
Acceleration via Symplectic Discretization of
High-Resolution Differential Equations

Anonymous Author(s)
Affiliation
Address
email

Abstract

We study first-order optimization algorithms obtained by discretizing ordinary1

differential equations (ODEs) corresponding to Nesterov’s accelerated gradient2

methods (NAGs) and Polyak’s heavy-ball method. We consider three discretization3

schemes: symplectic Euler (S), explicit Euler (E) and implicit Euler (I) schemes.4

We show that the optimization algorithm generated by applying the symplectic5

scheme to a high-resolution ODE proposed by Shi et al. [2018] achieves the accel-6

erated rate for minimizing both strongly convex functions and convex functions.7

On the other hand, the resulting algorithm either fails to achieve acceleration or is8

impractical when the scheme is implicit, the ODE is low-resolution, or the scheme9

is explicit.10

1 Introduction11

In this paper, we consider unconstrained minimization problems:12

min
x∈Rn

f(x), (1.1)

where f is a smooth convex function. The touchstone method in this setting is gradient descent (GD):13

xk+1 = xk − s∇f(xk), (1.2)

where x0 is a given initial point and s > 0 is the step size. Whether there exist methods that improve14

on GD while remaining within the framework of first-order optimization is a subtle and important15

question.16

Modern attempts to address this question date to Polyak [1964, 1987], who incorporated a momentum17

term into the gradient step, yielding a method that is referred to as the heavy-ball method:18

yk+1 = xk − s∇f(xk), xk+1 = yk+1 − α(xk − xk−1), (1.3)

where α > 0 is a momentum coefficient. While the heavy-ball method provably attains a faster rate19

of local convergence than GD near a minimum of f , it generally does not provide a guarantee of20

acceleration globally [Polyak, 1964].21

The next major development in first-order methods is due to Nesterov, who introduced first-order22

gradient methods that have a faster global convergence rate than GD [Nesterov, 1983, 2013]. For a23

µ-strongly convex objective f with L-Lipschitz gradients, Nesterov’s accelerated gradient method24

(NAG-SC) involves the following pair of update equations:25

yk+1 = xk − s∇f(xk), xk+1 = yk+1 +
1−√µs
1 +
√
µs

(yk+1 − yk) . (1.4)

Submitted to 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Do not distribute.



If one sets s = 1/L, then NAG-SC enjoys a O
(
(1−

√
µ/L)k

)
convergence rate, improving on26

the O
(
(1− µ/L)k

)
convergence rate of GD. Nesterov also developed an accelerated algorithm27

(NAG-C) targeting smooth convex functions that are not strongly convex:28

yk+1 = xk − s∇f(xk), xk+1 = yk+1 +
k

k + 3
(yk+1 − yk). (1.5)

This algorithm has a O(L/k2) convergence rate, which is faster than GD’s O(L/k) rate.29

While yielding optimal and effective algorithms, the design principle of Nesterov’s accelerated30

gradient algorithms (NAG) is not transparent. Convergence proofs for NAG often use the estimate31

sequence technique, which is inductive in nature and relies on series of algebraic tricks [Bubeck,32

2015]. In recent years progress has been made in the understanding of acceleration by moving to a33

continuous-time formulation. In particular, Su et al. [2016] showed that as s→ 0, NAG-C converges34

to an ordinary differential equation (ODE) (Equation (2.2)); moreover, for this ODE, Su et al. [2016]35

derived a (continuous-time) convergence rate using a Lyapunov function, and further transformed36

this Lyapunov function to a discrete version and thereby provided a new proof of the fact that37

NAG-C enjoys a O(L/k2) rate.38

Further progress in this vein has involved taking a variational point of view that derives ODEs from39

an underlying Lagrangian rather than from a limiting argument [Wibisono et al., 2016]. While this40

approach captures many of the variations of Nesterov acceleration presented in the literature, it does41

not distinguish between the heavy-ball dynamics and the NAG dynamics, and thus fails to distinguish42

between local and global acceleration. More recently, Shi et al. [2018] have returned to limiting43

arguments with a more sophisticated methodology. They have derived high-resolution ODEs for the44

heavy-ball method (Equation (2.4)), NAG-SC (Equation (2.5)) and NAG-C (Equation (2.6)). Notably,45

the high-resolution ODEs for the heavy-ball dynamics and the accelerated dynamics are different.46

