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A Further discussion on Centered Chebyshev Balls1

A.1 Centered Chebyshev Ball of a Single Polytope2

Here we present a more thorough discussion of the case of computing a centered Chebyshev ball for3

a single polytope, as well as general formulations for projections onto polytopes under various `p4

norms.5

Consider a polytope P := {x | Ax ≤ b}. The problem of finding the the centered Chebyshev ball6

under an `p norm can written as the following optimization problem:7

max t (1)

s.t. sup
||v||≤1

aTi (x0 + tv) ≤ bi ∀i ∈ [m].

As a brief aside, note that if the center x0 is not fixed, it is introduced as a variable in the optimization,8

and in general this requires a linear program to be solved. With a fixed center, each constraint can be9

rewritten as t||ai||∗ ≤ bi − aTi x0, for || · ||∗ being the dual norm of || · ||. Thus the program becomes10

max t (2)

s.t. t ≤ bi − aTi x0
||ai||∗

∀i ∈ [m]

which can be solved as taking the minimum over all i of bi−a
T
i x0

||ai||∗ . Understanding what is occurring11

here will be central to our theorems, so we decompose the above problem. Note that each constraint12

aTi x ≤ bi defines a hyperplane, and bi−aTi x0

||ai||∗ denotes the `p distance from x0 to that hyperplane. In13

other words, this provides a lower bound on the `p distance to the facet of P generated by constraint i14

being tight. However, the minimum of these lower bounds must be tight for the constraint that bounds15

the centered Chebyshev ball and therefore it suffices to compute this lower bound everywhere. Finding16

the centered Chebyshev ball is equivalent to finding the minimum distance to each component of the17

boundary of P . An alternative, albeit more laborious, solution to finding the centered Chebyshev ball18

is to consider the minimal `p distance to δP directly by computing the `p distance to each facet of P19

and taking the minimum.20
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Figure 1: Pictorial examples of computing the centered Chebyshev ball for the `2, `∞ norms.

A.2 Projections onto Polytopes21

As our algorithm heavily relies on the ability to efficiently compute the projection to a facet, which22

is itself a polytope, we describe the general formulation here. Formally, provided a polytope23

P := {x | Ax ≤ b} and a point x0 /∈ P , we wish to compute minx∈P ||x0 − x||p. To compute this24

exactly, we decompose x in the minimum to x0 + v and optimize over v. This is a linear program in25

the `1 case, and a linearly constrained quadratic program in the `2 case. For `∞ we introduce n+ 126

auxiliary variables and 2n additional constraints:27

min
t,v

t (3)

s.t. A(x0 + v) ≤ b
t ≥ 0

−t · 1 ≤ v ≤ t · 1
(4)

In the `1 case, we require 2n auxiliary variables:28

min
t,v

∑
ti (5)

s.t. A(x0 + v) ≤ b
t ≥ 0

−ti ≤ vi ≤ ti ∀i ∈ [n]

(6)

And in the case of the `2-norm, the objective becomes quadratic while the constraints remain linear:29

min
v

∑
i

v2i (7)

s.t. A(x0 + v) ≤ b

In both cases there exist polynomial time algorithms to solve these exactly and efficient implementa-30

tions to solve these quickly in practice [2, 9]. Thus, we can solve the problem of finding the centered31

Chebyshev ball of a single polytope by solving the minimum distance to each facet, each formulated32

as an efficient LP or QP.33

A.3 Notes on Hyperplanes34

Additionally we mention some cheap tricks that are useful when the polytopes of interest are (n− 1)-35

dimensional. This implies that they lie entirely in some (n − 1)-dimensional affine subspace, say36
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Figure 2: Pictorial aid for Theorem B.1

P ⊆ H for H := {x | aTx = b}. To compute a lower-bound on the projection of x0 onto P , one37

can compute the projection of x0 onto H , which can be done in linear time in the dimension:38

min
t,v

t (8)

s.t. at(x0 + v) ≤ b
||v|| = 1

Reformulating the first constraint, one has t = b−aT x0

aT v
. This quantity is minimzed when aT v is39

maximized, and max||v||=1 a
T v is, by definition, the dual norm || · ||∗ of a. Hence the projection40

onto a hyperplane is b−aT x0

||a||∗ .41

In section 5, we mention that it is efficient to compute the feasibility of H ∩ B for B being some42

hyperbox defined by coordinate lower and upper bound vectors, l and u as {x | l ≤ x ≤ u}. We43

can decompose a into its nonnegative components a+ and its negative components a− such that44

H = {x | (a++a−)Tx = b}. Then, by interval arithmetic, we notice that the set {c | aTx ∀x ∈ B}45

is the interval [(a+)T l + (a−)Tu, (a−)T l + (a+)Tu]. Iff b is contained in this interval, then the46

intersection H ∩B is nonempty.47

B Proofs about Boundary Decompositions48

Here we prove our theorems about efficient boundary decomposotions of polyhedral complices. First49

we state a hardness result that claims that for arbitrary nonconvex polytopes, the size of the smallest50

convex decomposition of the boundary may be exponential in the dimension.51

Theorem B.1. There exists a collection of polytopes P = {P1, . . .Pk} each with dimension n52

and 2 constraints (for a total of 2k constraints) such that the boundary of
⋃
i∈[k] Pi is composed of53

