
Supplementary material

Supplementary material for the paper: “On Lazy Training in Differentiable Programming” authored
by Lénaïc Chizat , Edouard Oyallon and Francis Bach (NeurIPS 2019). This supplementary material
is organized as follows:

• Appendix A: Remarks on the linearized model
• Appendix B: Proofs of the theoretical results
• Appendix C: Experimental details and additional results

A The linearized model in supervised machine learning

A.1 Differentiable models and their linearization

In this section, we give some details on the interpretation of the linearized model in the case
of supervised machine learning. In this setting, a differentiable model is a typically a function
f : Rp × Rd → Rk where Rp is the parameter space, Rd is the input space and Rk the output space.
One defines a Hilbert space F of functions from Rd to Rk, typically L2(ρx,Rk) where ρx is the
distribution of input samples. The function h : Rp → F considered in the article is then the function
which to a vector of parameters associates a predictor h : w 7→ f(w, ·).

In first order approximation around the initial parameters w0 ∈ Rp, the parametric model f(w, x)
reduces to the following linearized or tangent model :

f̄(w, x) = f(w0, x) +Dwf(w0, x)(w − w0). (6)

where Dwf is the differential of f in the variable w. The corresponding hypothesis class is affine
in the space of predictors. It should be stressed that when f is a neural network, f̄ is generally not
a linear neural network because it is not linear in x ∈ Rd, but in the features Dwf(w0, x) ∈ Rp×k
which generally depend non-linearly on x. For large neural networks, the dimension of the features
might be much larger than d, which makes f̄ similar to a non-parametric method. Finally, if f is
already a linear model, then f and f̄ are identical.

Kernel method with an offset. In the case of the square loss, training the affine model (6) is
equivalent to training a linear model in the variables

(x̃, ỹ) := (Dwf(w0, x), y − f(w0, x)).

When k = 1, this is equivalent to a kernel method with the tangent kernel [17] defined as K :
Rd × Rd → R

K(x, x′) = Dwf(w0, x)Dwf(w0, x
′)ᵀ. (7)

This kernel is different from the one traditionally associated to neural networks [27, 9] which involve
the derivative with respect to the output layer only. Also, the output data is shifted by the initialization
of the model h(w0) = f(w0, ·). This term inherits from the randomness due to the initialization: it
is for instance shown in [20, 23] that the distribution of h(w0) converges to a Gaussian process for
certain over-parameterized neural networks initialized with random normal weights.

A.2 Two-layer neural networks

Lazy training has some interesting consequences when looking more particularly at two-layer neural
networks. These are functions of the form

fm(w, x) = α(m)

m∑
j=1

bj · σ(aj · x),

where m ∈ N is the size of the hidden layer and σ : R → R is an activation function and
the parameters8 are (θj)

m
j=1 where θj = (aj , bj) ∈ Rd+1, so here the number of parameters is

p = m(d+ 1). We have also introduced a scaling α(m) > 0 as in Section 1.2.

8We have omitted the bias/intercept, which is recovered by fixing the last coordinate of x to 1.
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Justification for asymptotics. In this paragraph, we justify the formula for the asymptotic upper
bound on κhm(w0) given for such models in Section 1.2. Using the assumption that Eφ(θi) = 0 and
the fact that the parameters are independents, one has E‖h(w0)‖2 = mα(m)2E‖φ(θ)‖2. For the
differential, from the law of large numbers, we have the estimate

1

mα(m)2
Dh(w0)Dh(w0)ᵀ =

1

m

m∑
i=1

Dφ(θi)Dφ(θi)
ᵀ −→
m→∞

E [Dφ(θ)Dφ(θ)ᵀ] .

It follows that E‖Dh(w0)‖2 = E‖Dh(w0)Dh(w0)ᵀ‖ ∼ mα(m)2‖E[Dφ(θ)Dφ(θ)ᵀ]‖ because we
have assumed that Dφ is not identically 0 on the support of θ. One also has

‖D2h(w0)‖ = sup
u∈Rd×m

‖u‖≤1

α(m)

m∑
i=1

uᵀiD
2φ(θi)ui ≤ α(m) sup

θi

‖D2φ(θi)‖ ≤ α(m)Lip(Dφ).

