,d) ∈ S]

As we did in Definition 5.2, we define the good and bad outcome sets.

Definition 6.2. Given two neighboring histograms h,h′, we define SLap as the outcome set of

LimitDom
k,k̄
Lap(h,d

k̄(h)) and the outcome set of LimitDomk,k̄Lap(h
′,dk̄(h′)) as S ′Lap.

We then define the bad outcomes as

SδLap := SLap \ S ′Lap and S ′δLap := S ′Lap \ SLap

As with the analysis in Section 5.2, we will need to bound the probability of outputting some-
thing from SδLap, and also show that we can achieve differential privacy for the remaining outputs
that are possible for both h and h′. For bounding the bad outcomes, it suffices to consider each
index in dk̄(h) \dk̄(h′) and bound the probability that its respective noisy value is above the noisy
threshold. By construction, both will have Laplace noise added, which will cause the expression
for this bound to be slightly messier because we cannot rewrite Lap(1/ε) + Lap(1/ε) ≡ Lap(2/ε),
and the proof will require a more technical analysis.

Lemma 6.3. For any ∆-restricted sensitivity neighboring histograms h,h′, we must have

Pr[LapMaxk,k̄(h,dk̄(h)) ∈ SδLap] ≤
δ

4
· (3 + ln(∆/δ)) =: δ̄ (8)
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We defer the proof to Appendix D. We then also need to give differential privacy bounds on
the good outcomes, but these bounds will be harder to achieve for Laplace noise because working
with conditional probabilities in this setting is much more difficult. More specifically, if we again
consider the rejection sampling scheme where we throw out any outcomes in SδLap, when Laplace
noise is added we cannot just consider this equivalent to never having considered any of the indices
in dk̄(h) \ dk̄(h′). As a result, our bounds on the good outcomes will instead be approximate
differential privacy guarantees, which is the reason for the (e∆ε + 1) factor on the δ in our final
privacy guarantees.

Lemma 6.4. For any neighboring histograms h,h′ and for any S ⊆ SLap ∩ S ′Lap, we let dε =

dk̄(h) ∩ dk̄(h′) and we must have the following for δ̄ given in (8)

Pr[LapMaxk,k̄(h,dk̄(h)) ∈ S] ≤ Pr[LapMaxk,k̄(h,dε) ∈ S] ≤ Pr[LapMaxk,k̄(h,dk̄(h)) ∈ S] + δ̄

We defer the proof to Appendix D. Combining these two lemmas in a similar way to the previous
section, will then give our main result of this subsection.

Lemma 6.5. For any neighboring histograms h,h′ and any S ⊆ SLap, then for δ̄ given in (8),

Pr[LapMaxk,k̄(h,dk̄(h)) ∈ S] ≤ e∆ε Pr[LapMaxk,k̄(h′,dk̄(h′)) ∈ S] + (e∆ε + 1)δ̄.

Proof. We will first separate S such that Sδ = S ∩ SδLap and Sε = S \ Sδ. We use Lemma 6.3 to
bound

Pr[LapMaxk,k̄(h,dk̄(h)) ∈ Sδ] ≤ δ̄
Furthermore, by Lemma 6.4 we have

Pr[LapMaxk,k̄(h,dk̄(h)) ∈ Sε] ≤ Pr[LapMaxk,k̄(h,dε) ∈ Sε]
and also

Pr[LapMaxk,k̄(h′,dε) ∈ Sε] ≤ Pr[LapMaxk,k̄(h′,dk̄(h′)) ∈ Sε] + δ̄

Combining these inequalities with Lemma 6.2 we have

Pr[LapMaxk,k̄(h,dk̄(h)) ∈ Sε] ≤ Pr[LapMaxk,k̄(h,dε) ∈ Sε]

≤ e∆ε Pr[LapMaxk,k̄(h′,dε) ∈ Sε]

= e∆ε
(

Pr[LapMaxk,k̄(h′,dk̄(h′)) ∈ Sε] + δ̄
)

We use the fact that Pr[LapMaxk,k̄(h′,dk̄(h′)) ∈ Sδ] = 0 by definition, so Pr[LapMaxk,k̄(h′,dk̄(h′)) ∈
Sε] = Pr[LapMaxk,k̄(h′,dk̄(h′)) ∈ S]. Finally, this gives

Pr[LapMaxk,k̄(h,dk̄(h)) ∈ S] = Pr[LapMaxk,k̄(h,dk̄(h)) ∈ Sδ] + Pr[LapMaxk,k̄(h,dk̄(h)) ∈ Sε]

≤ δ̄ + e∆ε
(

Pr[LapMaxk,k̄(h′,dk̄(h′)) ∈ Sε] + δ̄
)

= e∆ε Pr[LapMaxk,k̄(h′,dk̄(h′)) ∈ S] + (e∆ε + 1)δ̄
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Proof of Lemma 6.1. Follows immediately from Corollary 6.1 and Lemma 6.5.

6.2 Strictly Limited Domain Algorithm

In this section, we give a slight variant of Algorithm 1 that achieves the same privacy guarantees in
the unrestricted sensitivity setting, but will allow for an even more efficient implementation. Note
that in Algorithm 1 we always assume access to the true top-k̄, and this is necessary even if some of
those values are zero. However, as you would expect, most online analytical processing algorithms
for top-k̄ queries only return non-zero values. One way to work around this is to maintain a fixed
list of k̄ indices, and anytime the true top-k̄ has fewer than k̄ non-zeros we auto-populate the
histogram with indices from our fixed list (note that we allowed for a fixed arbitrary tie-breaking
of indices). A more practical approach would be to instead only consider indices whose value is
strictly greater than the (k̄ + 1)th index. We will show that this approach still achieves the same
privacy guarantees, but does not see the same improvement in the restricted-sensitivity setting.

Algorithm 5 Top k from the strictly limited domain of k̄ ∈ {k, · · · , d− 1} of the histogram

Input: Histogram h; cut off at k̄ ≥ k, along with parameters ε, δ.
Output: Ordered set of indices.
Set h⊥ = h(k̄+1) + 1 + ln(k̄/δ)/ε
Set v⊥ = h⊥ + Gumbel(1/ε)
for j ≤ k̄ do

if h(j) > h(k̄+1) then
Set vj = h(j) + Gumbel(1/ε)

Sort {vj} ∪ v⊥
Let vi(1)

, ...., vi(j) , v⊥ be the sorted list up until v⊥
Return {i(1), ..., i(j),⊥} if j < k, otherwise return {i(1), ..., i(k)}

Lemma 6.6. Algorithm 5 achieves the same privacy guarantees as Algorithm 1.

Recall how we defined the limited domain dk(h) in (5) for a given histogram h. We will further
restrict this domain to a smaller domain dk>(h) for each database and a given value k, where he
only consider counts that are strictly larger than the (k + 1)-th largest count,

dk>(h) := {i ∈ [d] : hi > h(k+1)} ⊆ dk(h). (9)

We now present a variant of Lemma 5.2 for the limited domain dk>(h)

Lemma 6.7. For any neighboring histograms h,h′, and some fixed k < d, then one of the following
must hold:

1. dk>(h′) ⊆ dk>(h) and for any i ∈ dk>(h) \ dk>(h′) we must have hi = h(k+1) + 1

2. dk>(h) ⊆ dk>(h′) and for any i ∈ dk>(h′) \ dk>(h) we must have h′i = h′(k+1) + 1
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Note that either of these properties is possible even if h′ is the histogram obtained from removing
one person’s data from h, or vice versa.

Proof. To simplify notation, let d = dk>(h) and d′ = dk>(h′). Consider the case where h ≥ h′.
Assume d 6⊆ d′ so there must exist j ∈ d \ d′. Hence, hj > h(k+1) but h′j ≤ h′(k+1). Since

h′j ≤ hj ≤ h′j + 1, we must have

h(k+1) < hj ≤ h′j + 1 ≤ h′(k+1) + 1.

By Lemma 5.1 we must have h(k+1) = h′(k+1) and hj = h(k+1) + 1. We now show that it must be

the case that d′ ⊆ d, so we assume that ∃j′ ∈ d′ \ d. Thus, h′(k+1) < h′j′ but hj′ ≤ h(k+1) and

recall that h(k+1) = h′(k+1) in this case, in which case h(k+1) < h′j′ ≤ hj′ ≤ h(k+1), and hence a
contradiction.

We now assume that d′ 6⊆ d so there must exist j′ ∈ d′ \ d. We then have h′j′ > h′(k+1) but
hj′ ≤ h(k+1), which forms the following sequence of inequalities,

h′(k+1) < h′j′ ≤ hj′ ≤ h(k+1).