Ω(kn−1) convex components.54

Proof. We prove this by construction. We rely crucially on a result from hyperplane arrangements.55

It is a classical result that given a choice in placement of m hyperplanes in Rn, the maximum56

number of regions that can be generated is given, in closed form as R(n,m) := 1 +
∑n
j=1

(
m
j

)
[6].57

Leveraging this, we construct our polytopes. Let P1 = {x | 0 ≤ x1 ≤ 1} such that it has exactly58

two facets, where each facet is an (n − 1) flat. Let A be an arrangement of k − 1 hyperplanes59

in Rn−1 that generates a maximal number of regions. Each one of the regions generated by A60

is certainly a polytope contained in Rn−1, so since there are finitely many polytopes each with61

finitely many vertices, let ε be the minimal distance between any two vertices within the same62

polytope. Let the ith hyperplane in A be defined as {x ∈ Rn−1 | aTi x = bi}. Then we can define63

Pi+1 := {x ∈ Rn | bi − ε/3 ≤ (0, ai)
Tx ≤ bi + ε/3}. Thus the (n − 1)-flat that describes each64
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facet of P1 remains broken up into R(n− 1, k − 1) = Ω(kn−1) disjoint convex components. Each65

of these exists on the boundary of the union of P .66

Now we can restate and prove our theorems regarding the efficient boundary decompositions of67

polyhedral complices.68

Theorem 3.1. Given a polyhedral complex, P = {P1, . . .Pk}, where Pi is defined as the intersec-69

tion of mi closed halfspaces. Let M =
∑
imi, and let x0 be a point contained by at least one such70

Pi. Then the boundary of
⋃
i∈[k] Pi is represented by at most M (n − 1)-dimensional polytopes.71

There exists an algorithm that can compute this boundary in O(poly(n,M, k)) time.72

Proof. Let Z =
⋃
i∈[k] Pi. Let Fi,j refer to the jth facet of Pi, and let Fi be the set of facets of Pi73

that are not facets of any other Pj . Then, letting T =
⋃
i∈[k] Fi. We claim that the boundary of Z is74

exactly T .75

Without loss of generality, assume that Z is a single connected component, in the topological sense. If76

Z were multiple connected components, then we could handle each of them in turn. To demonstrate77

that T is the boundary of Z we need to show that for any x ∈ T that points (i), (ii) of definition 178

hold, and that condition (ii) fails for any point y ∈ Z \ T .79

To demonstrate point (i) above, we note that x ∈ Pi for at least one Pi. By assumption each Pi has80

a nonempty interior, and thus contains some point y ∈ Pi for which a neighborhood N(y) ⊂ Pi.81

Thus if Pi is given as an H-polytope of the form {x | Ax ≤ b}, then Ay < b. Since Pi is82

convex, then any convex combination between x, y is contained in Pi, and in fact for all λ ∈ [0, 1),83

A(λx+ (1− λ)y) < b. Certainly any point z such that Az < b has a neighborhood N(z) contained84

in P1.85

Proving that x ∈ T satisfies point (ii) is more complicated. Let Q be a facet containing x, and let86

Pi be a polytope containing Q. Let H be the hyperplane containing Q. Then for all j 6= i, Pi ∩ Pj87

is either the empty set or resides in a face of Pj of dimension at most (n − 2). A standard result88

about polytopes states that if Q is an (n − 1) dimensional polytope, it can be defined by the set89

{x | A=x = b= ∧A−x ≤ b−} where A= has rank 1. Additionally there exists a point y ∈ Q such90

that A−y < b [5]. Then every point along the open line segment (x, y) is contained in the relative91

interior of Q, and by definition cannot be contained in any face of Pj for j 6= i. Further, since the92

relative interior of Q is open, every point w along (x, y) is contained in a neighborhood N(w), with93

restriction to H N(w)|H . Then certainly N(w)|H ⊆ relInt(Q) ⊂ Q , which implies that N(w)|H94

is disjoint from ∪j 6=iPj .95

Let H− be the closed halfspace defined by H containing Pi, then N(w) ∩ (H−)c is both open and96

disjoint from Pi in addition to being disjoint from Pj for all j 6= i. Let c be a point in N(w) ∩ Zc,97

such that the open line segment between (w, c) is contained in N(w) ∩ Zc. We now restrict our98

attention to the 2-dimensional linear subspace of Rn containing x,w, c, denoted as V . Each Pj|V is99

either the emptyset or a polytope containing x. Let Uj|V be the set of these 2-d restricted polytopes100

containing x, and note that each Uj|V intersects with Pi|V only at x. Because each element of U|V101

intersects with Pi|V only at x, there must a hyperplane Hj , (line in V ) passing through x separating102

each element of U|V and c. Let H+
j be the closed halfspace defined by Hj containing c. Then ∩Hj103

defines a polytope S that only intersects with P〉 at x. The line segment between (x, c) lies inside S104

and thus does not intersect any Pj|V for j 6= i. (x, c) also lies strictly on one side of the hyperplane105

H that Q resides in, and thus every point along (x, c) is not contained in Pi. Hence, (x, c) is not106

contained in Z, as desired.107

Finally, to show that there is no point y in the boundary of Z that not contained in T . It suffices108

to show that Z \ T is open, as if this were the case, then any y ∈ Z \ T would be contained in a109

neighborhood N(y) ⊆ Z \ T and thus fail to meet condition (ii) of the definition of the boundary.110