From the definition of κhm
(w0) and the upper bound ‖hm(w0)−y?‖ ≤ ‖h(w0)‖+‖y?‖we conclude

that
E[κhm

(w0)] . m−
1
2 + (mα(m))−1.

Limit kernels and random feature. In this section, we show that the tangent kernel is a random
feature kernel for neural networks with a single hidden layer. For simplicity, we consider the scaling
α(m) = 1/

√
m as in [11] which leads to a non-degenerated limit of the kernel9 as m → ∞. The

associated tangent kernel in Eq. (7) is the sum of two kernelsKm(x, x′) = K
(a)
m (x, x′)+K

(b)
m (x, x′),

one for each layer, where

K(a)
m (x, x′) =

1

m

m∑
j=1

(x · x′)b2jσ′(aj · x)σ′(aj · x′) and K(b)
m (x, x′) =

1

m

m∑
j=1

σ(aj · x)σ(aj · x′).

If we assume that the initial weights aj (resp. bj) are independent samples of a distribution on Rd
(resp. a distribution on R), these are random feature kernels [26] that converge as m → ∞ to the
kernels

K(a)(x, x′) = E(a,b)

[
(x · x′)b2σ′(a · x)σ′(a · x′)

]
and K(b)(x, x′) = Ea [σ(a · x)σ(a · x′)] .

The second component K(b), corresponding to the differential with respect to the output layer, is
the one traditionally used to make the link between these networks and random features [27]. When
σ(s) = max{s, 0} is the rectified linear unit activation and the distribution of the weights aj is
rotation invariant in Rd, one has the following explicit formulae [8]:

K(a)(x, x′)=
(x · x′)E(b2)

2π
(π − ϕ), K(b)(x, x′)=

‖x‖‖x′‖E(‖a‖2)

2πd
((π − ϕ) cosϕ+ sinϕ)

(8)

where ϕ ∈ [0, π] is the angle between the two vectors x and x′. See Figure 4 for an illustration of
this kernel and the convergence of its random approximations. The link with (independent) random
sampling is lost for deeper neural networks, but it is shown in [17] that tangent kernels still converge
when the size of networks increase, for certain architectures.

A.3 Generalization for the lazy model

As noted in the main text, in supervised machine learning, F is often a Hilbert space of functions
on Rd and the model h is often of the form h(w) = f(w, ·) where f : Rp × Rd → Rk. A natural
question that arises in this context and that is not directly answered by the theorems of Section 2,
is whether the trained lazy model and the trained tangent model also generalize the same way, i.e.
whether at training time T , it holds f(w(T ), x) ≈ f̄(w̄(T ), x) for points x ∈ Rd that are not in the
training set, where f̄(w, x) = f(w0, x) +Dwf(w0, x)(w − w0). We will see here that it is actually
a simple consequence of the bounds.

9Since the definition of gradients depends on the choice of a metric, this scaling is not of intrinsic importance.
Rather, it reflects that we work with the Euclidean metric on Rp. The choice of scaling however becomes
important when dealing with training (see also discussion in Section 1.2).
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Figure 4: Random realizations of the kernels Km and the limit kernel K of Eq. (8). We display the
value of K(x, x′) as a function of ϕ = angle(x, x′) with x fixed, on a section of the sphere in R10.
Parameters are normal random variables of variance 1, so E(b2) = 1 and E(‖a‖2) = d.

Proposition A.1 (Generalizing like the tangent model). Assume that for some C > 0 it holds
‖wα(T ) − w̄(T )‖ ≤ C log(α)/α2. Assume moreover that there exists a set X ⊂ Rd such that
M1 := supx∈X ‖Dwf(w0, x)‖ < ∞ and M2 := supx∈X Lip(w 7→ Dwf(w, x)) < ∞. Then it
holds

sup
x∈X
‖αf(wα(T ), x)− αf̄(w̄α(T ), x)‖ ≤ C logα

α

(
M1 +

1

2
C ·M2 · log(α)

)
−→
α→∞

0.