Again, from Lemma 5.1 we must have h(k+1) = h′(k+1) + 1 and h′j′ = h′(k+1) + 1. Now assume that

∃j ∈ d \d′ and so h(k+1) < hj and h′j ≤ h′(k+1). This gives us h′(k+1) + 1 < h′j + 1 ≤ h′(k+1) + 1, and
hence a contradiction.

The case where h′ ≥ h follows the same argument.

Proof of Lemma 6.6. For all the proofs in Section 5.2 we can just replace all calls to dk̄(h) with
our new definition of dk̄>(h), as this variant is the same algorithm but simply considers a smaller
set of indices to output. We wrote our definition of the peeling exponential mechanism to allow
any subset of indices, so all the proofs in this regard will generalize to this new domain definition.

The only change we then need to consider is how this changes our bound of δ. The two
sufficient properties that were used for bounding δ were that for any i ∈ dk̄>(h) \ dk̄>(h′) we had

hi ≤ h(k̄+1) +1, i.e. Lemma 5.2, and that |dk̄>(h)\dk̄>(h′)| ≤ min{∆, k̄}, i.e. Lemma 5.3. Note that
Lemma 6.7 still gives us the first property for this new domain. Further note that the only other
change to our algorithm is that we now have the value added for h⊥ is now ln(k̄/δ)/ε as opposed
to ln(min{∆, k̄}/δ)/ε. Accordingly, it then just suffices to bound |dk̄>(h) \ dk̄>(h′)| ≤ k̄, which is
true by construction.

6.3 Optimizing for Threshold Index

In this section, we will discuss the choice of k̄ for determining our threshold when we assume
that our sensitivity is unbounded, i.e. ∆ = d. This can viewed as an optimization problem that
is dependent on the data, where we would like to maximize the probability of the noisy values
being above our noisy threshold h⊥ = h(k̄+1) + 1 + ln(k̄/δ)/ε+ Gumbel(1/ε) in Algorithm 1. Note

that our threshold has one term, h(k̄+1), that is decreasing in k̄ and another term, ln(k̄/δ)/ε, that

is increasing in k̄. The optimization problem will then be to minimize h(k̄+1) + 1 + ln(k̄/δ)/ε.
Intuitively, this will be a point in the histogram in which we see a sudden drop. However, making
this data-dependent can violate privacy, so we will instead compute this minimal index using the
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Algorithm 6 Optimal Threshold

Input: Histogram h, cut off at d̄ with values h(1) ≥ · · · ≥ h(d̄) ≥ · · · ≥ h(d), along with k, ε, δ.
Output: Ordered set of indices S.
for i ∈ [k, d̄] do

Set vi = h(i) + ln(i/δ)/ε+ Gumbel(1/ε)

Set k̄ = argmin{vi}
Return LimitDomk−1,k̄(h; ε, δ)

exponential mechanism EMq with q(h, i) = −hi − ln(i/δ)/ε to return an estimate for the minimum
count and pay an additional ε in the privacy to achieve a better threshold.

We can actually return the optimal k̄ that was computed with no additional privacy cost.

Lemma 6.8. For any δ′ ≥ 0, Algorithm 6 is (ε′, δ + δ′)-DP for ε′ given in (2).

Proof. From Lemma 5.1 we know that if we have neighboring histograms h ≥ h′ then for any
i ∈ [d] we must have h(i) = h′(i) or h(i) = h′(i) + 1, which is to say that it has sensitivity 1

and is monotonic. Furthermore, we know that ln(i/δ)/ε is fixed and not data dependent, and so
because adding Gumbel noise is equivalent to running the exponential mechanism, which is ε-range-
bounded, our choice of k̄ is ε-range-bounded. We define M(h) to be the mechanism that returns
argmini∈[k+1,d̄]{h(i) + ln(i/δ)/ε+ Gumbel(1/ε)} and is hence ε-range-bounded.

Note that our analysis in Section 5.2 required introducing an adaptive sequence of peeling
exponential mechanisms pLEMk,k̄(h,dk̄(h)) and then showing that LimitDomk,k̄(h) was equivalent
in distribution to it. Here, we are starting with a different exponential mechanism to obtain k̄, but
once we have that we continue as usual, albeit with k− 1 rather than k. It is then straightforward
to replicate the analysis in Section 5.2, except with the alternative peeling exponential mechanism
pLEMk−1,M(h)

(
h,dM(h)(h)

)
.

7 Pay-what-you-get Composition

In this section, we will examine our multiple calls procedure multiLimitDomk
?,`? given in Algo-

rithm 2, and present the analysis to prove Theorem 2.6 We will use the fact that the closeness of
the probability distribution for our limited domain algorithm depends on the size of the output in
order to reduce the privacy loss over multiple calls to the limited domain algorithm. We can view
this as a combination of the peeling exponential mechanism and the sparse vector technique [10].
More specifically, we know that Algorithm 1 is equivalent to a variant of the peeling exponential
mechanism, and the size of the output tells us the number of adaptive calls made to the expo-
nential mechanism. Accordingly, we set a threshold that bounds the total number of adaptively
selected limited domain exponential mechanism calls made over multiple rounds of Algorithm 1.
This parallels the sparse-vector technique that bounds the number of calls to above-threshold, a
mechanism that also has a stopping condition based upon noisy estimates falling above or below

6Note that if we use Algorithm 6 from Section 6.3 to optimize the threshold at each round, then we just need
to instead update with k? ← k? − (|oi| + 1) in multiLimitDomk

?,`? because we need to additionally pay for the
optimization in each call.
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a noisy threshold. However, if we want to show that the privacy degrades with the size of the
output, then we cannot just take the privacy guarantees from Theorem 1 (which are in terms of
k) and apply known adaptive composition theorems. Additionally, we want to apply advanced
composition on the total calls to the limited exponential mechanism within calls to Algorithm 1,
but we only want to pay for an additional δ each time we call Algorithm 1.

This will require a more meticulous analysis of our multiple calls procedure. As in our previous
analysis, we want to fix neighboring histograms so that we can separate the respective outcome
space into good and bad events. This will become notationally heavy for this procedure because
the histograms are an adaptive sequence. It then becomes necessary to fix neighboring adaptive
sequences of queries, which we will set up with the following notation.

Let hi(o<i) be the adaptive histogram that results from seeing the previous outcomes o1, ..., oi−1.
We want to fix the randomness in the adaptive sequence of neighboring histograms. We then

define H(0) to be the family of all possible adaptive histogram sequences, h
(0)
1 ,h

(0)
2 (o1), h

(0)
3 (o<3),

· · · ,h(0)
` (o<`) where ` ≤ `? and oi is a feasible outcome for LimitDomki,k̄i

(
h

(0)
i (o<i)

)
. We then

write H(1) to be a neighboring family of H(0), which is to say that it consists of adaptive histogram

sequences h
(1)
1 ,h

(1)
2 (o1), · · · , where each h

(1)
i (o<i) is a neighbor of h

(0)
i (o<i). Note that there might

be outcomes oi that are feasible in the adaptive sequence of histograms h
(b)
1 , · · ·h(b)

i (o<i) when
b = 0 but not when b = 1. Further, when b = 1, we are not even considering some feasible
outcomes in H(0) or H(1). We want to make sure that we are only looking over feasible outcomes
for both b = 0 and b = 1. Note that H(b) for b ∈ {0, 1} can be thought of as a tree showing
each possible realized histogram in an adaptive sequence based on the previous outcomes, so that

a sequence ~h ∈ H(b) gives a possible path in H(b). Furthermore, for any h
(1)
i (o<i) and h

(0)
i (o<i), we

let dk̄ii (o<i) = dk̄i(h
(0)
i (o<i)) ∩ dk̄i(h

(1)
i (o<i))

The procedure pMultiLEM
k?,`?

H(0),H(1) in Algorithm 7 presents a variant of Algorithm 2 that calls

the peeling exponential mechanism, but only has adaptive sequences in H(0) or H(1). Note that we

have limited the outcomes at round i to only be from pLEMki(h
(b)
i (o<i),d

k̄i
i (o<i)), which restricts

the outcomes to only be sequences in dk̄ii (o<i)∪{⊥}, where the indices are common for either b = 0
or b = 1.

Algorithm 7 pMultiLEM
k?,`?

H(0),H(1) ; Multiple queries to random threshold with limited domain

Input: Bit b ∈ {0, 1} corresponding to H(b) with privacy parameters ε, δ.
Output: Sequence of outputs (o1, ..., o`) for ` ≤ `?.
while k? > 0 and `? > 0 do

From previous outcome o<i, select ki and k̄i and h
(b)
i (o<i) in H(b)

if ki ≤ k? then
Let oi = pLEMki,k̄i(h

(b)
i (o<i),d

k̄i
i (o<i)) along with ε and δ

k? ← k? − |oi| and `? ← `? − 1

Return o = (o1, ..., o`)

Lemma 7.1. For any δ′ ≥ 0, Algorithm 7 is (ε?, δ′)-DP where ε? is given in (3).