Let x ∈ Z \T . Then x is contained in the interior of some Pi or it is contained in a facet contained in111

both Pi,Pj , for some i, j. This follows from the fact that x either is contained in a facet of some Pi112

or not. If not, x is strictly in the interior of some Pi and is contained in a neighborhood N(x) ⊂ Pi.113

If so, then x needs to be contained in a facet, Fi,j of Pi and Pj , else x ∈ T . Either x is contained in114

the relative interior of Fi,j or not. If so, then a neighborhood of x, N(x), is bisected by Fi,j , where115

each half is contained in either Pi or Pj . If not, then x needs to be contained in a facet of some Pm,116

for m 6= i, j, because it needs to be contained in some other facet of Pi. This other facet needs to be117
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a facet of some Pm because otherwise it would be contained in T and certainly Pi ∩ Pj = Fi,j such118

that m 6= j. We repeat this process until we have enumerated all facets containing x, of which there119

are at most
(
k
2

)
. There are then at most k polytopes containing N(x), and their union contains N(x).120

Thus Z \ T is open.121

To demonstrate that T is represented by at most M polytopes and that T can be computed in122

O(poly(n,M, k)) time, note that each polytope Pi has at most mi facets, and not all of these are123

included in T . Thus the number of facets, and hence polytopes, that define T is at most
∑
mi = M .124

Enumerating each of these polytopes can be done in time linear in M . To compare if two facets are125

equivalent, one can find a point y ∈ Fi,j such that it is in the relative interior of Fi,j . Such a point can126

be found in polynomial time using a linear program. Since P is a polyhedral complex, if such a y is127

contained in Fi,j and Fi′,j′ then Fi,j = Fi′,j′ . There are at most
(
M
2

)
facets, so T can be determined128

in time polynomial in n,M, k.129

130

C Proofs of Correctness for GeoCert131

In this section we expand upon the graph theoretic interpretation of GeoCert and prove its correctness.132

Recall the setup: given a polyhedral complex P , which can be viewed as a bipartite graph of n-133

dimensional polytopes and their (n− 1)-dimensional faces, some of which are labeled as ‘boundary’134

facets, our goal is to return the boundary facet which admits minimal distance to a fixed point x0.135

In our primary discussion we replaced ’distance’ with a ‘potential’ function. Formally, we let our136

pointwise potential to be some function φ : Rn → R, and the facetwise potential, Φ : P(Rn) →137

(R ∪ {+∞}) to be defined as138

Φ(F) =

{
+∞, if F = ∅
min
y∈F

φ(y), otherwise (9)

Certainly, letting φ(y) := ||y − x0|| and finding the boundary facet with minimal potential Φ is139

equivalent to finding the facet with minimal distance to x0. However, this choice of φ is not the140

only valid one for which GeoCert will provide the corect answer to the centered Chebyshev ball141

problem. To this end, we provide a sufficient condition on a pointwise potential function φ such that142

GeoCert will still provide the correct answer. We can then demonstrate that any potential function143

satisfying this property will cause GeoCert to return the correct answer. Finally we can show that the144

`p-distance potential satisfies these properties, and that the lipschitz potential described in Section 5145

also satisfies this property.146

Definition 1. Given a potential function φ defined only on the set of points contained in a polyhedral147

complex P , we let ηv(t) := φ(x0 + t · v) for any vector v and any positive scalar t > 0. Then we148

say that φ is ray monotonic if for every v, t > 0,
δη

δt
(t) ≥ 0.149

With this definition in hand, we can prove a structural invariant of the operation of GeoCert that will150

directly prove the claim of correctness.151

Lemma C.1. For any polyhedral complex P point x0, and ray-monotonic potential φ, let Fi be the152

facet popped at the ith iteration of GeoCert. Then for all i < j, Φ(Fi) ≤ Φ(Fj).153

Proof. We proceed by induction. In the base case we only consider the first and second iteration.154

Supposing without loss of generality that x0 is contained in exactly one polytope P ∈P . Then the155

initial set of facets added to the priority queue is exactly the set of facets of P , which we denote as156

{FP(1),FP(2), . . . ,FP(k)} which are ordered by potential, without loss of generality.157

At the first iteration, FP(1) is popped, and a new polytope S is opened. The set of facets of added158

to the priority queue Q, also ordered by potential, is {FS(1),FS(2), . . . ,FS(k)}. We would like159

to show that whichever facet F2, is popped at iteration 2 must have that Φ(F2) ≥ Φ(FP(1)). As,160

by definition, for all i > 1, Φ(FP(1)) ≤ Φ(FP(i)) it suffices to show that any facet FS of S161

added to the priority queue must have Φ(FP(1)) ≤ Φ(FS). For any facet of FS , we have that162

Φ(FS) := min
y∈FS(1))

φ(y). Letting ymin be an element of the argmin of this minimum, we utilize the163
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ray-monotonic property of φ. We let v = ymin − x0 and note that Φ(FS) = φ(x0 + v). As ymin is164

not contained in the interior of P , there must exist some t ∈ [0, 1] such that x0 + tv lies in a facet of165