Proof. Let us call A the quantity to be upper bounded, and start with the decomposition

A ≤ sup
x∈X
‖αf(wα(T ), x)− αf̄(wα(T ), x)‖+ sup

x∈X
‖αf̄(wα(T ), x)− αf̄(w̄α(T ), x)‖ = A1 +A2

By Taylor’s theorem applied at each point x ∈ X , one has

A1 ≤
α

2
M2‖wα(T )− w̄α(T )‖2 ≤ C2 ·M2 log(α)2

2α
.

It also holds

A2 = α sup
x∈X
‖Dwf(w0, x)(wα(T )− w̄α(T ))‖ ≤ M1C log(α)

α

and the conclusion follows.

B Proofs of the theoretical results

In all the forthcoming proofs, we use the notations y(t) = αh(wα(t)) and ȳ(t) = αh̄(w̄α(t)) for the
dynamics in F (they also depend on α although this is not reflected in the notation). We also write
Σ(w) := Dh(w)Dh(w)ᵀ for the so-called tangent kernel [17], which is a quadratic form on F. By
using the chain rule, we find that the trajectories in F solve the differential equation

d

dt
y(t) = −Σ(wα(t))∇R(y(t)),

d

dt
ȳ(t) = −Σ(w(0))∇R(ȳ(t)).

with y(0) = ȳ(0) = αh(w0). Remark that the first differential equation is coupled with wα(t).

B.1 Proof for Theorem 2.2 (finite horizon, non-quantitative)

For this first proof, we only track the dependency in α, and we use C to denote a quantity independent
of α, that may vary from line to line. For T > 0, it holds∫ T

0

‖w′α(t)‖dt =

∫ T

0

‖∇Fα(wα(t))‖dt ≤
√
T

(∫ T

0

‖∇Fα(wα(t))‖2dt

) 1
2

.

14



It follows, by using the fact that d
dtFα(wα(t)) = −‖∇Fα(wα(t))‖2, that supt∈[0,T ] ‖wα(t) −

w(0)‖ ≤ (T · Fα(wα(t)))
1
2 . 1

α . In particular, we deduce that supt∈[0,T ] ‖y(t) − y(0)‖ ≤ C and
supt∈[0,T ] ‖∇R(y(t))‖ ≤ C.

Let us now consider the evolution of ∆(t) := ‖y(t)− ȳ(t)‖. It satisfies ∆(0) = 0 and

∆′(t) ≤ ‖Σ(wα(t))∇R(y(t))− Σ(w(0))∇R(ȳ(t))‖
≤ ‖(Σ(wα(t))− Σ(w(0)))∇R(y(t))‖+ ‖Σ(w(0))(∇R(y(t))−∇R(ȳ(t))‖
≤ C1/α+ C2∆(t)

The ordinary differential equation u′(t) = C1/α+C2u(t) with initial condition u(0) = 0 admits the
unique solution u(t) = C1

αC2
(exp(C2t)− 1). Since ∆(t) is a sub-solution of this system, it follows

that ∆(t) ≤ C1

αC2
(exp(C2t) − 1) ≤ C/α (notice the exponential dependence in the final time and

some other characteristics of the problem). Finally, consider the quantity δ(t) = ‖wα(t)− w̄α(t)‖.
It holds

δ′(t) ≤ α−1‖Dh(wα(t))ᵀ∇R(f(t))−Dh(w0)ᵀ∇R(ȳ(t))‖
≤ α−1‖Dh(wα(t))ᵀ −Dh(w0)ᵀ‖‖∇R(y(t))‖+ α−1‖Dh(w0)‖‖∇R(y)−∇R(ȳ(t))‖
≤ Cα−2

We thus conclude, since δ(0) = 0, that supt∈[0,T ] ‖δ(t)‖ ≤ α−2.

