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Abstract

Deep neural networks have been embraced as models of sensory systems, in-
stantiating representational transformations that appear to resemble those in
the visual and auditory systems. To more thoroughly investigate their similarity
to biological systems, we synthesized model metamers – stimuli that produce
the same responses at some stage of a network’s representation. We gener-
ated model metamers for natural stimuli by performing gradient descent on
a noise signal, matching the responses of individual layers of image and au-
dio networks to a natural image or speech signal. The resulting signals reflect
the invariances instantiated in the network up to the matched layer. We then
measured whether model metamers were recognizable to human observers –
a necessary condition for the model representations to replicate those of hu-
mans. Although model metamers from early network layers were recognizable
to humans, those from deeper layers were not. Auditory model metamers be-
came more human-recognizable with architectural modifications that reduced
aliasing from pooling operations, but those from the deepest layers remained
unrecognizable. We also used the metamer test to compare model representa-
tions. Cross-model metamer recognition dropped off for deeper layers, roughly
at the same point that human recognition deteriorated, indicating divergence
across model representations. The results reveal discrepancies between model
and human representations, but also show how metamers can help guide model
refinement and elucidate model representations.

1 Introduction

Artificial neural networks now achieve human-level performance on tasks such as image and
speech recognition, raising the question of whether they should be taken seriously as models of
biological sensory systems [1, 2, 3, 4, 5]. Detailed comparisons of network performance character-
istics in some cases reveal human-like error patterns, suggesting computational similarities with
humans [6, 7, 8]. Other studies have found that brain responses can be better predicted by features
learned by deep neural networks than by those of traditional sensory models [2, 8]. On the other
hand, neural network models can typically be fooled by adversarial perturbations that have no
effect on humans [9, 10], are in some cases excessively dependent on particular image features,
such as texture [11], and do not fully mirror human sensitivity to image distortions [12, 13], sug-
gesting differences with human perceptual systems. However, these discrepancies have primarily
been demonstrated using stimuli specifically constructed to induce classification errors. Here, we
demonstrate that the divergence between artificial network and human representations occurs
generically rather than only in adversarial situations.
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We use “model metamers” to test the similarity between human and artificial neural network
representations. Metamers are stimuli that are physically distinct but that are perceived to be
the same by an observer. Stimuli that are metameric for humans have long been used to infer
the underlying structure of the human perceptual system. Metamers provided some of the
original evidence for trichromacy in human color vision, and have also been applied to texture
perception [14] and visual crowding [15, 16]. Related ideas can also be used to test models of
neural computation [17]. Here we leverage the idea that metamers for a valid model of human
perception should also be metamers for humans. Model metamers produce the same activations
in a model layer as some other stimulus (here a natural sound or image). Because the activations
at all subsequent layers must also be the same, the metamers are classified the same by the model.
Here, we approximate model metamers via iterative optimization, producing stimuli that produce
nearly the same activations as a natural stimulus, thus leading to the same network prediction. As a
test of whether the model accurately reflects human perception, we measure whether humans also
correctly classify the model metamers. Although this test is looser than the classical metamer test
(which requires metamers to be fully indistinguishable), it is conservative with respect to the goal
of testing a model of human recognition. We consider model metamers that are unrecognizable
to a human to be a model failure, cognizant that models that do not perfectly match human
representations in this way might nonetheless be useful in other respects.

Because the neural network models we consider are trained to classify exemplars of highly variable
object or speech classes, and thus to instantiate representations that are invariant to within-class
variation, it is expected that metamers from deeper layers will exhibit greater physical variability
than those from early layers. The question we sought to answer is whether the nature of the
invariances would be similar to those of humans, in which case the model metamers should
remain human-recognizable regardless of the stage from which they are generated. We generated
model metamers for three image-trained and five sound-trained models that perform well on state-
of-the-art tasks and then measured human recognition of the model metamers in psychophysical
experiments. We also applied the same method across networks, to ask whether the invariances
learned by one network resemble those learned by another. The results establish metamers as a
tool to test and understand deep neural networks, with potential uses for multi-task applications,
transfer learning, and network interpretability.

2 Related Work

2.1 Visualization of deep networks

Previous neural network visualizations have used gradient descent on the input signals to visualize
the representations in neural networks [18], in some cases matching the activations at a given layer
[19] as we do here. Natural image priors have been shown to make images reconstructed in this way
“look” more natural, and further regularization tools have been proposed with a similar purpose
[20, 21]. Although such regularization can generate visually appealing images, the importance of
using a natural image prior suggests differences between the network representations and those
of humans. Taking this observation as a starting point, we measured the human-recognizability
of images or sounds that were matched at different network stages without imposing a separate
prior, to quantify the potential divergence in representations and get clues as to its origins.

2.2 Comparing networks with other networks

Prior work on network similarity relates the learned representations via methods such as canonical
correlation analysis (CCA) [22, 23, 24]. Other such work has been inspired by the neuroscience
technique of representational similarity analysis [25, 26]. Here we also use metamers for model
comparison, on the grounds that metamers for one model should also be metamers for another
model (as measured here by producing the same class labels, although one could apply more
fine-grained methods) if the two models share invariances.