Shi et al. [2018] also presented Lyapunov functions for these ODEs as well as the corresponding47

algorithms, and showed that these Lyapunov functions can be used to derive the accelerated rates48

of NAG-SC and NAG-C. A number of other papers have also contributed to the understanding of49

acceleration by working in a continuous-time formulation [Krichene and Bartlett, 2017, Krichene50

et al., 2015, Diakonikolas and Orecchia, 2017, Ghadimi and Lan, 2016, Diakonikolas and Orecchia,51

2017].52

This emerging literature has thus provided a new level of understanding of design principles for53

accelerated optimization. The design involves an interplay between continuous-time and discrete-time54

dynamics. ODEs are obtained either variationally or via a limiting scheme, and various properties of55

the ODEs are studied, including their convergence rate, topological aspects of their flow and their56

behavior under perturbation. Lyapunov functions play a key role in such analyses, and also allow57

aspects of the continuous-time analysis to be transferred to discrete time [see, e.g., Wilson et al.,58

2016].59

And yet the literature has not yet provided a full exploration of the transition from continuous-time60

ODEs to discrete-time algorithms. Indeed, this transition is a non-trivial one, as evidenced by the61

decades of research on numerical methods for the discretization of ODEs, including most notably the62

sophisticated arsenal of techniques referred to as “geometric numerical integration” that are used for63

ODEs obtained from underlying variational principles [Hairer et al., 2006]. Recent work has begun64

to explore these issues; examples include the use of symplectic integrators by Betancourt et al. [2018]65

and the use of Runge-Kutta integration by Zhang et al. [2018]. However, these methods do not66

always yield proofs that accelerated rates are retained in discrete time, and when they do they involve67

implicit discretization, which is generally not practical except in the setting of quadratic objectives.68

Thus we wish to address the following fundamental question:69

Can we systematically and provably obtain new accelerated methods via the numerical discretization70

of ordinary differential equations?71

Our approach to this question is a dynamical systems framework based on Lyapunov theory. Our72

main results are as follows:73

1. In Section 3.1, we consider three simple numerical discretization schemes—symplectic Euler74

(S), explicit Euler (E) and implicit Euler (I) schemes—to discretize the high-resolution ODE of75
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Nesterov’s accelerated method for strongly convex functions. We show that the optimization76

method generated by symplectic discretization achieves a O((1− O(1)
√
µ/L)k) rate, thereby77

attaining acceleration. In sharp contrast, the implicit scheme is not practical for implementation,78

and the explicit scheme, while being simple, fails to achieve acceleration.79

2. In Section 3.2, we apply these discretization schemes to the ODE for modeling the heavy-ball80

method, which can be viewed as a low-resolution ODE that lacks a gradient-correction term [Shi81

et al., 2018]. In contrast to the previous two cases of high-resolution ODEs, the symplectic scheme82

does not achieve acceleration for this low-resolution ODE. More broadly, in Appendix D we83

present more examples of low-resolution ODEs where symplectic discretization does not lead to84

acceleration.85

3. Next, we apply the three simple Euler schemes to the high-resolution ODE of Nesterov’s acceler-86

ated method for convex functions. Again, our Lyapunov analysis sheds light on the superiority of87

the symplectic scheme over the other two schemes. This is the subject of Section 4.88

Taken together, the three findings have the implication that high-resolution ODEs and symplectic89

schemes are critical to achieving acceleration using numerical discretization. More precisely, in90

addition to allowing relatively simple implementations, symplectic schemes allow for a large step size91

without a loss of stability, in a manner akin to (but better than) implicit schemes. In stark contrast,92

in the setting of low-resolution ODEs, only the implicit schemes remain stable with a large step93

size, due to the lack of gradient correction. Moreover, the choice of Lyapunov function is equally94

essential to obtaining sharp convergence rates. This important fact is highlighted in Theorem A.6 in95

the Appendix, where we analyze GD by considering it as a discretization method for gradient flow96

(the ODE counterpart of GD). Using the discrete version of the Lyapunov function proposed in Su97

et al. [2016] instead of the classical one, we show that GD in fact minimizes the squared gradient98

norm (choosing the best iterate so far) at a rate of O(L2/k2). Although this rate of convergence in99

the problem of squared gradient norm minimization is known in the literature [Nesterov, 2012], the100