P . By definition Φ(FP(1)) ≤ φ(x0 + tv) ≤ φ(x0 + v), where the first inequality comes from the166

definition of Φ, and the second inequality comes from the ray-monotonicity of φ. This concludes the167

base case.168

The inductive step follows by a similar argument. Suppose the claim holds up to iteration i− 1. At
the ith iteration we pop facet Fi, open up a previously-unseen polytope S, and add a set of facets
each corresponding to another unseen polytope: hence no potential facet added has been previously
added to the priority queue. Again, considering any new facet FS and the argmin of its potential

ymin ∈ arg min
y∈FS

φ(y)

we note that ymin is not contained in the interior of any of the set of seen polytopes C. Then again169

letting ymin = x0 + v, there exists some t ∈ (0, 1] such that x0 + tv lies in some facet G that is170

contained in the priority queue at iteration (i− 1). Since Φ(F(i−1)) ≤ Φ(G) ≤ φ(ymin) = Φ(FS),171

we maintain our structural invariant and the proof is complete.172

Theorem C.1. For a fixed polyhedral complex P , a fixed input point x0 and a potential function φ173

that is ray-monotonic, GeoCert returns a boundary facet with minimal potential Φ.174

Proof. Leveraging Lemma C.1, we note that since we only pop facets in non-decreasing order, the175

first ‘boundary facet’ that is popped will be a boundary facet with minimal potential.176

Now we simply need to show that both choices of potential function discussed satisfy the ray-177

monotonicity property.178

Corollary C.1. The distance potential, φlp(y) := ||y − x0|| satisfies ray-monotonicity and Geocert179

using this as a potential returns the minimal distance boundary facet.180

Proof. We fix a vector v and any scalar t > 0. We define181

ηv(t) := ||(x0 + tv)− x0|| = |t| · ||v|| = t · ||v|| (10)

Then
δηv
δt

= ||v|| ≥ 0 for all t > 0, v.182

Corollary C.2. For a PLNN f : Rn → Rk and a point x0, let i := arg maxj fj(x0). Let DR(x0) =183

{x | arg maxj f(z) = i}. Define gj(x) = fi(x)− fj(x) for all j 6= i, and let Lj be a bound on the184

`q lipschitz constant of gj:185

|gj(x)− gj(y)| ≤ Lj ||x− y||p ∀x, y ∈ DR(x0) (11)

then the potential186

φlip,j(y) := ||y − x0||p +
gj(y)

Lj
(12)

φlip(y) := min
j
φlip,j(y) (13)

satisfies ray-monotonicity and Geocert using this as a potential returns the minimal distance boundary187

facet.188

Proof. We prove the ray-monotonicity for each φj and then demonstrate that this holds for their189

minimum as well. First we note that for every point x ∈ DR(x0) has that gj(x) ≥ 0. Fixing some190

φj , v, and t > 0 such that x0 + tv ∈ DR(x0), we consider191

ηj,v(t) := φlip,j(x0 + tv) = t||v||p +
gj(x0 + tv)− gj(x0)

Lj
(14)
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which has derivative192

δηj,v
δt

(x0 + tv) = ||v||p +
1

Lj

δgj
δt

(x0 + tv) (15)

= ||v||p +
1

Lj
〈v,∇gj(x0 + tv)〉 (16)

≥ ||v||p −
1

Lj
||V ||p|||∇gj(x0 + tv)||q (17)

≥ ||v||p(1− 1) (18)
≥ 0 (19)

Where the first inequality comes from Hölder’s inequality, and the second inequality comes from193

the fact that the norm of the gradient is bounded by the lipschitz constant. And since the minimum194

of monotonically increasing functions is also monotonically increasing, φ is ray-monotonic. This195

implies that GeoCert returns the minimal potential facet. However, note that along any boundary facet196

Fbound, there exists a j such that gj(y) = 0∀y ∈ Fbound. Since each gj(y) ≥ 0 for all y ∈ DR(x0)197

for any y ∈ Fbound, φ(y) = ||x0 − y||p. In other words, this potential function is equivalent to the `p198

potential along the decision boundary. Hence the first ‘boundary facet’ popped is the boundary facet199

with minimal `p distance, as desired.200

Remarks: Recall that as a subroutine, GeoCert using φlip as a potential, must compute Φlip(F)201

for each possible facet F to be added to the priority queue. This amounts to solving the following202

optimization problem203

Φlip(F) := min
y∈F

(
||y − x0||p + min

j 6=i

gj(y)

Lj

)
(20)

Along each piecewise linear region of a PLNN, certainly f is a linear function, as is gj . Hence,204

computing the minimum of φlip,j across a facet requires as much computation time as computing205

the `p projection to a facet. Since minj 6=i gj(y) is a pointwise minimum and hence not convex,206

computing Φlip is no longer computable by a single convex program. However one can minimize207

this for each φlip,j and return the overall minimum. This now requires multiple convex programs208

per facet. We find that (i) using a warm-start for our optimizations allows the second-through-final209

to finish much more quickly than the initial optimization, and (ii) a variant of GeoCert can be used210

where the facet-wise potential is replaced with a polytope-wise potential. Under this formulation, the211

number of optimizations per polytope with m constraints goes from m, in the case of the `p potential,212

to m+ (k − 1) where k is the number of logits: we simply need to compute the feasibility of each213

facet (m linear programs), to determine the neighbors of the right vertices in the graph, and (k − 1)214

optimizations to compute the polytope-wise potential.215

Finally, we remark about the efficient computation of Lj . Under a fixed domain D, if a lower and216

upper bound to each input to each ReLU of the neural net is known, a nontrivial upper bound to each217