Proof. Algorithm 7 is just an adaptive sequence of exponential mechanism calls (and at most k?),
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and they must use the same subset of [d] by construction so we know each is ε-range-bounded by
Corollary 5.1. The privacy guarantees then follow from Lemma 4.4.

As in previous sections, we consider these fixed neighbors which are adaptive sequences here,
and we separate our outcome space into bad and good outcome sets.

Definition 7.1. Given neighboring families of adaptive histogram sequences H(0) and H(1), let S(b)

be the set of possible outputs from Algorithm 2 on H(b). As before we let

Sδ := S(0) \ S(1)

Note that S(0)∩S(1) is the common set of possible outputs when Algorithm 7 has input b = 0 or
b = 1. We then bound the probability of an outcome in the set of bad outcomes by simply consid-
ering each adaptive call to Algorithm 1, and use our known bounds for this algorithm outputting
a bad outcome.

Lemma 7.2. For adaptive sequence of histograms H(0), the procedure multiLimitDomk
?,`? satisfies

the following
Pr[multiLimitDomk

?,`?(H(0)) ∈ Sδ] ≤ `?δ

Proof. By construction, we know that multiLimitDomk
?,`?(H(0)) is just an adaptive sequence of calls

to LimitDomki,k̄i(h
(0)
i (o<i)) that depends on the outcomes of the previous rounds. We know from

Lemma 5.4 that conditional on o<i, this probability distribution is equivalent to pLEMki,k̄i(hi(o<i),d
k̄i(hi(o<i))).

We will write S(b)
o<i to denote the possible outcomes for

pLEMki,k̄i(hi(o<i),d
k̄i(hi(o<i))).

We then write Sδo<i := S
(0)
o<i \ S

(1)
o<i . From Lemma 5.5 we have

Pr[pLEMki,k̄i(hi(o<i),d
k̄i(hi(o<i))) ∈ Sδo<i | o<i] ≤ δ

We then have a bound for every call LimitDomki,k̄i(hi(o<i)) conditioned on the previous out-
comes, allowing us to union bound this event for each i ≤ `?.

We further need to give differential privacy guarantees for the good outcomes as in Lemma 5.6,
but we will not be able to achieve as nice of formulation composing these equalities because we
are considering the martingale setting and these probabilities are dependent on previous outcomes.
Accordingly, we will lose an additional factor of 2 on the δ for this multiple call setting because we
must instead apply bounds on the probability of not outputting a bad outcome that hold regardless
of the previous outcome, and we cannot apply the same trick from Claim 5.1.

Lemma 7.3. Considering the neighboring adaptive sequences H(0) and H(1), for any o ∈ S(0)∩S(1)

we have the following set of inequalities comparing multiLimitDomk
?,`?(H(0)) and pMultiLEM

k?,`?

H(0),H(1)(0)

(1− `?δ) Pr[pMultiLEMk
?,`?

H(0),H(1)(b) = o]

≤ Pr[multiLimitDomk
?,`?(H(b)) = o]

≤ Pr[pMultiLEMk
?,`?

H(0),H(1)(b) = o]
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Proof. Let the length of outcome o ∈ S(0) ∩ S(1) be `. By construction, we have

Pr[multiLimitDomk
?,`?(H(b)) = o] =

∏̀
i=1

Pr[LimitDomki,k̄i(h
(b)
i (o<i)) = oi | o<i]

We then apply Lemma 5.4 and Lemma 5.6 where we use Sδo<i as in the proof of Lemma 7.2

Pr[LimitDomki,k̄i(h
(b)
i (o<i)) = oi | o<i] = Pr[pLEMki,k̄i(h

(b)
i (o<i),d

k̄i
i (o<i)) = oi | o<i]

· Pr[pLEMki,k̄i
(
h

(b)
i (o<i),d

k̄i(h
(b)
i (o<i))

)
/∈ Sδo<i | o<i].

We then apply Lemma 5.5 to obtain

(1− δ) Pr[pLEMki,k̄i(h
(b)
i (o<i),d

k̄i
i (o<i)) = oi | o<i]

≤ Pr[LimitDomki,k̄i(h
(b)
i (o<i)) = oi | o<i]

≤ Pr[pLEMki,k̄i(h
(b)
i (o<i),d

k̄i
i (o<i)) = oi | o<i]

By construction, we also have

Pr[pMultiLEMk
?,`?

H(0),H(1)(b) = o] =
∏̀
i=1

Pr[pLEMki,k̄i(h
(b)
i (o<i),d

k̄i
i (o<i)) = oi | o<i].

We then use the fact that ` ≤ `? and (1− `?δ) ≤ (1− δ)`? to achieve our desired inequality.

As with our other privacy proofs, these bounds on the bad and good. outcomes are the main
technical details for proving our main lemma.

Lemma 7.4. For any S ⊆ S(0), we have the following for ε? given in (3).

Pr[multiLimitDomk
?,`?(H(0)) ∈ S] ≤ eε? Pr[multiLimitDomk

?,`?(H(1)) ∈ S] + 2`?δ + δ′

where ε? is given in (3)

Proof. As in our previous analysis of Lemma 5.7, we will separate Sδ = S ∩ Sδ and Sε = S \ Sδ.
From Lemma 7.2 we can bound

Pr[multiLimitDomk
?,`?(H(0)) ∈ Sδ] ≤ `?δ

We then apply Lemma 7.3 and Lemma 7.1 to obtain

(1− `?δ) Pr[multiLimitDomk
?,`?(H(0)) ∈ Sε]

≤ (1− `?δ) Pr[pMultiLEMk
?,`?

H(0),H(1)(0) ∈ Sε]

≤ (1− `?δ)
(
eε
?

Pr[pMultiLEMk
?,`?

H(0),H(1)(1) ∈ Sε] + δ′
)

≤ eε? Pr[multiLimitDomk
?,`?(H(1)) ∈ Sε] + (1− `?δ) δ′
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Combining these properties with the fact that Pr[multiLimitDomk
?,`?(H(1)) ∈ Sδ] = 0 by

construction, we achieve

Pr[multiLimitDomk
?,`?(H(0)) ∈ S]

= Pr[multiLimitDomk
?,`?(H(0)) ∈ Sδ] + Pr[multiLimitDomk

?,`?(H(0)) ∈ Sε]
≤ `?δ + eε

?
Pr[multiLimitDomk

?,`?(H(1)) ∈ Sε] + `?δ + δ′

≤ eε? Pr[multiLimitDomk
?,`?(H(1)) ∈ S] + 2`?δ + δ′

Proof of Theorem 2. Follows immediately from Lemma 7.4

8 Accuracy Analysis

Accuracy comparisons with the standard exponential mechanism approach need to be qualified
by the fact that we allow for approximate differential privacy and do not require our algorithm
to always output k indices. We made these relaxations in order to achieve differential privacy
guarantees while not having our DP algorithms to iterate over the entire dataset, but this also
means that we do not face the same lower bounds [2].

For example, if we set k = k̄ = 1 in our Algorithm 1, then it would only either return the
true top index or ⊥. In general, by restricting ourselves to only looking at the true top-k̄ values,
the accuracy of our output indices will only improve, and in fact by setting k̄ = k we guarantee
that output indices must be in the top-k. However we can never guarantee that k indices will
be output, and the probability of outputting k indices will only decrease the smaller we make k̄.
Furthermore, quantifying the probability that our algorithm will return k indices is highly data-
dependent. Consider the histogram in which all values are equal, then the true top-k̄ could become
a completely different set of indices in a neighboring database. Given that we only have access to
this true top-k̄ index set, our algorithm needs to ensure that for this histogram we will return ⊥
with probability at least 1 − δ. However, we would not expect data distributions to be flat, but
perhaps closer to a power law distribution, where there will be significant differences between the
counts.

In general, our accuracy will be very similar to the standard exponential mechanism when there
are reasonably large differences between the values in the histogram, but when values become much
closer, our algorithm will return ⊥ as opposed to a set of indices that is chosen close to uniformly at
random. We see this as the primary advantage of our pay-what-you-see composition. If a histogram
is queried with values that are very close, instead of providing a list of indices that are drawn close
to uniformly at random, our algorithm will only output ⊥, and the only privacy cost will be for
that one output. The ⊥ output is then also informative in itself.

For a more formal analysis, we consider a comparatively standard metric of accuracy for top-k
queries [2].