2.3 Metamers applied to averaged features

Metamers have been used to develop models of human perception by pooling features to directly
induce invariance across space or time. Work on visual crowding used images that have the
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Figure 1: Model metamers are constructed by optimizing a random input signal such that it
matches the measured activations of an original signal at a particular network stage. Model
metamers are then presented to humans (or other networks) to measure the similarity of internal
representations.

same spatially-averaged statistics in the periphery and are indistinguishable from the original
in particular viewing conditions [27, 16, 28, 29]. Other work has used time-averaged statistics
measured from auditory models, generating auditory textures that are mistaken for the original
natural sound [30, 31]. Our work here is a more general instantiation of the metamerism approach,
applicable to domains outside of peripheral vision and texture where invariances arise in the
service of recognition rather than as a direct consequence of pooling.

3 Methods

3.1 Metamer generation

Model metamers were generated using an iterative feature visualization technique [19] 1. We
initialized the metamer with noise and then performed gradient descent to minimize the squared
error between its network activations and those for a paired natural signal. All models and metamer
generation were implemented in TensorFlow [32]. Metamer synthesis used 15000 iterations of the
Adam optimizer [33] with a learning rate of 0.001, with the exception of the VGGish Embedding
(0.01) and DeepSpeech (0.0001) models.

In order to validate that we had appropriately matched the synthetic signal to the original, we
computed the Spearman correlation between the model metamer and corresponding original
signal. These correlations were typically close to 1 (Figure 2). Once candidate metamers were
generated, the following two conditions had to be true for a model metamer to be included in our
experiments: (1) The network predicted the same label for the synthetic metamer and the paired
natural image. This is the same classification test we apply to humans and other networks. (2) The
Spearman ρ between the metamer and natural image fell outside of a null distribution measured
between 1,000,000 randomly chosen image or audio pairs from the training set. We compare
to a null distribution rather than applying a strict threshold because the expected correlation
varies with the network and layer. Setting hard cutoffs could potentially call samples metameric
which are no more matched than chance, and we empirically found this procedure crucial for the
random network (Figure S3). Histograms of the null and metamer correlations for all networks
and selected layers are included in Tables S4-S5 and Figures S1-S8.

We found empirically that it was difficult to match some layers after a ReLU activation due to
the initialized signal producing many activations of zero (Fig 2(b)). To improve the optimization,
we modified the gradient through the metamer generation layer ReLU to be 1 for all values,
including for values below zero, when generating a metamer for activations immediately following
a ReLU. Figure 2(c) shows the matching fidelity (as measured by Spearman’s ρ) for 20 example
metamers generated with either the normal gradient or the modified gradient. The modified
gradient substantially improved the matching on some layers (layer_3 of DeepSpeech, and conv_4
of the Word Trained CNN). We used the modified gradient for all metamers generated after a ReLU.

1Example generation code and trained models: https://github.com/jenellefeather/model_metamers
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Figure 2: Validation of model metamer optimization (a) The model metamer is intended to
produce the same activations as the original stimulus in a particular network layer. We quantified
the fidelity of the matching as the Spearman correlation between the activations produced by
a model metamer and the corresponding original stimulus, with histograms across stimuli. For
a comparison null distribution, we also measured the correlation for randomly chosen pairs of
signals from the training set. As intended, metamers generated from an early layer (top row)
are well matched to the original in the early layer, with correlations close to 1 (blue distribution,
top left), far above the null distribution across stimuli (red). Because the networks used here are
deterministic and feedforward, the metamers should also produce the same activations at all
subsequent layers, and they do (correlations near 1 in late layers, blue distribution, top right).
Because of the many-to-one mapping instantiated by the network, metamers for a late layer
(bottom row) do not match the activations in the early layer better than chance (left), but match
the late layer as intended (right). (b) Comparison of activation matching with a standard ReLU
activation function gradient and with the modified ReLU gradient. Without the modification,
many non-zero values in the original activation get matched to zero. (c) Example layer-wise
matching fidelity for metamers generated with either the standard ReLU gradient (blue) and the
linear gradient ReLU (red) for two audio networks. In both networks there are layers that are
significantly better matched using the modified ReLU gradients.

For visual metamers, pixel values were bounded between 0-255 or 0-1 (matching the preprocessing
of the trained network), and were initialized with white noise with mean at the center value of the
range. No other regularization was employed. For audio metamers, we applied gradient clipping
to operations that resulted in problems with the optimization (specifically, logarithms and power
operations) which were present in the audio pre-processing (that transformed the waveform to a
frequency representation that provided the input to the networks). The audio metamer generation
was initialized with pink noise at an RMS value of 0.01.

3.2 Auditory models

Our experiments used a five-layer convolutional network trained on the output of a model of the
human ear. This cochlear model consisted of a filterbank of 171 filters spaced between 20Hz-80Hz
with bandwidths and spacing modeled on the human ear [34, 30]. The envelope of each resulting
audio subband was extracted via the Hilbert transform, downsampled to 200Hz, and passed
through a compressive non-linearity. This yielded a ‘cochleagram’ representation, similar to a
conventional spectrogram but with frequency resolution based on the human cochlea. We trained
an architecture similar to that in [8] (full architecture described in Table S2).

Many neural networks do not obey the sampling theorem (because downsampling occurs without
a preceding lowpass filter), and others have suggested that this could yield invariances that do
not align with human perception [35, 36, 37]. Motivated by these observations, we constructed
a modified architecture to reduce aliasing artifacts (Table S3). The modifications replaced max
pooling operations with weighted average pooling using a hanning kernel applied with stride equal
to that of the original max pooling. Any convolutional layer with a stride greater than one was
replaced with a convolutional layer with a stride of one, followed by a hanning pooling operation
with stride equal to the original convolutional stride.
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