Lyapunov function argument provides a systematic approach to obtaining this rate in this problem and101

others. In particular, this example demonstrates the usefulness and flexibility of Lyapunov functions102

as a mathematical tool for optimization problems.103

2 Preliminaries104

In this section, we introduce necessary notation, and review ODEs derived in previous work and three105

classical numerical discretization schemes.106

We mostly follow the notation of Nesterov [2013], with slight modifications tailored to the present107

paper. Let F1
L(Rn) be the class of L-smooth convex functions defined on Rn; that is, f ∈ F1

L(Rn) if108

f(y) ≥ f(x) + 〈∇f(x), y − x〉 for all x, y ∈ Rn and its gradient is L-Lipschitz continuous in the109

sense that110

‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖ ,
where ‖·‖ denotes the standard Euclidean norm andL > 0 is the Lipschitz constant. The function class111

F2
L(Rn) is the subclass of F1

L(Rn) such that each f has a Lipschitz-continuous Hessian. For p = 1, 2,112

let Spµ,L(Rn) denote the subclass of FpL(Rn) such that each member f is µ-strongly convex for some113

0 < µ ≤ L. That is, f ∈ Spµ,L(Rn) if f ∈ FpL(Rn) and f(y) ≥ f(x)+〈∇f(x), y − x〉+ µ
2 ‖y − x‖

2
114

for all x, y ∈ Rn. Let x? denote a minimizer of f(x).115

2.1 Approximating ODEs116

In this section we list all of the ODEs that we will discretize in this paper. We refer readers to recent117

papers by Su et al. [2016], Wibisono et al. [2016] and Shi et al. [2018] for the rigorous derivations of118

these ODEs. We begin with the simplest. Taking the step size s→ 0 in Equation (1.2), we obtain the119

following ODE (gradient flow):120

Ẋ = −∇f(X), (2.1)
with any initial X(0) = x0 ∈ Rn.121

Next, by taking s→ 0 in Equation (1.5), Su et al. [2016] derived the low-resolution ODE of NAG-C:122

Ẍ +
3

t
Ẋ +∇f(X) = 0, (2.2)
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with X(0) = x0 and Ẋ(0) = 0. For strongly convex functions, by taking s→ 0, one can derive the123

following low-resolution ODE (see, for example, Wibisono et al. [2016])124

Ẍ + 2
√
µẊ +∇f(X) = 0 (2.3)

that models both the heavy-ball method and NAG-SC. This ODE has the same initial conditions125

as (2.2).126

Recently, Shi et al. [2018] proposed high-resolution ODEs for modeling acceleration methods. The127

key ingredient in these ODEs is that the O(
√
s) terms are preserved in the ODEs. As a result, the128

heavy-ball method and NAG-SC have different models as ODEs.129

(a) If f ∈ S1µ,L(Rn), the high-resolution ODE of the heavy-ball method (1.3) is130

Ẍ + 2
√
µẊ + (1 +

√
µs)∇f(X) = 0, (2.4)

with X(0) = x0 and Ẋ(0) = − 2
√
s∇f(x0)
1+
√
µs . This ODE has essentially the same properties as its131

low-resolution counterpart (2.3) due to the absence of∇2f(X)Ẋ .132

(b) If f ∈ S2µ,L(Rn), the high-resolution ODE of NAG-SC (1.4) is133

Ẍ + 2
√
µẊ +

√
s∇2f(X)Ẋ + (1 +

√
µs)∇f(X) = 0, (2.5)

with X(0) = x0 and Ẋ(0) = − 2
√
s∇f(x0)
1+
√
µs .134

(c) If f ∈ F2
L(Rn), the high-resolution ODE of NAG-C (1.5) is135

Ẍ +
3

t
Ẋ +

√
s∇2f(X)Ẋ +

(
1 +

3
√
s

2t

)
∇f(X) = 0 (2.6)

for t ≥ 3
√
s/2, with X(3

√
s/2) = x0 and Ẋ(3

√
s/2) = −

√
s∇f(x0).136

2.2 Discretization schemes137

To discretize ODEs (2.1)-(2.6), we replace Ẋ by xk+1−xk, V̇ by vk+1− vk and replace other terms138

with approximations. Different discretization schemes correspond to different approximations.139

• The most straightforward scheme is the explicit scheme, which uses the following approximation140

rule:141

xk+1 − xk =
√
svk,

√
s∇2f(xk)vk ≈ ∇f(xk+1)−∇f(xk).