Definition 8.1. Given histogram h along with non-negative integers k and α, we say that a subset
of indices d ⊆ [d] ∪ {⊥} is an (α, k)-accurate if for any i ∈ d such that i 6= ⊥, we have
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hi ≥ h(k) − α

For this definition, we can give asymptotically better accuracy guarantees than what the stan-
dard exponential mechanism achieves, which are known to be tight [2], but it is critically important
to mention that our definition does not require k indices to be output. Accordingly, we add a suf-
ficient condition under which our algorithm will return k indices with a given probability.

Lemma 8.1. For any histogram h, with probability at least 1−β the output from Algorithm 1 with
parameters k, k̄, ε, δ is (α, k)-accurate where

α =
ln(kk̄/β)

ε

Additionally, we have that Algorithm 1 will return k indices with probability at least 1− β if

h(k) ≥ h(k̄+1) + 1 +
ln(min{∆, k̄}/δ)

ε
+

ln(k/β)

ε

The first statement is essentially equivalent to Theorem 6 in [2] which would have α = ln(kd/β)
ε

in this setting because we incorporate advanced composition at the end of the analysis and we
consider the absolute counts (not normalized by the total number of users). Accordingly, our α
parameter swaps d with k̄ as expected, and will improve the accuracy statement for the output
indices.

The utility statement in Bhaskar et al. [5] says that for some γ ≥ 0, with probability at least
1 − β all the returned indices should have true count at least h(k) + γ, i.e. completeness, and no
returned indices should have true count less than h(k) − γ, i.e. soundness.7 The γ in [5] gives

γ = O

(
ln
(
m
`

)
ε

+
ln(k/β)

ε

)
such that m is the number of possible items and ` is the length of the itemset, and once again
we remove the factor of k

n for comparing to our setting because we apply composition at the end
of our analysis and consider absolute counts instead of normalized counts. The second statement
in Lemma 8.1 is similar to the soundness condition, where our algorithm ensures with probability
1 that no index with value below h(k̄) is output, and the probability statement is instead over
whether we output k indices (which occurs with probability 1 in [5]). The difference in our terms
then becomes ln(min{∆, k̄}/δ) as opposed to ln

(
m
`

)
. For satisfying completeness, it is actually

straightforward to show using the standard exponential mechanism analysis that we can achieve
this for γ = ln(k̄k/β)/ε, which technically improves upon γ = ln(

(
m
`

)
k/β)/ε in [5] where we

can consider
(
m
`

)
= d. However, this is only because their choice of k̄ is the index that satisfies

h(k) ≥ h(k̄+1) + γ so it could be as large as the dth index, whereas we consider k̄ fixed and satisfies

this assumption, so these bounds are equivalent when we have to find k̄ to satisfy h(k) ≥ h(k̄+1) +γ.
We now prove the lemma.

7It also considers an accuracy statement on the values output after adding fresh Laplace noise to each index that
was privately output as part of the top-k, which could easily extend to our setting if we wanted to give noisy estimates
of the values for our output indices.
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Proof of Lemma 8.1. We first set up some notation. Let dα := {i ∈ dk̄(h) : hi < h(k) − α} be the
set of indices in the top-k̄ with true value below h(k) − α. Furthermore, let Sα := {o : o ∩ dα 6= ∅}
be the set of outcomes that includes some index in dα. Formally, the first statement is equivalent
to showing for any histogram h that

Pr[LimitDomk,k̄(h) ∈ Sα] ≤ β.

From Lemma 5.4 this is equivalent to showing

Pr[pLEMk,k̄(h,dk̄(h)) ∈ Sα] ≤ β.

By construction, the peeling exponential mechanism makes at most k calls to the limited expo-
nential mechanism LEMk̄(h,d), and each of these calls must be using an input set d that contains
some index in {i(1), ..., i(k)}, which are all the indices in the top-k. It then suffices to show that

Pr[LEMk̄(h,dk̄(h) \ {i(1), ..., i(k−1)}) ∈ dα] ≤ β

k

Applying our definition of the limited exponential mechanism, we can then obtain the bound

Pr[LEMk̄(h,dk̄(h) \ {i(1), ..., i(k−1)}) ∈ dα] ≤
∑

i∈dα exp(εhi)

exp(εh(k))
≤
k̄ exp(ε(h(k) − α))

exp(εh(k))

where the last step follows from the fact that |dα| ≤ k̄ by construction and for each j ∈ dα we have
hj < h(k) − α by assumption. Cancelling like terms and plugging in for α = ln(kk̄/β)/ε gives

Pr[LEMk̄(h,dk̄(h) \ {i(1), ..., i(k−1)}) ∈ dα] ≤ k̄

exp(εα)
=
β

k

which proves our first claim.
For the second claim, we want to show that with probability at least 1− β there are k indices

whose noisy estimate is above the noisy threshold. It then suffices to show that for any i ≤ k we

have Pr[h⊥+Gumbel(1/ε) > h(i) +Gumbel(1/ε)] ≤ β
k where h⊥ = h(k̄+1) +1+ ln(min{∆,k̄}/δ)

ε . Setting
k = 1 in Lemma 4.2, we have that

Pr[h⊥ + Gumbel(1/ε) > h(i) + Gumbel(1/ε)] =
exp(εh⊥)

exp(εh(i)) + exp(εh⊥)

Due to the fact that h(i) ≥ h(k), we then apply our assumption that h(i) ≥ h⊥+ ln(k/β)/ε, and
this reduces to

Pr[h⊥ + Gumbel(1/ε) > h(i) + Gumbel(1/ε)] ≤ exp(εh⊥)
k
β exp(εh⊥) + exp(εh⊥)

=
β
k

1 + β
k

≤ β

k
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9 Conclusions and Future Directions

We have presented a way to efficiently report the top-k elements in a dataset subject to differential
privacy. Our approach does not require adjusting the input data to an existing system, nor does it
require altering the non-private data analytics. Our algorithms can be seen as being an additional
layer on top of existing systems so that we can leverage highly efficient, scalable data analytics
platforms in our private systems. Our algorithms can balance utility in terms of both privacy with
ε as well as efficiency with k̄. Further, we have improved on the general composition bounds in
differential privacy that can be applied in our setting to extract more utility under the same privacy
budget.

We believe that other mechanisms, such as report noisy max [10], could benefit from the tighter
characterization of range-bounded in advanced composition. An interesting line of future work is
developing an optimal composition theorem for further savings in this setting similar to [19, 26].
It would also be useful to show that we could replace Gumbel noise with another distribution and
achieve similar or better guarantees, e.g. Laplace or Gaussian noise. In fact for Gaussian noise, one
would hope to improve the privacy parameters in Lemma 6.1 from ∆ε to

√
∆ε for the ∆-restricted

sensitivity setting.
It would also be interesting to explore other ways to choose k̄ in a private, yet also in a data-

dependent manner, other than what we presented in Algorithm 6. These directions will be more
application dependent that are conditional on the desired tradeoffs between computational restric-
tions, accuracy, and maximizing the number of outputs. For instance, if we relax the computational
restrictions, we could privately choose k̄ that achieves a certain separation between h(k) and h(k̄) to
maximize the probability of outputting k indices. We also leave it as an open problem to construct
instance specific lower bounds when the algorithms can return fewer than k-indices.
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[16] G. Fanti, V. Pihur, and Úlfar Erlingsson. Building a rappor with the unknown: Privacy-
preserving learning of associations and data dictionaries. Proceedings on Privacy Enhancing
Technologies (PoPETS), issue 3, 2016, 2016.

[17] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k query processing techniques in
relational database systems. ACM Comput. Surv., 40(4):11:1–11:58, Oct. 2008. ISSN 0360-
0300. doi: 10.1145/1391729.1391730. URL http://doi.acm.org/10.1145/1391729.1391730.

[18] N. Johnson, J. P. Near, and D. Song. Towards practical differential privacy for sql queries. Proc.
VLDB Endow., 11(5):526–539, Jan. 2018. ISSN 2150-8097. doi: 10.1145/3187009.3177733.
URL https://doi.org/10.1145/3187009.3177733.

[19] P. Kairouz, S. Oh, and P. Viswanath. The composition theorem for differential privacy. IEEE
Transactions on Information Theory, 63(6):4037–4049, June 2017. ISSN 0018-9448. doi:
10.1109/TIT.2017.2685505.
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A Comparison between Bounded Range DP Composition and Op-
timal DP Composition

0 20 40 60 80 100
k

1.0

1.1

1.2

1.3

1.4

1.5

Ra
tio

 in
 to

ta
l e

ps
ilo

n 
af

te
r k

 ro
un

ds

Ratio of Optimal DP to Bounded Range DP Composition for delta< 1e-6

eps_per = 0.005
eps_per = 0.010
eps_per = 0.025
eps_per = 0.050

Figure 1. Comparison of bounded range DP composition from Lemma 4.4 and the optimal DP
composition from [19]. A ratio larger than 1 means that the optimal composition bound in Lemma A.1
is larger.