B.2 Proof of Theorem 2.3 (finite horizon, square loss)

Step 1. With the square loss, the objective is still potentially non-convex, but we have the property

d

dt
‖y(t)− y∗‖2 = −〈Σ(w(t))(y(t)− y?), y(t)− y?〉 ≤ 0.

The proof scheme is otherwise similar as above, but we carry all constants. Let us denote Texit =
inf{t > 0 ; ‖wα(t)− w0‖ > r}. For t ≤ Texit it holds

‖w′α(t)‖ = ‖∇Fα(wα(t))‖ ≤ α−1‖y(t)− y?‖‖Dh(wα(t))‖ ≤ α−1‖y(0)− y?‖Lip(h)

It follows that ‖wα(t) − w(0)‖ ≤ tα−1‖y(0) − y?‖Lip(h) (this bound is tighter for small times,
compared to the bound in

√
t used in the previous proof). Since we have assumed that α ≥

k‖y(0)− y?‖/(rLip(h)), it holds ‖wα(t)− w0‖ ≤ (t/K) · rLip(h)2 = r so Texit > T .

Step 2. Now we consider ∆(t) = ‖y(t)− ȳ(t)‖. It holds

1

2

d

dt
∆(t)2 = 〈y′(t)− ȳ′(t), y(t)− ȳ(t)〉

≤ −〈Σ(wα(t))∇R(y(t))− Σ(w(0))∇R(ȳ(t)), y(t)− ȳ(t)〉
≤ −〈(Σ(wα(t))− Σ(w(0)))∇R(y(t)), y(t)− ȳ(t)〉

where we have used the fact that 〈Σ(w(0))(∇R(y(t)) − ∇R(ȳ(t)), y(t) − ȳ(t)〉 ≥ 0, which is
specific to the square loss. Taking the norms and dividing both sides by ∆(t), it follows

∆′(t) ≤ Lip(Σ) · ‖wα(t)− w(0)‖‖y(0)− y?‖ ≤ 2Lip(h)2Lip(Dh)tα−1‖y(0)− y?‖2

where we have used Lip(Σ) ≤ 2Lip(h)Lip(Dh). Since ∆(0) = 0, it follows

∆(t) ≤ t2

α
Lip(h)2Lip(Dh)‖y(0)− y?‖2.

The bound in the statement then follows by writing this upper bound at time T = K/Lip(h)2.

Step 3. Finally, consider δ(t) = ‖wα(t) − w̄α(t)‖. The bound that we will obtain is not reported
in the main text due to space constraints, but proved here for the sake of completeness. As in the
previous proof, it holds

αδ′(t) ≤ ‖Dh(wα(t))ᵀ−Dh(w0)ᵀ‖‖∇R(y(t))‖+‖Dh(w0)‖‖∇R(y)−∇R(ȳ(t))‖ = A(t)+B(t).
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Let us bound these two quantities separately. On the one hand, it holds for t ∈ [0, T ],

A(t) ≤ Lip(Dh)‖wα(t)− w0‖‖y(0)− y?‖ ≤ t

α
Lip(h)Lip(Dh)‖y(0)− y?‖2.

On the other hand, it holds for t ∈ [0, T ],

B(t) ≤ t2

α
Lip(h)3Lip(Dh)‖y(0)− y?‖2.

By integrating these two bounds and summing, we get

δ(T ) ≤ T 2

α2
Lip(h)2Lip(Dh)‖y(0)− y?‖2

(
2

Lip(h)
+

4T

3
Lip(h)

)
≤ K2

α2

Lip(Dh)

Lip(h)3
‖y(0)− y?‖2 (2 + 4K/3) .

After rearranging the terms, we obtain

αLip(h)

‖y(0)− y?‖
‖wα(T )− w̄α(T )‖ ≤ K2

α

Lip(Dh)

Lip(h)2
‖y(0)− y?‖ (2 + 4K/3)

Note that this bound is arranged so that both sides of the inequality are dimensionless, in the sense that
they would not change under a simple rescaling of either the norm on F or on Rp. The left-hand side
should be understood as the relative difference between the non-linear and the linearized dynamics,
while the right-hand side involves the scale of Section 1.2.