Lj can be computed with as much computation as is required by eight forward passes through the218

PLNN [8]. Indeed, by leveraging φlip as a potential, one can effectively propagate the lower-bound219

to pointwise robustness as computed by Fast-Lip: instead of computing a certifiable lower bound220

only on f evaluated at x0, as Fast-Lip does, the certifiable lower bound is now computed across221

every facet in the ‘frontier set’ which expands outwards as GeoCert runs. This allows for Fast-Lip to222

converted into continually increasing lower bound.223

D Polyhedral Complex Properties224

Here we will restate and prove the lemmas regarding iterative construction of polyhedral complices,225

and other useful tools when considering the centered Chebyshev ball contained in a polyhedral226

complex.227

Lemma 3.3. Given an arbitrary polytope P := {x | Ax ≤ b} and a hyperplaneH := {x | cTx =228

d} that intersects the interior of P , the two polytopes formed by the intersection of P and the each of229

closed halfpsaces defined byH are PC.230
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Figure 3: Pictorial aid for Lemma 3.4.

Proof. Let H+ := {x | cTx ≥ d} and H− := {x | cTx ≤ d}, with P+ := P ∩ H+ and231

P− := P ∩H−. Then each of P+, P− are polytopes with nonempty interior and their intersection232

is exactly P ∩H, which is a face of both P+,P−.233

Lemma 3.4. Let P,Q be two PC polytopes and let HP , HQ be two hyperplanes that define two234

closed halfspaces each, H+
P , H

−
P , H

+
Q , H

−
Q . If P ∩Q ∩HP = P ∩Q ∩HQ then the subset of the235

four resulting polytopes {P ∩ H+
P ,P ∩ H+

P ,Q ∩ H+
Q ,Q ∩ H+

Q} with nonempty interior forms a236

polyhedral complex.237

Proof. Let F = P ∩ Q, which by definition is a face of both P,Q. Without loss of generality we238

can align the hyperplanes HP , HQ such that F ∩H+
Q = F ∩H+

P . For ease of notation, we’ll let239

P+ denote P ∩H+
P , and similarly for P−, Q+, Q−. If HP does not intersect the interior of P , then240

exactly one of P+,P− has empty interior and can be ignored. Otherwise, by lemma 3.3, P+, P− are241

PC, and likewise for Q+, Q−. To handle the cross-terms we proceed by cases. Letting S = F ∩HP ,242

we handle the following four cases: (i) S = ∅, (ii) S is a face of F , (iii) S = F , or (iv) none of the243

above.244

(i): In the case that S = ∅, then either P+ ∩ F or P− ∩ F is empty. Likewise for Q+ ∩ F,Q− ∩ F .245

Assume without loss of generality that P+ ∩ F = Q+ ∩ F = ∅. Then certainly P+ is disjoint from246

Q and therefore both Q+, Q−. Likewise for the interaction between Q+ and P−,P+. Finally, since247

S = ∅, F is a face of both P− and Q− and P− ∩Q− = F , hence they are PC.248

(ii): In the case that S is a face of F , we label this faceG. First note that F needs to be fully contained249

by either F ∩H+
P or F ∩H−P . Thus F is either a face of P+ or P−, where we can assume without250

loss of generality that it is a face of P−. Similarly, assume F is a face of Q−, implying that P− and251

Q− are PC. By this assumption, P+ ∩ F = G. Note that G is a face of P+.Since G is a face of F , it252

is also a face of Q−, and P+ ∩Q− = G, which is a face of each of them and therefore P+ and Q−253

are PC. Likewise for Q+ and P−. Finally note that since P+ ∩ F = Q+ ∩ F = G, implying that254

P+ ∩Q+ = G, hence P+ and Q+ are PC.255

(iii): If S = F , then we can assume without loss of generality that P− = P and P+ = F , and256

similarly for Q. Then since Q+ = P+ = F they do not have nonempty interior and can be ignored.257

By definition P− and Q− are PC, and P−,Q+ are as well. (iv): In the final case, S is neither the258

emptyset, F , nor a face of F . Then F ∩H+
Q and F ∩H−Q are both nonempty polytopes with the259

same dimensionality as F . Letting S+ = F ∩H+
Q , and defining S− likewise, note that S is a face of260

S+, S−, by the same argument used in 3.3. Since F is a face of P , S+ is a face of P+ and likewise261

forQ+. And since P+ ⊆ P , P+ ∩Q+ ⊆ P ∩Q = F . But P+ ∩F = S+ andQ+ ∩F = S+, thus262

P+ ∩Q+ = S+. Hence P+ andQ+ are PC. Likewise for P− andQ−. Since P+ ∩Q− = S and S263

is a face of S+, S−, it is a face of both P+, Q− and the two are PC. Likewise for P− and Q+.264

265

Lemma 3.5. Let P = {P1, . . .Pk} be a polyhedral complex and let D be any polytope. Then the266

set {Pi ∩ D | Pi ∈P} also forms a polyhedral complex.267
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Proof. Letting Hj be the hyperplanes that compose D, i.e., D =
⋂
j Hj . Then it suffices to show268

that {Pi ∩Hj | Pi ∈P} is a polyhedral complex, as we can repeat this iteratively for each Hj . This269

is equivalent to stating that for each Pi,Pj ∈P with nonempty intersection, Pi ∩Hj and Pj ∩Hj270

are PC. This follows from a direct application of Lemma 3.4.271

Lemma D.1. Let P , Q be polytopes whose intersection is (n− d) dimensional, for some d ≥ 2, and272

let x0 ∈ P , with Bt(x0) the largest `p-norm ball centered at x0 contained in P ∪Q. Then Bt(x0) is273

contained entirely in P .274

Proof. First we state an equivalent representation of Bt(x0),275

Bt(x0) =
⋃

{z | ||x0−z||≤t}

Bd(z) for d = (t− ||x0 − z||) (21)

