
We wish to thank the reviewers for their insightful and constructive reviews. We will attempt to address some of the1

raised questions and points below, and indicate several places where we will update both the camera-ready manuscript2

and the supplemental material.3

First, reviewer three is absolutely correct that inverse problems are hard and require rigorous and careful experimentation4

to validate new approaches. The literature often refers to “inverse crimes”, where you show that your method can invert5

data from your own forward model. Being able to invert simulated data from your own forward model is a necessary,6

but far from sufficient, criterion to having a useful working method. Thus, while figure 5 and the associated table are7

useful in understanding some of the robustness of our approach, they are not sufficient. This is why we (on the fourth8

line of table 1) specifically evaluate our method on raw experimental data, not simulated data. This is data that our9

approximated forward model has never seen, and our inverse model has never seen. This reflects the most realistic10

real-world application of our approach to unseen data.11

In the camera-ready manuscript, we will attempt to make the exact evaluation role of each row in Table 1 more clear.12

In particular, the first row is an “inverse crime” – we are evaluating our ability to invert spectra that both our forward13

model and our inverse model have seen during training. We do this to show how well our model could work in the best14

case scenario, and to provide some context for understanding the relative accuracy of the other rows.15

Reviewer three also pointed out that we do not define AUC in our paper, an omission which we will correct in the16

camera ready. Our method ultimately calculates the difference between the (predicted) spectrum of a candidate structure17

with the experimentally-observed spectrum. The difference (in `2) between these spectra allows us to set an error18

threshold, below which we will consider the structure to be “correct”. We can compute the area under the curve that19

arises from varying this threshold, thus giving rise to the AUC. To reviewer one’s comment that the AUCs seem low:20

we find that most users of our method will want a high degree of confidence that the recovered structure is correct, and21

will likely set this threshold very conservatively, thus making AUC a less useful assessment of overall performance. For22

predicted structures above the threshold, the user can then discard the predictions – our algorithm simply could not find23

a sufficiently good structure. This is why we have the other columns in table 1, which should be interpreted as follows:24

if you set the threshold such that you predict a candidate structure N% of the time, how correct are those structures? We25

see that in the real-world use case (row 4), if you set the threshold so conservatively that our method only predicts a26

structure 20% of the time, 97.1% of the those returned structures are correct.27

Finally, our fast forward model is described in another publication that is currently in press, and thus we glossed over it28

in this paper. It is a fairly straight-forward application of a graph convolutional network to predict per-vertex properties29

(in this case, the chemical shift values) with some minor extensions for incorporating uncertainty. In our camera ready30

we will add several paragraphs to the supplemental section more fully describing this model, as well as linking to the31

paper describing this approach.32

All reviewers asked if the resulting learned inverse model was interpretable, or if the learned features captured the33

intuition that humans use when solving this problem. Preliminary experiments looked at which bonds and bond types34

were placed with which nuclei, and suggest the answer is yes. Initially higher-order bonds (double and triple) are often35

placed first in sequence by our approach, as they are often associated with the most unique (highest entropy) observed36

spectral values. We will include the results of these analysis in the supplemental section of the camera-ready.37

Reviewer one asked about network architecture; we made a reasonable (although not exhaustive) effort to identify38

a good architecture, considering many architectures derived in the graph prediction literature. In this context, the39

referenced Battaglia paper was of considerable help, as their "relational network" formulation unified these approaches40

and allowed us to zero-in on a reasonable set of hyperparameters, allowing us to incorporate per-vertex measurements,41

sparse per-edge observations (the edges of the current state), and yet output a dense probability distribution over42

subsequent edges. We have not considered a transformer-like architecture thus far but may in the future, given their43

success in other structured prediction (NLP) problems.44

Reviewer asked for clarification of “Beta” on line 3; when we are generating training data we delete edges in the source45

molecule with a probability p where p is sampled from a mixture of a uniform and a beta distribution,46

p ∼ 3
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Unif(0, 1) +
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Beta(3, 3)

The beta component guarantees we sample a lot of “partially completed” molecules for training. For these sorts of47

sequential structured prediction problems, “distributional shift” is often a challenge, but we found empirically that48

by over-sampling partially completed molecules according to this distribution we achieved superior reconstruction49

performance compared to a mere uniform sample. The investigation of active-learning approaches (like DAGGAR and50

SEARN ) is another way and represents an avenue for exploration in the future.51

We thank the reviewers again for their helpful and constructive feedback.52