Here we compare the composition bound given in Lemma 4.4 and show that it can actually
improve on the optimal bound for generally DP, which we state here for the homogeneous (all
privacy parameters are the same at each round) case.

Lemma A.1 (Optimal DP Composition [19]). For any ε ≥ 0 and δ ∈ [0, 1], the composed mecha-
nism of k adaptively chosen ε-DP is ((k − 2i)ε, δi)-DP for all i ∈ {0, 1, · · · , bk/2c}where

δi =

∑i−1
`=0

(
k
`

) (
e(k−`)ε − e(k−2i+`)ε

)
(1 + eε)k

In Figure 1, we plot, for various k and ε, the ratio between the composition bound for range
bounded DP algorithms and the general DP optimal composition bound, where a ratio larger than
1 means that our bound is smaller. Due to the discrete formula for δi in Lemma A.1, we select the
index i that produces the smallest (k − 2i)ε while δi ≤ 10−6. Frequently, this δi that is selected is
much smaller than the threshold 10−6, so we use this same δi when we compare our bounds to the
optimal composition bound. Note that the jaggedness in the plot is because the optimal composition
bound might be ((k − 2i)ε, δ � 10−6)-DP at round k but ((k + 1 − 2(i + 1))ε, δ ≈ 10−6)-DP at
round k + 1. Hence, plotting only the first privacy parameter might be non-monotonic.

B Omitted Proofs from Section 4

B.1 Proof of Lemma 4.2

Proof. We start with the peeling exponential mechanism.

Pr[pEMkq (h) = (o1, · · · , ok)]

=
exp( ε

∆(q)q(x, oi1))∑
y∈Y exp( ε

∆(q)q(x, y))
·

exp( ε
∆(q)q(x, oi2))∑

y 6=o1
exp( ε

∆(q)q(x, y))
· . . . ·

exp( ε
∆(q)q(x, oik))∑

y/∈{o1,···ok−1} exp( ε
∆(q)q(x, y))
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Now we consider the one-shot Gumbel noise mechanism. We will write pGumbel as the density of a
Gumbel(∆(q)/ε) random variable, which is given in (1).

Pr[Mk
Gumbel(q(x)) = (o1, · · · , ok)]

=

∫ ∞
−∞

pGumbel(u1 − q(x, o1))

∫ u1

−∞
pGumbel(u2 − q(x, o2)) · · ·

∫ uk−1

−∞
pGumbel(uk − q(x, ok))∏

y 6={o1,··· ,ok}

Pr[Gumbel(∆(q)/ε) < uk − q(x, y)]duk · · · du1.

Note that we have
Pr[Gumbel(1/ε) < y] = exp (− exp (−εy))

and
pGumbel(y) = ε exp (−εy − exp(−εy)) .

We then integrate to get the following with the substitution εq = ε
∆(q) and q(x, ·) = q(·),∫ uk−1

−∞
pGumbel(uk − q(ok))

∏
y/∈{o1,··· ,ok}

Pr[Gumbel(1/εq) < uk − q(y)]duk

=

∫ uk−1

−∞
εq · exp

(
−εq(uk − q(ok))− e−εq(uk−q(ok))

)
· exp

−eεquk ∑
y/∈{o1,··· ,ok}

eεqq(y)

 duk

= εqe
εqq(ok)

∫ uik−1

−∞
exp

−εquk − e−εquk
eεqq(ok) +

∑
y/∈{i1,···ik}

eεqq(y)

 duk

=
eεqq(ok)∑

y/∈{o1,··· ,ok−1} e
εqq(y)

· exp

−e−εquk−1 ·
∑

y/∈{o1,··· ,ok−1}

eεqq(y)

 .

By induction, we have

Pr[Mk
Gumbel(q(x)) = (o1, · · · , ok)] =

eεqq(o1)∑d
y∈Y e

εqq(y)

eεqq(o2)∑
y 6=o1

eεqq(y)
. . .

eεqq(ok)∑
y/∈{o1,··· ,ok−1} e

εqq(y)
.

B.2 Proof of Lemma 4.4

Proof. We use the same argument as in [13]. Thus, we form the privacy loss random variable at
round i as Zi = Zi(v≤i) where v≤i ∼M≤i(x) and

Zi(v≤i) = ln

(
Pr[Mi(x) = vi | M<i(x) = v<i]

Pr[Mi(x′) = vi | M<i(x′) = v<i]

)
We then define our martingale Xt =

∑t
i=1 (Zi − µi) where µi(v<i) = E[Zi|v<i]. To bound µi(v<i),

we use results from [6], since eachMi is also εi-DP, which states µi(v<i) ≤ 1
2ε

2
i . Note that because

each algorithm Mi is εi-bounded range DP, there is for some αt ∈ [0, εt] such that

Xt −Xt−1 = Zt − µt(v≤t) ∈ [−αt − µt(v≤t), εt − αt − µt(v≤t)]
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Using Theorem 4, we get the following result

Pr

[
t∑
i=1

Zi ≥
k∑
i=1

1

2
ε2
i + β

]
≤ exp

(
−2β2∑k
i=1 ε

2
i

)

Hence setting β =
√

1
2

∑k
i=1 ε

2
i ln(1/δ) ensures that the total privacy loss is bounded with prob-

ability at least δ. The function for ε′′(·) is the minimum over three terms, the first and second
terms being from Theorem 3 and the last term being what we just computed. This completes the
proof.

C Omitted Proofs from Section 5.2

C.1 Proof of Lemma 5.5

Lemma C.1. Given neighboring histograms h,h′. Let dδ = dk̄(h) \ dk̄(h′), then we have

Pr[LEMk̄(h,dδ) 6= ⊥] ≤ δ

Proof. For simplicity, we will write m = min{∆, k̄}. By definition, we can write

Pr[LEMk̄(h,dδ) 6= ⊥] =

∑
i∈dδ exp(εhi)

exp(εh⊥) +
∑

i∈dδ exp(εhi)

where we know that h⊥ = h(k̄+1) + 1 + ln(m/δ)/ε. Furthermore, from Lemma 5.2 we know that
hi ≤ h(k̄+1) + 1 for each i ∈ dδ. Therefore if we let x = h(k̄+1) + 1, we can reduce this to

Pr[LEMk̄(h,dδ) 6= ⊥] ≤ |dδ| exp(εx)

exp(ε(x+ ln(m/δ)/ε)) + |dδ| exp(εx)

Further factoring out all the exp(εx) terms gives

Pr[LEMk̄(h,dδ) 6= ⊥] ≤ |dδ|
(m/δ) + |dδ|

=
δ(|dδ|/m)

1 + (δ/m)|dδ|
≤ δ(|dδ|/m) ≤ δ

where the last inequality follows from the fact that |dδ| ≤ m from Lemma 5.3.

Lemma C.2. Consider a subset T ⊆ [d], and domain d such that T ⊆ d ⊆ [d]. For histogram h,
we will write the outcome set of pLEMk(h,d) as O and define the set T = {o ∈ O : o ∩ T 6= ∅}. We
then have, (

Pr[LEMk̄(h, T ) 6= ⊥]
)−1

Pr[pLEMk,k̄(h,d) ∈ T ] ≤ 1

Proof. We will prove this inductively on the size of k where our base case is k = 1. By definition

Pr[pLEMk,k̄(h,d) ∈ T ] = Pr[LEMk̄(h,d) ∈ T ] =

∑
i∈T exp(εhi)

exp(εh⊥) +
∑

i∈d exp(εhi)

Therefore,
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(
Pr[LEMk̄(h, T ) 6= ⊥]

)−1
Pr[pLEMk,k̄(h,d) ∈ T ] =

exp(εh⊥) +
∑

i∈T exp(εhi)

exp(εh⊥) +
∑

i∈d exp(εhi)
≤ 1

We now assume for k−1, and we use the fact that our peeling exponential mechanism iteratively
applies the limited domain exponential mechanism, which allows us to rewrite our probability as

Pr[pLEMk,k̄(h,d) ∈ T ]

= Pr[LEMk̄(h,d) ∈ T ] +
∑
i∈d\T

Pr[LEMk̄(h,d) = i] Pr[pLEMk−1,k̄(h,d \ {i}) ∩ T 6= ∅]

where the first term is the probability that the first index is in T (and thus the outcome must be
in T ), then we consider all non-⊥ possibilities for the first index, and take the probability of that
event and multiply it by the probability that one of the remaining indices is in T as the peeling
process proceeds (and thus the outcome would be in T ). Multiplying through this summation by(