• Another discretization scheme is the implicit scheme, which uses the following approximation142

rule:143

xk+1 − xk =
√
svk+1,

√
s∇2f(xk+1)vk+1 ≈ ∇f(xk+1)−∇f(xk).

Note that compared with the explicit scheme, the implicit scheme is not practical because the144

update of xk+1 requires knowing vk+1 while the update of vk+1 requires knowing xk+1.145

• The last discretization scheme considered in this paper is the symplectic scheme, which uses the146

following approximation rule.147

xk+1 − xk =
√
svk,

√
s∇2f(xk+1)vk ≈ ∇f(xk+1)−∇f(xk).

Note this scheme is practical because the update of xk+1 only requires knowing vk.148

We remark that for low-resolution ODEs, there is no∇2f(x) term, whereas for high-resolution ODEs,149

we have this term and we use the difference of gradients to approximate this term. This additional150

approximation term is critical to acceleration.151

3 High-Resolution ODEs for Strongly Convex Functions152

This section considers numerical discretization of the high-resolution ODEs of NAG-SC and the153

heavy-ball method using the symplectic Euler, explicit Euler and implicit Euler scheme. In particular,154

we compare rates of convergence towards the objective minimum of the three simple Euler schemes155

and the two methods (NAG-SC and the heavy-ball method) in Section 3.1 and Section 3.2, respectively.156

For both cases, the associated symplectic scheme is shown to exhibit surprisingly similarity to the157

corresponding classical method.158
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3.1 NAG-SC159

The high-resolution ODE (2.5) of NAG-SC can be equivalently written in the phase space as160

Ẋ = V, V̇ = −2√µV −
√
s∇2f(X)V − (1 +

√
µs)∇f(X), (3.1)

with the initial conditions X(0) = x0 and V (0) = − 2
√
s∇f(x0)
1+
√
µs . For any f ∈ S2µ,L(Rn), Theorem 1161

of Shi et al. [2018] shows that the solution X = X(t) of the ODE (2.5) satisfies162

f(X)− f(x?) ≤ 2 ‖x0 − x?‖2

s
e−

√
µt

4 ,

for any step size 0 < s ≤ 1/L. In particular, setting the step size to s = 1/L, we get163

f(X)− f(x?) ≤ 2L ‖x0 − x?‖2 e−
√
µt

4 .

In the phase space representation, NAG-SC is formulated as164 
xk+1 − xk =

√
svk

vk+1 − vk = −
2
√
µs

1−√µs
vk+1 −

√
s(∇f(xk+1)−∇f(xk))−

1 +
√
µs

1−√µs
·
√
s∇f(xk+1),

(3.2)
with the initial condition v0 = − 2

√
s∇f(x0)
1+
√
µs for any x0. This method maintains the accelerated rate165

of the ODE by recognizing166

f(xk)− f(x?) ≤
5L ‖x0 − x?‖2

(1 +
√
µ/L/12)k

;

(see Theorem 3 in Shi et al. [2018]) and the identification t ≈ k
√
s.167

Viewing NAG-SC as a numerical discretization of (2.5), one might wonder if any of the three168

simple Euler schemes—symplectic Euler scheme, explicit Euler scheme, and implicit Euler scheme—169

maintain the accelerated rate in discretizing the high-resolution ODE. For clarity, the update rules of170

the three schemes are given as follows, each with the initial points x0 and v0 = − 2
√
s∇f(x0)
1+
√
µs .171

Euler scheme of (3.1): (S), (E) and (I) respectively172

(S)

{
xk+1 − xk =

√
svk

vk+1 − vk = −2√µsvk+1 −
√
s (∇f(xk+1)−∇f(xk))−

√
s(1 +

√
µs)∇f(xk+1).

(E)

{
xk+1 − xk =

√
svk

vk+1 − vk = −2√µsvk −
√
s (∇f(xk+1)−∇f(xk))−

√
s(1 +

√
µs)∇f(xk).

(I)

{
xk+1 − xk =

√
svk+1

vk+1 − vk = −2√µsvk+1 −
√
s (∇f(xk+1)−∇f(xk))−

√
s(1 +

√
µs)∇f(xk+1).