B.3 Proof of Theorem 2.4 (over-parameterized case)

Consider the radius r0 := σmin/(2Lip(Dh)). By smoothness of h, it holds Σ(w) � σ2
minId/4 as

long as ‖w − w0‖ < r0. Thus Lemma B.1 below guarantees that y(t) converges linearly, up to time
T := inf{t ≥ 0 ; ‖wα(t) − w0‖ > r0}. It only remains to find conditions on α so that T = +∞.
The variation of the parameters wα(t) can be bounded for 0 ≤ t ≤ T as

‖w′α(t)‖ ≤ 1

α
‖Dh(wα(t))‖‖∇R(y(t))‖ ≤ 2M

α
‖Dh(w0)‖‖y(t)− y∗‖.

By Lemma B.1, it follows that for 0 ≤ t ≤ T ,

‖wα(t)− w0‖ ≤
2M3/2

αm
‖Dh(w0)‖‖y(0)− y∗‖

∫ t

0

e−(mσ
2
min/4)sds

≤ 8κ3/2

ασ2
min

‖Dh(w0)‖‖y(0)− y∗‖.

This quantity is smaller than r0, and thus T = ∞, if ‖y(0) − y∗‖ ≤ 2αC0. This is in particular
guaranteed by the conditions on h(w0) and α in the theorem.

When h(w0) = 0, the previous bound also implies the “laziness” property supt≥0 ‖wα(t)− w0‖ =
O(1/α) since in that case y(0) does not depend on α. For the comparison with the tangent gradient
flow, the first bound is obtained by applying the stability Lemma B.2, and noticing that the quantity
denoted by K in that lemma is in O(1/α) thanks to the previous bound on ‖wα(t)− w0‖. For the
last bound, we compute the integral over [0,+∞) of the bound

α‖w′α(t)− w̄′α(t)‖ = ‖Dh(wα(t))ᵀ∇R(y(t))−Dh(w0)ᵀ∇R(ȳ(t))‖
≤ ‖Dh(wα(t))−Dh(w0)‖‖∇R(y(t))‖+ ‖Dh(w0)‖‖∇R(y(t))−∇R(ȳ(t))‖.

It is easy to see from the derivations above that the integral of the first term is in O(1/α). For the
second term, we define t0 := 4 logα/(µσ2

min) and on [0, t0] we use the smoothness bound

‖∇R(y(t))−∇R(ȳ(t))‖ ≤M‖y(t)− ȳ(t)‖

which integral over [0, t0] is in O(logα/α), while on [t0,+∞) we use the crude bound

‖∇R(y(t))−∇R(ȳ(t))‖ ≤ ‖∇R(y(t))‖+ ‖∇R(ȳ(t))‖
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which integral over [t0,+∞) is in O(1/α) thanks to the definition of t0 and the exponential decrease
of ∇R along both trajectories. This is sufficient to conclude. As a side note, we remark that
the assumption that Dh is globally Lipschitz could be avoided by considering the more technical
definition

Lip(Dh) := inf
{
L > 0 ; Dh is L-Lipschitz on a ball centered at w0 of radius

σmin

2L

}
> 0,

because then the path wα(t) never escapes the ball of radius σmin

2L around w0 for α > ‖y∗‖/C0.
Lemma B.1 (Strongly-convex gradient flow in a time-dependent metric). Let F : F → R be a
m-strongly-convex function with M -Lipschitz continuous gradient and with global minimizer y∗ and
let Σ(t) : F → F be a time dependent continuous self-adjoint linear operator with eigenvalues lower
bounded by λ > 0 for 0 ≤ t ≤ T . Then solutions on [0, T ] to the differential equation

y′(t) = −Σ(t)∇F (y(t)),

satisfy, for 0 ≤ t ≤ T ,

‖y(t)− y∗‖ ≤ (M/m)1/2‖y(0)− y∗‖ exp (−mλt) .