Pr[LEMk̄(h, T ) 6= ⊥]
)−1

, we apply our inductive hypothesis to achieve(
Pr[LEMk̄(h, T ) 6= ⊥]

)−1
Pr[pLEMk−1,k̄(h,d \ {i}) ∈ T ] ≤ 1

where our inductive hypothesis was on all d such that T ⊆ d and we must have T ⊆ d\{i} because
i ∈ d \ T . Therefore, we can bound

(
Pr[LEMk̄(h, T ) 6= ⊥]

)−1
Pr[pLEMk,k̄(h,d) ∈ T ]

≤
(

Pr[LEMk̄(h, T ) 6= ⊥]
)−1

Pr[LEMk̄(h,d) ∈ T ] +
∑
i∈d\T

Pr[LEMk̄(h,d) = i]

Applying Definition 5.1, we can explicitly write both terms and obtain

(
Pr[LEMk̄(h, T ) 6= ⊥]

)−1
Pr[pLEMk,k̄(h,d) ∈ T ]

≤
exp(εh⊥) +

∑
i∈T exp(εhi)

exp(εh⊥) +
∑

i∈d exp(εhi)
+

∑
i∈d\T exp(εhi)

exp(εh⊥) +
∑

i∈d exp(εhi)
= 1

Proof of Lemma 5.5. In the application of Lemma C.2, we set T = dδ as in Lemma C.1 and
d = dk̄(h), in which case T = Sδ from Definition 5.2. This gives

Pr[pLEMk,k̄(h,dk̄(h)) ∈ Sδ] ≤ Pr[LEMk̄(h,dδ) 6= ⊥]

and our bound follows from Lemma C.1
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C.2 Proof of Lemma 5.6

Lemma C.3. Consider a subset T ⊆ [d], and domain d ⊆ [d]. For histogram h, we will write
the outcome set of pLEMk,k̄(h,d) as O and define the set T = {o ∈ O : o ∩ T 6= ∅}. For any
o = (i1, ..., i`) /∈ T we have

Pr[pLEMk,k̄(h,d) = o|pLEMk,k̄(h,d) /∈ T ]

=
`−1∏
j=0

Pr[LEMk̄(h,d \ {i1, ..., ij}) = ij+1|LEMk̄(h,d \ {i1, ..., ij}) /∈ T ]

Proof. We can rewrite the event {pLEMk,k̄(h,d) = o} as the intersection of independent events
{LEMk̄(h,d) = i1} ∩ {pLEMk−1,k̄(h,d \ {i1}) = (i2, ..., i`)}. Similarly, we can rewrite as independent
events

{pLEMk,k̄(h,d) /∈ T } = {LEMk̄(h,d) /∈ T} ∩

 ⋂
i∈d\T

{pLEMk−1,k̄(h,d \ {i}) /∈ T }


Therefore, we can rewrite our probability statement as

Pr[pLEMk,k̄(h,d) = o|pLEMk,k̄(h,d) /∈ T ] = Pr[A1 ∩A2|B1 ∩B2]

where A1 = {LEMk̄(h,d) = i1}, A2 = {pLEMk−1,k̄(h,d \ {i1}) = (i2, ..., i`)} and also B1 =
{LEMk̄(h,d) /∈ T}, B2 = {pLEMk−1,k̄(h,d \ {i1}) /∈ T }. Accordingly, we only have that A1 is
dependent on B1 and A2 is dependent on B2 with everything else being pairwise independent. It
is straightforward to then show that

Pr[A1 ∩A2|B1 ∩B2] = Pr[A1|B1] Pr[A2|B2]

Substituting back in for our variables then gives

Pr[pLEMk,k̄(h,d) = o|pLEMk,k̄(h,d) /∈ T ]

= Pr[LEMk̄(h,d) = i1|LEMk̄(h,d) /∈ T ]

· Pr[pLEMk−1,k̄(h,d \ {i1}) = (i2, ..., i`)|pLEMk−1,k̄(h,d \ {i1}) /∈ T ]

Applying this argument inductively (where the base case of k = 1 is true by definition of our
peeling exponential mechanism) then gives our desired claim.

Lemma C.4. For any d ⊆ [d] and T ⊆ [d], along with outcome j ∈ {[d] ∪ {⊥}} \ T , we have for
any h

Pr[LEMk̄(h,d) = j|LEMk̄(h,d) /∈ T ] = Pr[LEMk̄(h,d \ T ) = j]
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Proof. From the definition of conditional probabilities we have

Pr[LEMk̄(h,d) = j|LEMk̄(h,d) /∈ T ] =
Pr[{LEMk̄(h,d) = j} ∩ {LEMk̄(h,d) /∈ T}]

Pr[LEMk̄(h,d) /∈ T ]

By our assumption that j /∈ T we can reduce this to

Pr[LEMk̄(h,d) = j|LEMk̄(h,d) /∈ T ] =
Pr[LEMk̄(h,d) = j]

Pr[LEMk̄(h,d) /∈ T ]

Applying Definition 5.1, we can explicitly write both terms and obtain

Pr[LEMk̄(h,d) = j|LEMk̄(h,d) /∈ T ] =

exp(εhj)
exp(εh⊥)+

∑
i∈d exp(εhi)

exp(εh⊥)+
∑
i∈d\T exp(εhi)

exp(εh⊥)+
∑
i∈d exp(εhi)

=
exp(εhj)

exp(εh⊥) +
∑

i∈d\T exp(εhi)

where because j /∈ T , this then reduces to Pr[LEMk̄(h,d \ T ) = j] as desired.

Corollary C.1. Consider a subset T ⊆ [d], and domain d ⊆ [d]. For histogram h, we will write
the outcome set of pLEMk,k̄(h,d) as O and define the set T = {o ∈ O : o ∩ T 6= ∅}. For any
o = (i1, ..., i`) /∈ T we have

Pr[pLEMk,k̄(h,d) = o] = Pr[pLEMk,k̄(h,d \ T ) = o] Pr[pLEMk,k̄(h,d) /∈ T ]

Proof. We first use the fact that o /∈ T to rewrite our probability as

Pr[pLEMk,k̄(h,d) = o] = Pr[{pLEMk,k̄(h,d) = o} ∩ {pLEMk,k̄(h,d) /∈ T }]

= Pr[pLEMk,k̄(h,d) = o|pLEMk,k̄(h,d) /∈ T ] Pr[pLEMk,k̄(h,d) /∈ T ]

We then apply Lemma C.3 and this gives

Pr[pLEMk,k̄(h,d) = o]

=

`−1∏
j=0

Pr[LEMk̄(h,d \ {i1, ..., ij}) = ij+1|LEMk̄(h,d \ {i1, ..., ij}) /∈ T ] · Pr[pLEMk,k̄(h,d) /∈ T ]

We then apply Lemma C.4 to achieve

Pr[pLEMk,k̄(h,d) = o] =

`−1∏
j=0

Pr[LEMk̄(h, (d \ T ) \ {i1, ..., ij}) = ij+1] Pr[pLEMk,k̄(h,d) /∈ T ]

Using our construction of the peeling mechanism then implies our desired equality.

Proof of Lemma 5.6. We will set d = dk̄(h) and T = dk̄(h) \ dk̄(h′) in our Corollary C.1 and our
desired result is immediately implied.
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D Omitted Proofs from Section 6.1

D.1 Proof of Lemma 6.3

Lemma D.1. Given an histogram h and some d ⊆ [d]. For any i ∈ d such that hi ≤ h(k̄+1) + 1,
then

Pr[i ∈ LapMaxk,k̄(h,d)] ≤ 3δ

4∆
+

ln(∆/δ)δ

4∆

Proof. For simplicity, we will set T = ln(∆
δ )/ε, which implies h⊥ = h(k̄+1) + 1 +T and plug back in

at the end of the analysis. By construction of our mechanism, we know that the noisy estimate of
hi must be greater than the noisy estimate of our threshold h⊥ = h(k̄+1) + 1 + T to be a possible
output, which implies

Pr[i ∈ LapMaxk,k̄(h,d)] ≤ Pr[hi + Lap(1/ε) > h⊥ + Lap(1/ε)]

By assumption, hi ≤ h(k̄+1) + 1, which gives us

Pr[i ∈ LapMaxk,k̄(h,d)] ≤ Pr[Lap(1/ε) > T + Lap(1/ε)].

We can then rewrite this as the convolution of two Laplace random variables. We will denote the
density of a Lap(1/ε) random variable as p(·).