Among the three Euler schemes, the symplectic scheme is the closest to NAG-SC (3.2). More173

precisely, NAG-SC differs from the symplectic scheme only in an additional factor of 1
1−√µs in174

the second line of (3.2). When the step size s is small, NAG-SC is, roughly speaking, a symplectic175

method if we make use of 1
1−√µs ≈ 1. In relating to the literature, the connection between accelerated176

methods and the symplectic schemes has been explored in Betancourt et al. [2018], which mainly177

considers the leapfrog integrator, a second-order symplectic integrator. In contrast, the symplectic178

Euler scheme studied in this paper is a first-order symplectic integrator.179

Interestingly, the close resemblance between the two algorithms is found not only in their formulations,180

but also in their convergence rates, which are both accelerated as shown by Theorem B.1 and181

Theorem 3.1.182

Note that the discrete Lyapunov function used in the proof of the symplectic Euler scheme of (3.1) is183

E(k) =1

4
‖vk‖2 +

1

4

∥∥2√µ(xk+1 − x?) + vk +
√
s∇f(xk)

∥∥2
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+ (1 +
√
µs) (f(xk)− f(x?))−

(1 +
√
µs)2

1 + 2
√
µs
· s
2
‖∇f(xk)‖2 . (3.3)

The proof of Theorem B.1 is deferred to Appendix B.1. The following result is a useful consequence184

of this theorem.185

Theorem 3.1 (Discretization of NAG-SC ODE). For any f ∈ S1µ,L(Rn), the following conclusions186

hold:187

(a) Taking step size s = 4/(9L), the symplectic Euler scheme of (3.1) satisfies188

f(xk)− f(x?) ≤
5L ‖x0 − x?‖2(
1 + 1

9

√
µ
L

)k . (3.4)

(b) Taking step size s = µ/(100L2), the explicit Euler scheme of (3.1) satisfies189

f(xk)− f(x?) ≤ 3L ‖x0 − x?‖2
(
1− µ

80L

)k
. (3.5)

(c) Taking step size s = 1/L, the implicit Euler scheme of (3.1) satisfies190

f(xk)− f(x?) ≤
13 ‖x0 − x?‖2

4
(
1 + 1

4

√
µ
L

)k . (3.6)

In addition, Theorem 3.1 shows that the implicit scheme also achieves acceleration. However, unlike191

NAG-SC, the symplectic scheme, and the explicit scheme, the implicit scheme is generally not easy192

to use in practice because it requires solving a nonlinear fixed-point equation when the objective is193

not quadratic. On the other hand, the explicit scheme can only take a smaller step size O(µ/L2),194

which prevents this scheme from achieving acceleration.195

3.2 The heavy-ball method196

We turn to the heavy-ball method ODE (2.4), whose phase space representation reads197

Ẋ = V, V̇ = −2√µV − (1 +
√
µs)∇f(X), (3.7)

with the initial conditions X(0) = x0 and V (0) = − 2
√
s∇f(x0)
1+
√
µs . Theorem 2 in Shi et al. [2018]198

shows that the solution X = X(t) to this ODE satisfies199

f(X(t))− f(x?) ≤ 7 ‖x0 − x?‖2

2s
e−

√
µt

4 ,

for f ∈ S1µ,L(Rn) and any step size 0 < s ≤ 1/L. In particular, taking s = 1/L gives200

f(X(t))− f(x?) ≤ 7L ‖x0 − x?‖2

2
e−

√
µt

4 .

Returning to the discrete regime, Polyak’s heavy-ball method uses the following update rule:201 
xk+1 − xk =

√
svk

vk+1 − vk = −
2
√
µs

1−√µs
vk+1 −

1 +
√
µs

1−√µs
·
√
s∇f(xk+1),

which attains a non-accelerated rate (see Theorem 4 of Shi et al. [2018]):202

f(xk)− f(x?) ≤
5L ‖x0 − x?‖2(

1 + µ
16L

)k . (3.8)

The three simple Euler schemes for numerically solving the ODE (2.4) are given as follows. Every203

scheme starts with any arbitrary x0 and v0 = − 2
√
s∇f(x0)
1+
√
µs . As in the case of NAG-SC, the symplectic204

scheme is the closest to the heavy-ball method.205
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Euler scheme of (3.7): (S), (E) and (I) respectively206

(S)

{
xk+1 − xk =

√
svk,

vk+1 − vk = −2√µsvk+1 −
√
s(1 +

√
µs)∇f(xk+1).