Certainly the ⊆ inclusion holds by setting z = x0 and the ⊇ inclusion holds by the triangle inequality.
Now let’s assume that P ∩Q is nonempty and contained in an (n− 2)-dimensional linear subspace,
H . Suppose for the sake of contradiction that r > 0 for

r := sup
x∈P∩Q

t− ||x− x0||

and z is defined as some point in P ∩ Q that attains this supremal distance. Such a z must exist276

because P ∩ Q is closed. Then Br(z) ⊆ Bt(x0) ⊆ (P ∪ Q) ⊆ H . But Br(z) is contains some `2277

ball, regardless of our choice of norm, contradicting the previous chain of inclusions. Thus r ≤ 0,278

indicating that Bt(x0) ⊆ P .279

E Geometry of Piecewise Linear Neural Networks280

In this appendix we restate and prove our theorems regarding the geometry of PLNN’s. Specifically,281

we prove our lemma which describes that each ReLU configuration defines a polytope and, in general282

position, its facets correspond to exactly one ReLU being flipped. Then we prove that the decision283

region forms a polyhedral complex.284

E.1 Computing the linear region of neural networks285

First we prove this lemma:286

Lemma 4.1. For a given neuron configuration A, the following are true about PA,287

(i) Unless PA = Rn or ∅, there exists a neuron configuration B such that PA ∩ PB 6= ∅ .288

(ii) PA is a polytope, and for all layers i, f (i)(x) is linear in x for all x ∈ PA.289

Proof. Item (i): This is trivial as certainly every point in the domain corresponds to at least one290

neuron configuration. If both PA and PcA are not the empty set, then their intersection is nonempty.291

But PcA is composed of a union of at least one piecewise linear region, at least one of which must292

intersect PA.293

Item (ii): This is easy to see by simply writing down the polytope PA and its corresponding linear
function. For neuron configuration A, we partition A into A1, A2, . . . Al−1, with Ai corresponding
to the neuron configuration at the ith layer. Then letting Λi be a fixed matrix to replace each ReLU in
the network, defined as Λi := diag(Ai) we note that

f (i)(x) =

{
Wix+ bi, if i = 1
Wiσ(Λi)(f

(i−1)(x)) + bi, if i > 1

Hence, as σ(Λi) is constant across all points with neuron configurationA, f is a composition of linear294

functions and must be linear everywhere with that neuron configuration. To define the polytope PA,295

we note that each neuron adds one linear constraint to the polytope. Let us write down each of these296

constraints exactly. Since each f (i)(x) is linear, it can be written as Vix+ci for some Vi, ci. Recalling297

that f (i)(x) is the input to the ith ReLU layer, the constraints are of the form f (i)(x) ? 0 where298

? is the comparator ≥,≤,= for Ai,j being 1,−1, 0 respectively. This can be encoded efficiently299
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by multiplying the lefthand side by −Λi, so the total constraint becomes Λi(Vix + ci) ≥ 0. We300

remark that Λi can be computed with a single forward pass of the network, and each Vi and ci can be301

computed with a two matrix multiplications, one of which is a diagonal matrix.302

303

E.2 PLNN’s Form Polyhedral Complices304

We can now prove our main theorem regarding the linear regions of a PLNN.305

Theorem 4.2. The collection of PA for allA, such that PA has nonempty interior forms a polyhedral306

complex. Further, the decision region of F at x0 also forms a polyhedral complex.307

Proof. Let Pi,j denote the set of polytopes generated by neuron configurations of all neurons in308

layer k < i, and the first j neurons in layer i. Let Pi,0 refer to the set of polytopes generated by309

neuron configurations from all neurons in layer k < i. We’ll prove the theorem by induction across i,310

with an inner induction on j.311

As a base case, consider only the first layer f (1)(x). Examining only neuron j of the first layer,312

note that f (1)(x)j = W1,jx+ b1,j implying that the, unless W1,j = 0, the set of inputs x for which313

f (1)(x)j = 0 is exactly a hyperplane, which we shall denote Hj . Then we can perform a second,314

interior, induction across the neurons of the first layer of f .315

The first neuron in the first layer separates Rn into two closed halfspaces, such that P1,1 is PC. Now316

assume that P1,k is PC. Consider now the addition of the (k + 1)th neuron to generate P1,k+1.317

In particular, if P1,k is generated by considering the arrangement of hyperplanes H1, . . . Hk, then318

P1,k+1 is P1,k with the addition of hyperplane Hk+1. Letting PQ be two PC polytopes in P1,k,319

we can letHk+1 defineHP andHQ and apply lemma 3.4 to demonstrate that the polytopes generated320

by this intersection remain PC. This concludes the base case of the outer induction.321

Now let’s assume that for any layer k, Pk,0 is a polyhedral complex. Consider the difference between322