∫ ∞
−∞

p(x) Pr[Lap(1/ε) < x− T ]dx (10)

=

∫ 0

−∞
p(x) Pr[Lap(1/ε) < x− T ]dx+

∫ T

0
p(x) Pr[Lap(1/ε) < x− T ]dx (11)

+

∫ ∞
T

p(x) Pr[Lap(1/ε) < x− T ]dx (12)

We will bound each separately. First, note that Pr[Lap(1/ε) < −T ] = δ
2∆ , which implies that∫ 0

−∞
p(x) Pr[Lap(1/ε) < x− T ]dx ≤ δ

2∆

∫ 0

−∞
p(x) = δ

4∆

where the last step follows from the symmetry of the Laplace distribution where
∫ 0
−∞ p(x) = 1

2 .
By similar reasoning, we have∫ ∞

T
p(x) Pr[Lap(1/ε) < x− T ]dx ≤

∫ ∞
T

p(x)dx = δ
2∆

The middle term in (12) will be a bit trickier to bound, and we will need to apply the explicit

form of the Laplace distribution. Rewriting Pr[Lap(1/ε) < x− T ] =
∫ x−T
−∞ p(y)dy, we then use the

fact that x− T ≤ 0 for x ∈ [0, T ], and it is straightforward to see that plugging in the Laplace pdf
to this integral evaluates to the following for x ∈ [0, T ]

Pr[Lap(1/ε) < x− T ] =

∫ x−T

−∞
p(y)dy =

1

2
e(x−T )ε.
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We then plug this into the final term we want to bound and get∫ T

0
p(x) Pr[Lap(1/ε) < x− T ]dx =

∫ T

0
p(x)

1

2
e(x−T )εdx

Furthermore, we plug in the PDF for the Laplace distribution with the absolute value eliminated
because x ∈ [0, T ], which reduces to

∫ T

0
p(x) Pr[Lap(1/ε) < x− T ]dx =

∫ T

0

ε

2
e−xε

1

2
e(x−T )εdx

=

∫ T

0

ε

4
e−Tεdx =

εT

4
e−εT

=
δ

4∆
ln(∆

δ )

Combining these inequalities and plugging back in for δ easily gives the desired bound.

Proof of Lemma 6.3. This will follow from a simple union bound on each i ∈ dk̄(h) \ dk̄(h′) where
we consider each subset of SδLap such that each outcome contains i, or more formally we define

SδLap(i) := {o ∈ SδLap : i ∈ o} This then implies that

Pr[LapMaxk,k̄(h,dk̄(h)) ∈ SδLap] ≤
∑

i∈dk̄(h′)\dk̄(h)

Pr[LapMaxk,k̄(h,dk̄(h)) ∈ SδLap(i)]

because each outcome o ∈ SδLap must contain some i ∈ dk̄(h)\dk̄(h′) by construction. Furthermore,
by construction we also have

Pr[LapMaxk,k̄(h,dk̄(h)) ∈ SδLap(i)] = Pr[i ∈ LapMaxk,k̄(h,dk̄(h))]

Our claim then immediately follows from Lemma D.1 and the fact that the size of dk̄(h)\dk̄(h′)
is at most ∆ by Lemma 5.3 and our assumption that min{∆, k̄} = ∆.

D.2 Proof of Lemma 6.4

Proof of Lemma 6.4. For any o = (i1, ..., i`) ∈ S we know that by definition of SLap ∩S ′Lap we must

have each ij ∈ dk̄(h) ∪ {⊥} and also ij ∈ dε ∪ {⊥}. Furthermore, letting p(·) be the PDF for a
Lap(1/ε) random variable, we know

Pr[LapMaxk,k̄(h,dk̄(h)) = o] =∫ ∞
−∞

p(x1−hi1)

∫ x1

−∞
p(x2−hi2) · · ·

∫ x`−1

−∞
p(x`−hi`)

∏
j∈{dk̄(h)∪{⊥}}\{o}

Pr[Lap(1/ε) < x`−hi` ]dx` · · · dx1

We then note that {dε ∪{⊥}} \ {o} is a subset of {dk̄(h)∪{⊥}} \ {o} so the only difference is that
the product contains more probabilities for Pr[LapMaxk,k̄(h,dk̄(h)) = o], which implies

42



Pr[LapMaxk,k̄(h,dk̄(h)) = o] ≤ Pr[LapMaxk,k̄(h,dε) = o]

and hence our first inequality.
For the second inequality, we will prove by contradiction and suppose that there is some S ⊆

SLap ∩ S ′Lap such that

Pr[LapMaxk,k̄(h,dε) ∈ S] > Pr[LapMaxk,k̄(h,dk̄(h)) ∈ S] + δ̄

From our first inequality, we know that if we let S̄ = {SLap ∩ S ′Lap} \ S then

Pr[LapMaxk,k̄(h,dε) ∈ S̄] ≥ Pr[LapMaxk,k̄(h,dk̄(h)) ∈ S̄]

and by summing together the two inequalities implies

Pr[LapMaxk,k̄(h,dε) ∈ SLap ∩ S ′Lap] > Pr[LapMaxk,k̄(h,dk̄(h)) ∈ SLap ∩ S ′Lap] + δ̄

From Lemma 6.3 we then conclude

Pr[LapMaxk,k̄(h,dε) ∈ SLap ∩ S ′Lap] >

Pr[LapMaxk,k̄(h,dk̄(h)) ∈ SLap ∩ S ′Lap] + Pr[LapMaxk,k̄(h,dk̄(h)) ∈ SδLap]

and this gives our contradiction because

Pr[LapMaxk,k̄(h,dk̄(h)) ∈ SLap ∩ S ′Lap] + Pr[LapMaxk,k̄(h,dk̄(h)) ∈ SδLap] = 1

E Further Accuracy Guarantees

We will give a few additional accuracy guarantees, complementing results in Section 8 regarding
correctly outputting the true top index first. More specifically, we will look at the conditions under
which our algorithm returns the true top index rather than the traditional exponential mechanism,
which has access to the full histogram. Additionally, we show that the probability of incorrectly
outputting an index other than the true top index or ⊥ will only be smaller in our algorithm
versus the exponential mechanism. Throughout this section we will write EM be the exponential
mechanism with quality score q(h, i) = hi.

Lemma E.1. Given histogram h where i(1) is the index of h(1), then

Pr[LEMk̄(h,dk̄(h)) = i(1)] ≥ Pr[EM(h) = i(1)]

iff we have

min{∆, k̄}eε

δ
· exp(εh(k̄+1)) ≤

∑
j>k̄

exp(εh(j))
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Proof. This follows immediately from the fact that with h⊥ = h(k̄+1) + 1 + ln(min{∆,k̄}/δ)
ε , we have

Pr[LEMk̄(h,dk̄(h)) = i(1)] =
exp(εh(1))

exp(εh⊥) +
∑

j≤k̄ exp(εh(j))

and

Pr[EM(h) = i(1)] =
exp(εh(1))∑
j≤d exp(εh(j))

In contrast, if we consider ⊥ to be a null event, then the probability that our variant will output
an incorrect index will always be smaller than for the peeling mechanism.

Lemma E.2. Given histogram h where i(1) is the index of h(1), then

Pr[LEMk̄(h,dk̄(h)) /∈ {i(1),⊥}] < Pr[EM(h) 6= i(1)]

Proof. Writing the explicit form of each we have

Pr[LEMk̄(h,dk̄(h)) /∈ {i(1),⊥}] =

∑
1<j≤k̄ exp(εh(j))

exp(εh⊥) +
∑

j≤k̄ exp(εh(j))

and

Pr[EM(h) 6= i(1)] =

∑
1<j≤d exp(εh(j))∑
j≤d exp(εh(j))

Multiply each side by the denominator and cancelling like terms, we get that the inequality is
equivalent to ∑

1<j≤k̄

exp(εh(j))

 exp(εh(1)) <

 ∑
1<j≤d

exp(εh(j))

(exp(εh(1)) + exp(εh⊥)
)

which holds.

F Fixed Threshold Mechanism

We also consider a mechanism that keeps the threshold fixed, rather than adding noise to it,
which may be of independent interest since it requires a slightly different analysis than our main,
randomized threshold algorithm. Furthermore, it requires a smaller additive factor to the threshold
(an additive savings of ln(2)/ε), which along with the fact that the threshold is fixed, increases the
probability that the noisy values of considered indices are above this threshold. However, it requires
us to set k̄ = k, cannot return an ordering on the indices, and also does not achieve the same range-
bounded composition or pay-what-you-get composition. As such, the primary application of this
algorithm would only be in the setting in which k is small and the user only wanted to know indices
within the top-k, and would prefer being returned ⊥ as opposed to an index not in the top-k.
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We start with a basic property of returning a noisy count that is above a data dependent
threshold.