(E)

{
xk+1 − xk =

√
svk

vk+1 − vk = −2√µsvk −
√
s(1 +

√
µs)∇f(xk).

(I)

{
xk+1 − xk =

√
svk+1

vk+1 − vk = −2√µsvk+1 −
√
s(1 +

√
µs)∇f(xk+1).

The theorem below characterizes the convergence rates of the three schemes. This theorem is extended207

to general step sizes by Theorem B.2 in Appendix B.2.208

Theorem 3.2 (Discretization of heavy-ball ODE). For any f ∈ S1µ,L(Rn), the following conclusions209

hold:210

(a) Taking step size s = µ/(16L2), the symplectic Euler scheme of (3.7) satisfies211

f(xk)− f(x?) ≤
3L ‖x0 − x?‖2(

1 + µ
16L

)k . (3.9)

(b) Taking step size s = µ/(36L2), the explicit Euler scheme of (3.7) satisfies212

f(xk)− f(x?) ≤ 3L ‖x0 − x?‖2
(
1− µ

48L

)k
. (3.10)

(c) Taking step size s = 1/L, the implicit Euler scheme of (3.7) satisfies213

f(xk)− f(x?) ≤
15L ‖x0 − x?‖2

4
(
1 + 1

4

√
µ
L

)k . (3.11)

Taken together, (3.8) and Theorem 3.2 imply that neither the heavy-ball method nor the symplectic214

scheme attains an accelerated rate. In contrast, the implicit scheme achieves acceleration as in the215

NAG-SC case, but it is impractical except for quadratic objectives.216

4 High-Resolution ODEs for Convex Functions217

In this section, we turn to numerical discretization of the high-resolution ODE (2.6) related to NAG-C.218

All proofs are deferred to Appendix C. This ODE in the phase space representation reads [Shi et al.,219

2018] as follows:220

Ẋ = V, V̇ = −3

t
· V −

√
s∇2f(X)V −

(
1 +

3
√
s

2t

)
∇f(X), (4.1)

with X(3
√
s/2) = x0 and V (3

√
s/2) = −

√
s∇f(x0). Theorem 5 of Shi et al. [2018] shows that221

Let f ∈ F1
L(Rn). For any step size 0 < s ≤ 1/L, the solution X = X(t) of the high-resolution222

ODE (2.6) satisfies223 
f(X)− f(x?) ≤ (4 + 3sL) ‖x0 − x?‖2

t (2t+
√
s)

inf
t0≤u≤t

‖∇f(X(u))‖2 ≤ (12 + 9sL) ‖x0 − x?‖2

2
√
s (t3 − t30)

, (4.2)

for any t > t0 = 1.5
√
s. A caveat here is that it is unclear how to use a Lyapunov function to224

prove convergence of the (simple) explicit, symplectic or implicit Euler scheme by direct numerical225

discretization of the ODE (2.2). See Appendix C.2 for more discussion on this point. Therefore, we226

slightly modify the ODE to the following one:227

Ẋ = V, V̇ = −3

t
· V −

√
s∇2f(X)V −

(
1 +

3
√
s

t

)
∇f(X). (4.3)
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The only difference is in the third term on the right-hand side of the second equation, where we replace228 (
1 + 3

√
s

2t

)
∇f(X) by

(
1 + 3

√
s
t

)
∇f(X). Now, we apply the three schemes on this (modified)229

ODE in the phase space, including the original NAG-C, which all start with x0 and v0 = −
√
s∇f(x0).230

Euler scheme of (4.3): (S), (E) and (I) respectively231

(S)


xk+1 − xk =

√
svk

vk+1 − vk = − 3

k + 1
vk+1 −

√
s (∇f(xk+1)−∇f(xk))−

√
s

(
k + 4

k + 1

)
∇f(xk+1).

(E)


xk+1 − xk =

√
svk

vk+1 − vk = −3

k
vk −

√
s (∇f(xk+1)−∇f(xk))−

√
s

(
k + 3

k

)
∇f(xk).