Proof. By strong convexity, it holds F̄ (y) := F (y)− F (y∗) ≤ 1
2m‖∇F (y)‖2. It follows

d

dt
F̄ (y(t)) = −∇F (y(t))ᵀ Σ(t)∇F (y(t)) ≤ −λ‖∇F (y(t))‖2 ≤ −2mλF̄ (y),

and thus F̄ (y(t)) ≤ exp (−2mλ) F̄ (y(0)) by Grönwall’s Lemma. We now use the strong convexity
inequality ‖y − y∗‖2 ≤ 2

m F̄ (y) in the left-hand side and the smoothness inequality F̄ (y) ≤
1
2M‖y−y

∗‖2 in the right-hand side. This yields ‖y(t)−y∗‖2 ≤ M
m exp (−2mλ) ‖y(0)−y∗‖2.

B.4 Stability Lemma

The following stability lemma is at the basis of the equivalence between lazy training and linearized
model training in Theorem 2.4. We limit ourselves to a rough estimate sufficient for our purposes.
Lemma B.2. Let R : F → R+ be a m-strongly convex function and let Σ(t) be a time dependent
positive definite operator on F such that Σ(t) � λId for t ≥ 0. Consider the paths y(t) and ȳ(t) on
F that solve for t ≥ 0,

y′(t) = −Σ(t)∇R(y(t)) and ȳ′(t) = −Σ(0)∇R(ȳ(t)).

Defining K := supt≥0 ‖(Σ(t)− Σ(0))∇R(y(t))‖, it holds for t ≥ 0,

‖y(t)− ȳ(t)‖ ≤ K‖Σ(0)‖1/2

λ3/2m
.

Proof. Let Σ
1/2
0 be the positive definite square root of Σ(0), let z(t) = Σ

−1/2
0 y(t), z̄(t) = Σ

−1/2
0 ȳ(t)

and let h : R+ → R+ be the function defined as h(t) = 1
2‖z(t)− z̄(t)‖

2. It holds

h′(t) = 〈z′(t)− z̄′(t), z(t)− z̄(t)〉

= −〈Σ−1/20 Σ(t)∇R(Σ
1/2
0 z(t))− Σ

1/2
0 ∇R(Σ

1/2
0 z̄(t)), z(t)− z̄(t)〉

= −〈Σ1/2
0 ∇R(Σ

1/2
0 z(t))− Σ

1/2
0 ∇R(Σ

1/2
0 z̄(t)), z(t)− z̄(t)〉 (A(t))

− 〈Σ−1/20 (Σ(t)− Σ(0))∇R(Σ
1/2
0 z(t)), z(t)− z̄(t)〉. (B(t))

Since the function z 7→ R(Σ
1/2
0 z) is λm-strongly convex, one has thatA(t) ≤ −2λmh(t). Using the

quantity K introduced in the statement, one has also ‖B(t)‖ ≤ K‖z(t)− z̄(t)‖/
√
λ = K

√
2h(t)/λ.

Summing these two terms yields the bound

h′(t) ≤ K
√

2h(t)/λ− 2λmh(t).

The right-hand side is a concave function of h(t) which is nonnegative for h(t) ∈ [0,K2/(2λ3m2)]
and negative for higher values of h(t). Since h(0) = 0 it follows that for all t ≥ 0, one has
h(t) ≤ K2/(2λ3µ2) and the result follows since ‖y(t)− ȳ(t)‖ ≤ ‖Σ(0)‖1/2

√
2h(t).
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h(W0)
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h
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×
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•

Figure 5: There is a small neighborhood W0 ⊂ Rp of the initialization w0, which image by h is a
differentiable manifold in F. In the lazy regime, the optimization paths (both in W and in F) for the
non-linear model h (dashed gray paths) are close to those of the linearized model h̄ (dashed black
paths) until convergence or stopping time (Section 2). This figure illustrates the under-parameterized
case where p < dim(F).