Lemma F.1. For any neighboring databases h,h′, any fixed k < d, and any T ∈ R, we have the
following for any i ∈ [d]

Pr[hi + Lap(1/ε) > h(k+1) + T ] ≤ eε Pr[h′i + Lap(1/ε) > h′(k+1) + T ]

This result is not entirely trivial because the threshold being considered is data-dependent and
not fixed across the mechanism.

Proof. Follows immediately from the fact that |(hi − h(k+1))− (h′i − h′(k+1))| ≤ 1 and using known
properties of the Laplace distribution.

We will connect our fixed threshold mechanism to a simple randomized response for each i ∈ [d],
but at most k will have non-zero probabilities.

Definition F.1. For index i ∈ [d], and some fixed value k < d and given ε, δ > 0, we define the
truncated randomized response mechanism tRRki : Nd → {i,⊥}, such that

Pr[tRRki (h) = i] =

Pr
[
hi + Lap(1/ε) > h(k+1) + 1 +

ln( 1
2δ

)

ε

]
if hi > h(k+1)

0 otherwise

We then have the following properties of the truncated randomized response. Recall that we
defined the strictly limited domain dk>(h) in (9).

Lemma F.2. For a fixed i ∈ [d] and fixed k < d, along with given ε, δ > 0, then for any neighboring
histograms h,h′

1. Pr[tRRki (h) = i] = Pr[tRRki (h
′) = i] = 0 if i /∈ dk>(h) ∪ dk>(h′)

2. Pr[tRRki (h) = i] = δ if i ∈ dk>(h) \ dk>(h′) or Pr[tRRki (h
′) = i] = δ if i ∈ dk>(h′) \ dk>(h).

3. Pr[tRRki (h) = i] ≤ eε Pr[tRRki (h
′) = i] if i ∈ dk>(h) ∩ dk>(h′)

Proof. Item 1. follows from the definition of tRRki when i /∈ dk>(h) ∪ dk>(h′) and item 3. follows
from Lemma F.1.

We now focus on item 2. Without loss of generality assume that h ≥ h′ and let i ∈ dk>(h) \
dk>(h′). In this case, we must have h′i ≤ h′(k+1) yet hi > h(k+1). If hi = h′i, then h(k+1) < h′(k+1),

which cannot happen. Thus, hi = h′i + 1, in which case h(k+1) < h′(k+1) + 1. Since h(k+1) = h′(k+1)

or h(k+1) = h(k+1) + 1 from Lemma 5.1, we must be in the h(k+1) = h′(k+1) case. Stringing the
inequalities, we have

h(k+1) < hi = h′i + 1 ≤ h′(k+1) + 1 = h(k+1) + 1

Since hi must be integral, we have hi = h(k+1) + 1. We then have the following

Pr[tRRki (h) = i] = Pr
[
hi + Lap(1/ε) > h(k+1) + 1 +

ln( 1
2δ

)

ε

]
= Pr

[
Lap(1/ε) >

ln( 1
2δ

)

ε

]
= δ
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Corollary F.1. For every i ∈ [d] and fixed k, along with given ε, δ > 0, the algorithm tRRki is
(ε, δ)-DP

Recall, that we will write our input to our mechanism as a histogram h ∈ Nd. Accordingly, we
note that our randomized response mechanism tRRki will only return i with non-zero probability
if i ∈ dk>(h), where by definition |dk>(h)| ≤ k, so we will only need to draw randomness for these
indices and are not required to consider the entire histogram.

Algorithm 8 Fixed Threshold at level k, fTk

Input: Histogram h ∈ Nd, and parameters k, ε, δ.
Output: Set of indices D.
Set h⊥ = h(k+1) + 1 + ln(1/2δ)/ε
Set D = ∅
for i ≤ k do

if h(i) > h⊥ then
Draw ri ∼ Lap(1/ε)
if h(i) + ri > h⊥ then

D ← D ∪ i
Output D

We first more formally define this mechanism fTk in Algorithm 8. Note that we can connect
fTk with the randomized response algorithm tRRki for any integer k < d in the following way for
any input histogram h and any outcome D ⊆ [d],

Pr[fTk(h) = D] =
∏
i∈D

Pr[tRRki (h) = i]
∏

i∈[d]\D

Pr[tRRki = ⊥].

Definition F.2. We will restrict the domain and range of our fixed threshold mechanism to a subset
of [d]. We fix k < d. Consider some histogram ĥ and it’s corresponding domain dk>(ĥ) ⊆ [d].

Hk(ĥ) :=
{

h ∈ Nd : dk>(h) ⊆ dk>(ĥ)
}
.

Let π
ĥ

: dk>(ĥ) → [|dk>(ĥ)|] be an invertible mapping. We define the fixed threshold mechanism

limited to domain for some fixed histogram ĥ to be fTk|
dk>(ĥ)

: Hk(ĥ) → {⊥, 1}|dk>(ĥ)| for any

integer k ≤ d, such that for some input histogram h and any y ∈ {⊥, 1}|dk>(ĥ)|,

Pr[fTk|
dk>(ĥ)

(h) = y] =
∏
i:yi=1

Pr[tRRkπ
ĥ

(i)(h) = π
ĥ
(i)]

∏
i:yi=⊥

Pr[tRRkπ
ĥ

(i)(h) = ⊥]

Lemma F.3. Fix a histogram ĥ and k < d. The fixed threshold mechanism limited to a domain
fTk|

dk(ĥ)
can be written in terms of tRRki for each i ∈ dk>(ĥ) in the following way for any invertible

π
ĥ

: dk>(ĥ)→ [|dk>(ĥ)|]

fTk|
dk>(ĥ)

(h) =
(
yπ

ĥ
(i) = tRRki (h) : i ∈ dk>(ĥ)

)
.
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Thus, given a histogram ĥ the limited mapping fTk|
dk>(ĥ)

is (ε′(δ′), kδ+δ′)-DP for any δ′ ≥ 0 where

ε′(δ′) = min

{
kε, kε ·

(
eε − 1

eε + 1

)
+ ε
√

2k ln(1/δ′)

}
.

Proof. This follows from Corollary F.1 as well as basic and advanced composition given in Theo-
rem 3.

Note that if we are given a set D ⊆ dk>(ĥ), then we can equivalently write it as a vector y
where each coordinate yi = 1 if π

ĥ
(i) ∈ D and yi = ⊥ otherwise.

Corollary F.2. Given some collection of subsets S ⊆ 2[d], subset T ⊆ [d], and histogram h, we
denote S|T = {D ∈ S : D ⊆ T}. Then we must have

Pr[fTk(h) ∈ S] = Pr[fTk(h) ∈ S|dk>(h)]

Lemma F.4. For any neighboring histograms h,h′ and any S ⊆ 2[d], along with k < d and
parameters ε, δ > 0 and δ′ ≥ 0, then

Pr[fTk(h) ∈ S] ≤ eε′(δ′) Pr[fTk(h′) ∈ S] + kδ + δ′

where

ε′(δ′) = min

{
εk, εk

(
eε + 1

eε − 1

)
+ ε
√

2k ln(1/δ′)

}
.

Proof. We first apply Corollary F.2 to instead consider the set S|dk>(h). We will fix two neighboring

histograms h,h′ and by Lemma 6.7 we need to only consider two cases.
First, if dk>(h) ⊆ dk>(h′), then we know h ∈ Hk(h′) and S|dk>(h) ⊆ 2d

k
>(h′). Let πh′ : dk(h′) →

[|dk>(h′)|] be an invertible mapping such that for every S ⊆ dk>(h′) there is a y(S) ∈ {1,⊥}|dk>(h′)|

such that y
(S)
πh′ (i)

= 1 if i ∈ S. Then we have

Pr[fTk(h) = S] = Pr[fTk|dk>(h′)(h) = yS ]

and
Pr[fTk(h′) = S] = Pr[fTk|dk>(h′)(h

′) = yS ]

Hence, we also have equality in the probability statements when fTk(h) ∈ S |dk>(h)) and fTk(h′) ∈
S |dk>(h)). We then apply Lemma F.3 to get the result.

The second case follows symmetrically.

Summarizing the above results we have the following theorem.

Theorem 5. Algorithm 8 is (kε, kδ)-DP, and also (ε
√

2k ln(1/δ′) + ε
(
eε−1
eε+1

)
k, kδ + δ′)-DP for

δ′ > 0.

We point out that in either the unrestricted sensitivity or the ∆-restricted sensitivity setting,
Algorithm 8 will still be differentially private with the same privacy parameters as in the above
theorem, but we cannot improve the factor of kε to ∆ε because the count of a single element that
a user contributed to can modify the threshold and change the count of all the at most k elements
above this threshold.
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