Pk,0 and Pk,1. Let G1 refer to the set of points x for which f (k)1 (x) = 0, i.e. the first neuron of323

layer k has pre-ReLU value exactly zero. Now by 4.1 part ??, f (k)(x)1 is linear in each PA ∈Pk,0.324

Thus for each such PA, G1 ∩ PA is either the emptyset or a hyperplane, HA. Any two polytopes325

PA,PB contained in Pk,0 with nonempty intersection, by inductive assumption, must be PC. If326

HA ∩ F 6= ∅, then certainly G1 ∩ PB 6= ∅ and thus there must be some hyperplane HB such that327

HB = PB ∩G1. Since F ∩G1 = HA ∩ F and F ∩G1 = HB ∩ F , we meet the criteria to apply328

lemma 3.4 and thus the polytopes generated by the addition of G1 remain PC.329

To conclude the proof of the first statement in the theorem, assume that Pk,j is PC. Then consider330

the addition of the (j + 1)th neuron of layer k. Let Gj+1 refer to the set of points for which331

f
(k)
j+1(x) = 0. Note that f (k)j+1 is linear across each PA ∈ Pk,0, since we just as well could have332

initially incorporated the (j + 1)th neuron of this layer instead of the first one. Consider any pair333

of polytopes PA,PB ∈ Pk,j with nonempty intersection. These must be PC, and in particular334

their union must either be fully contained in some PC ∈Pk,0 or not. If so, then there exists some335

hyperplane HC such that Gj+1 ∩PC = HC ∩PC and thus PA ∩PB ∩Gi = PA ∩PB ∩HC so we336

satisfy the criteria to apply lemma 3.4. If there is no such PC , then PA ∩ PB must be a facet of each337

of them, F . Then we can mimic the argument in the previous paragraph to show that the polytopes338

generated by the addition of Gj+1 remain PC.339

Finally, we need to prove that the decision region of F at x0 forms a polyhedral complex. Let Q340

be the collection of linear regions of F that have a nonempty intersection with the decision region341

of F at x0. As any subset of a polyhedral complex is also a polyhedral complex, Q is certainly a342

polyhedral complex. Let F (x0) = i and let gj = {x|fi(x) ≥ fj(x)}. For each linear region of f , gj343

is a halfspace. The decision region of F at x0 is exactly {Qi ∩ (
⋂
j 6=i gj | Qi ∈ Q}. It suffices to344

show that for a single j, {Qi ∩ gj(x)) | Qi ∈ Q} is still a polyhedral complex, as we can iterate over345

all j 6= i. Then for a fixed j and any Qi,Qk ∈ Q with nonempty intersection, and letting gj(P) be346

the hyperplane defining gj(x) for the linear region P , we note that P ∩Q∩ gj(P) = P ∩Q∩ gj(Q).347

This is exactly the criteria required to apply lemma 3.4, which maintains that the pair of polytopes P348

andQ lying in the decision region are PC. This holds for every pair of polytopes inQ with nonempty349
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intersection, so Q ∩ gj is a polyhedral complex, and hence so is the entire decision region of F at350

x0.351

In fact, the following corollary demonstrates that except in extreme cases, the facets of each linear352

region correspond to exactly one neuron flipping configurations.353

Corollary 4.3. If the network parameters are in general position and A,B are neuron configurations354

such that dim(PA) = dim(PB) = n and their intersection is of dimension (n− 1), then A,B have355

hamming distance 1 and their intersection corresponds to exactly one ReLU flipping signs.356

Proof. As both PA and PB are of full dimension, no coordinate of the neuron configurations A,B357

can be zero. Under the assumption of general position of the network parameters, the halfspace358

that defines each polytope constraint lies in a different (n− 1)-dimensional affine subspace, hence359

each facet corresponds to exactly one neuron. Indeed, each facet of each linear region’s polytope360

corresponds to at exactly one ReLU constraint being set to equality. Since dim(PA ∩ PB) = n− 1361

and since PA,PB are PC, PA,PB must be a facet of each of them. This facet is a linear region of362

the network as well, corresponding to a neuron configuration C that is identical to A,B, but with363

some coordinate set to zero. As A 6= B, and the neuron configuration C has exactly one zero, it must364

be the case that the hamming distance between A and B is exactly one, corresponding to exactly one365

ReLU flipping signs.366

F An Approach For Computing Tighter Upper Bounds367

As mentioned in Section 5, maintaining a nontrivial upper bound on the pointwise robustness368

accelerates the runtime of GeoCert by restricting the domain we have to search. This has a twofold369

benefit as (i) this allows us to quickly reject potential facets as infeasible by checking if their370

containing hyperplane intersects the restricted domain, and (ii) allows for tighter pre-ReLU activation371

bounds to be computed. This latter point allows for potential facets to be rejected without the372

computation of their projection as Corollary 4.3 implies that neurons that are stable within a domain373

do not correspond to any facets inside that domain.374

Fortunately, there has been an explosion in the field of computing upper bounds to the pointwise375

robustness, typically described as adversarial examples. In this section we present a variant of the376

attack techniques presented in [3, 7, 4, 1]. Our goal is to be able to compute a reasonably tight upper377

bound for a single example in a very short amount of time. In general, attack techniques are viewed378

as optimizations over some perturbation that aims to maximize a loss that is large when the classifier379

makes a mistake. We discuss two popular existing adversarial attacks from an .380