B.5 Proof of Theorem 2.5 (under-parameterized case)

The setting of this theorem is depicted on Figure 5. By the rank theorem (a result of differential
geometry, see [21, Thm. 4.12] or [1] for a statement in separable Hilbert spaces), there exists open
sets W0, W̄0 ⊂ Rp and F0, F̄0 ⊂ F and diffeomorphisms ϕ : W0 → W̄0 and ψ : F0 → F̄0 such
that ϕ(w0) = 0, ψ(h(w0)) = 0 and ψ ◦ h ◦ ϕ−1 = πr, where πr is the map that writes, in suitable
bases, (x1, . . . , xp) 7→ (x1, . . . , xr, 0, . . . ). Up to restricting these domains, we may assume that
F̄0 is convex. We also denote by Πr the r-dimensional hyperplan in F that is spanned by the first r
vectors of the basis. The situation is is summarized in the following commutative diagram:

W0 F0

W̄0 F̄0

ϕ

h

πr

ψ

In the rest of the proof, we denote by C > 0 any quantity that depends on m, M and Lipschitz
smoothness constants of h, ψ, ϕ, ψ−1, ϕ−1, but not on α. Although we do not do so, this could be
translated into explicit constants that depends on the smoothness of h and R, on the strong convexity
constant of R and on the smallest positive singular value of Dh(w0) using quantitative versions of
the rank theorem [5, Thm. 2.7].

Step 1. Our proof is along the same lines as that of Theorem 2.4, but performed in Πr which can
be thought of as a straighten up version of h(W0). Consider the function Gα defined for g ∈ F̄0 as
Gα(g) = R(αψ−1(g))/α2. The gradient and Hessian of Gα satisfy, for v1, v2 ∈ Rp,

∇Gα(g) =
1

α
(Dψ(g)−1)ᵀ∇R(αψ−1(g)),

D2Gα(g)(v1, v2) = vᵀ1 (Dψ(g)−1)ᵀ∇2R(αψ−1(g))Dψ(g)−1v2

+
1

α
D2ψ(g)−1(v1, v2)ᵀ∇R(αψ−1(g)).

The second order derivative of Gα is the sum of a first term with eigenvalues in an interval [C−1, C],
and a second term that goes to 0 as α increases. It follows that Gα is smooth and strongly convex for
α large enough. Note that if R or ψ−1 are not twice continuously differentiable, then the Hessian
computations should be understood in the distributional sense (this is sufficient because the functions
involved are Lipschitz smooth). Also, let g∗ be a minimizer of the lower-semicontinuous closure of
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Gα on the closure of F̄0. By strong convexity of R and our assumptions, it holds

‖g∗‖2 ≤ 2

m
(Gα(0)−Gα(g∗)) ≤ 2R(0)

α2m
,

so g∗ is in the interior of F̄0 for α large enough and is then the unique minimizer of Gα.

Step 2. Now consider T := inf{t ≥ 0 ; wα(t) /∈W0}. For t ∈ [0, T ), the trajectory wα(t) of the
gradient flow (4) has “mirror” trajectories in the four spaces in the diagram above. Let us look more
particularly at g(t) := πr ◦ ϕ(wα(t)) = ψ ◦ h(wα(t)) for t < T . In the following computation, we
write Dϕ for the value of the differential at the corresponding point of the dynamic Dϕ(wα(t)) (and
similarly for other differentials). By noticing that Dh = Dψ−1DπrDϕ, we have

g′(t) = − 1

α
DψDhDhᵀ∇R(αψ−1(g(t))

= − 1

α
DπrDϕDϕ

ᵀDπr
ᵀ(Dψ−1)ᵀ∇R(αψ−1(g(t)).

so g(t) remains in Πr. Also, the first r × r block of DπrDϕDϕᵀDπr
ᵀ is positive definite on Πr,

with a positive lower bound (up to taking W0 and F0 smaller if necessary). Thus by Lemma B.1,
there are constants C1, C2 > 0 independent of α such that, for t ∈ [0, T ), ‖g(t)− g∗‖ ≤ C1‖g(0)−
g∗‖ exp (−C2t) .

Step 3. Now we want to show that T = +∞ for α large enough. It holds

w′(t) = − 1

α
Dhᵀ∇R(αh(wα(t)) = DϕᵀDπr

ᵀ∇Gα(g(t))

and, by Lipschitz-smoothness of Gα (Step 1), ‖∇Gα(g(t))‖ ≤ C
α ‖g(t)− g∗‖ hence

‖wα(t)− w0‖ ≤
C

α

∫ t

0

exp(−C2s)ds ≤
C

αC2
.

Thus, by choosing α large enough, one has wα(t) ∈W0 for all t ≥ 0, so T =∞ and the theorem
follows.

C Experimental details and additional results

C.1 Many neurons dynamics visualized

The setting of Figure 6 is the same as for panels (a)-(b) in Figure 1 except that m = 200, n = 200: it
allows to visualize behavior of the training dynamics for a larger number of neurons. Symmetrized
initialization to set f(w0, ·) = 0 was used on panel (c) but not on panel (b), where we see that the
neurons need to move slightly more in order to compensate for the non-zero initialization. As on
Figure 1, we observe a good behavior in the non-lazy regime for small τ .

(a) Non-lazy training (τ = 0.1) (b) Lazy (τ = 2, not symmetrized) (c) Lazy (τ = 2, symmetrized)

Figure 6: Training a two-layer ReLU neural network initialized with normal random weights of
variance τ2, as in Figure 1, but with more neurons. In this 2-homogeneous setting, changing τ2 is
equivalent to changing α by the same amount so lazy training occurs for large τ .
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C.2 Stability of activations

We define here the “stability of activations” mentioned in Section 3.2. We consider a ReLU layer
` of size n` in a neural network and the test input data (xi)

N
i=1 (the test images of CIFAR10 in our

case). We call zij(T ) ∈ R the value of the pre-activation (i.e. the value that goes through the ReLU
function as an input) of index j on the data sample i, obtained with the parameters of the network at
epoch T . The “stability of activations” for this layer is defined as s` := Q

n`×N where L is the number
of ReLU layers, Q is the number of indices (i, j) that satisfy sign(zij(Tlast)) = sign(zij(Tinit))
for i ∈ {1, . . . , B} and j ∈ {1, . . . , n`}, where Tinit refers to initialization and Tlast to the end of
training. The quantity that we report on Figure 3(a) is the average of s` over all ReLU layers of the
VGG-11 network, for various values of α.

C.3 Spectrum of the tangent kernel

In the setting of Figure 3(a), we want to understand why the linearized model (that is, trained for large
α) could not reach low training accuracies in spite of being highly over-parameterized. Figure 7(a)
shows the train and test losses after 70 epochs where we see that the training loss is far from 0 for all
α ≥ 10. We report on Figure 7(b) the normalized and sorted eigenvalues σ2

i of the tangent kernel
Dh(w0)Dh(w0)ᵀ (notice the log-log scale) evaluated for two distinct input data sets (xi)

n
i=1 of

size n = 500: (i) images randomly sampled from the training set of CIFAR10 and (ii) images with
uniform random pixel values. Since there are 10 output channels, the corresponding space F has
10×500 dimensions. We observe that there is a gap of 1 order of magnitude between the 0.2% largest
eigenvalues and the remaining ones—which causes the ill conditionning—and then a decrease of
order approximately O(1/i). We observe a similar pattern with the CIFAR10 inputs and completely
random inputs, which suggests that this conditioning is intrinsic to the linearized VGG model. Note
that modifying the neural network architecture to improve this conditioning, or using optimization
methods that are better adapted to ill-conditionned models, is beyond the scope of the present paper.
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Figure 7: (a) End-of training train and test loss. (b) Spectrum of the tangent kernel Dh(w0)Dh(w0)ᵀ

for the VGG11 model on two data sets.
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