One attack, known as PGD performs gradient ascent directly on the loss ands projects at each iteration381

back onto a set of allowable perturbations. Letting the allowable set of perturbations be Bεp(0) and382

the domain of valid images be D, then the allowable set of adversarial perturbations for image x0 is383

D′ := Bεp(0) ∩ {x− x0 | x ∈ D}. PGD seeks to solve the maximization problem384

max
δ∈D′

L(x0 + δ, y) (22)

where L(·, y) is some loss that is small when the network classifies its argument as class y, and large385

otherwise. The PGD iterations become386

δ+ = ΠD′
(
δ + η∇δL(x0 + δ, y)

)
(23)

Notice that the goal of PGD is not to induce a minimal distortion adversarial example, but simply to387

minimize classifier accuracy within a fixed threat model. We also note several tricks that are useful388

in practice such as a random initialization of δ ∈ D′ and repeated restarts to find more successful389

adversarial examples.390

An alternative attack, pioneered by Carlini and Wagner [1] does aim to produce low-distortion391

adversarial examples by simply letting D′ := {x− x0 | x ∈ D} and solving the optimization392

min
δ∈D′

||δ|| (24)

s.t.F (x0 + δ) 6= F (x0)

(25)
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Input classifier f , input x0, initSize ν, ballSize ε
lr η, numIter n, numRand r
numBin k

for i ∈ [r] do
ui =∞
δi ← RandBall(ν)
for iter ∈ [numIter] do
δi ← Πε(δi + η∇f(x+ δi))

end for
if f(x+ δi) 6= f(x) then
δi ← BinSearch(f, x0, δi, k)
ui ← ||δi||p

end if
end for

RETURN mini ui
Algorithm 1: Fast Upper Bound

Input classifier f , point x0
perturbation δ, numIter n

lo← 0, hi← 1
for i ∈ [n] do

if f(x0 + (lo+ hi)/2 · δ) 6= f(x0) then
hi← (lo+ hi)/2

else
lo← (lo+ hi)/2

end if
end for

RETURN hi · δ
Algorithm 2: BinSearch

Where the adversarial constraint is typically put into the lagrangified form with the best multiplier393

found via binary search:394

min
δ∈D′

||δ||+ λG(x0 + δ) (26)

Where G is a function that is zero everywhere where the classifier makes a mistake, and positive395

elsewhere. This is then solved with a standard gradient descent algorithm. The main critique of this396

method is that the binary search over the hyperparameter λ dictates the runtime be several times397

longer than PGD. Note that during this optimization, once the intermediate iterate is outside x0’s398

decision region, the gradient steps push the intermediate iterate radially inwards. However, unless399

step sizes are tuned nicely, many iterations with the radially-inward direction may be taken.400

We provide a tweak to PGD that allows one to quickly generate adversarial examples that are401

optimized to have minimal distortion. This technique is as follows: for example image x0, compute402

many random perturbations on x0, and run PGD with a large domain on each of these randomly403

perturbed starting points. Once complete, collect each of the examples for which the classifier makes404

a mistake. Run a binary search along the line connecting the example and the starting point x0, in405

an attempt to ‘project’ onto the decision boundary. Return the minimal-distance of these projected406

adversarial attacks as the adversarial example for x0.407

The binary search step requires only forward passes and is significantly faster than the several gradient408

steps required by CW to ‘project’ back to the decision boundary. This allows one to effectively409

perform a quick PGD attack, which is almost always successful under a sufficiently large threat410

model, but also attain a successful adversarial attack with small distortion.411

We note, the emphasis here is not on attaining the minimal distortion adversarial example, but412

on speed and guaranteed success. Our goal is to very quickly find an adversarial example that is413

incentivized to be close to the original point and will almost always succeed.414
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Figure 4: evidence that verification for trained nets does not follow worst case behavior

G Extra Experiments415

G.1 Extra Experiment 1:416

To reiterate, in the worst case our algorithm may need to explore an exponential number of polytopes.417

Here, we provide results which seem to suggest that for PLNNs trained on MNIST the number of418

polytopes is well removed from the worst case. Figure 4 shows the number of polytopes encountered419

in an `∞ ball of size t around several random images. (Note that the relevant network in this case420

is the 70NetBin network described previously.) The distance t is increased until the region around421

each of the sampled points includes the entire domain for MNIST (i.e. [0, 1] hypercube). Thus, the422

maximum number of polytopes that could be encountered for this problem is very loosely upper423

bounded by 73. On average, the number of polytopes encountered for this example would be closer to424

6 as the average distance is 0.19. This plot seems to suggest that the number of polytopes encountered425

is much smaller than the worst case possibility.426

G.2 Extra Experiment 2:427

Additionally, we run experiments to investigate the benefit of using a Lipschitz overapproximation428

based potential versus the standard `p distance. Table G.2 demonstrates the average number of429

encountered polytopes when verifying pointwise robustness.430

Table 1: Average number of polytopes explored until computing exact pointwise robustness across
binary (1’s and 7’s only) MNIST, and full MNIST, and two architectures. The average is over 50
random examples. This demonstrates the benefit of leveraging the Lipschitz upper bound in the
potential function.

Binary MNIST Full MNIST

Potential 70Net 40Net 70Net 40Net

φlip 4.2 15.3 9.7 27.5
φp 5.1 25.6 17.1 90.3
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