(I)


xk+1 − xk =

√
svk+1

vk+1 − vk = − 3

k + 1
vk+1 −

√
s (∇f(xk+1)−∇f(xk))−

√
s

(
k + 4

k + 1

)
∇f(xk+1).

Theorem 4.1. Let f ∈ F1
L (Rn). The following statements are true:232

(a) For any step size 0 < s ≤ 1/(3L), the symplectic Euler scheme of (4.3) (original NAG-C) satisfies233

234

f(xk)− f(x?) ≤
119 ‖x0 − x?‖2

s(k + 1)2
, min

0≤i≤k
‖∇f(xi)‖2 ≤

8568 ‖x0 − x?‖2

s2(k + 1)3
; (4.4)

(b) Taking any step size 0 < s ≤ 1/L, the implicit Euler scheme of (4.3) satisfies235

f(xk)− f(x?) ≤
(3sL+ 2) ‖x0 − x?‖2

s(k + 2)(k + 3)
, min

0≤i≤k
‖∇f(xi)‖2 ≤

(3sL+ 2) ‖x0 − x?‖2

s2(k + 1)3
.

(4.5)

Note that Theorem 4.1 (a) is the same as Theorem 6 of Shi et al. [2018]. The explicit Euler scheme236

does not guarantee convergence; see the analysis in Appendix C.1.237

5 Discussion238

In this paper, we have analyzed the convergence rates of three numerical discretization schemes—the239

symplectic Euler scheme, explicit Euler scheme, and implicit Euler scheme—applied to ODEs that are240

used for modeling Nesterov’s accelerated methods and Polyak’s heavy-ball method. The symplectic241

scheme is shown to achieve accelerated rates for the high-resolution ODEs of NAG-SC and (slightly242

modified) NAG-C [Shi et al., 2018], whereas no acceleration rates are observed when the same243

scheme is used to discretize the low-resolution counterparts [Su et al., 2016]. For comparison, the244

explicit scheme only allows for a small step size in discretizing these ODEs in order to ensure stability,245

thereby failing to achieve acceleration. Although the implicit scheme is proved to yield accelerated246

methods no matter whether high-resolution or low-resolution ODEs are discretized, this scheme is247

generally not practical except for a limited number of cases (for example, quadratic objectives).248

We conclude this paper by presenting several directions for future work. This work suggests that249

both symplectic schemes and high-resolution ODEs are crucial for numerical discretization to250

achieve acceleration. It would be of interest to formalize and prove this assertion. For example,251

does any higher-order symplectic scheme maintain acceleration for the high-resolution ODEs of252

NAGs? What is the fundamental mechanism of the gradient correction in high-resolution ODE in253

stabilizing symplectic discretization? Moreover, since the discretizations are applied to the modified254

high-resolution ODE of NAG-C, it is tempting to perform a comparison study between the two255

high-resolution ODEs in terms of discretization properties. Finally, recognizing Nesterov’s method256

(NAG-SC) is very similar to, but still different from, the corresponding symplectic scheme, one can257

design new algorithms as interpolations of the two methods; it would be interesting to investigate the258

convergence properties of these new algorithms.259
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A Gradient Flow322

A.1 Convergence rate of gradient flow323

The following theorem is the continuous-time version of Theorem 2.1.15 in Nesterov [2013].324

Theorem A.1. Let f ∈ S1µ,L(Rn). The solution X = X(t) to the gradient flow (2.1) satisfies325

‖X − x?‖ ≤ e−µt ‖x0 − x?‖ .

Proof. Taking the following Lyapunov function326

E = ‖X − x?‖2 ,
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we calculate its time derivative as327

dE
dt

= 2
〈
Ẋ,X − x?

〉
= −2 〈∇f(X), X − x?〉
≤ −2µ ‖X − x?‖2 .

Thus, we complete the proof.328

The theorem below is a continuous version of Theorem 2.1.14 in Nesterov [2013].329

Theorem A.2. Let f ∈ F1
L(Rn). The solution X = X(t) to the gradient flow (2.1) satisfies330

f(X)− f(x?) ≤ (f(x0)− f(x?)) ‖x0 − x?‖2

t (f(x0)− f(x?)) + ‖x0 − x?‖2
.

Proof. The time derivative of the distance function is331

d

dt
‖X − x?‖2 = 2

〈
Ẋ,X − x?

〉
= −2 〈∇f(X), X − x?〉
≤ 0.

We define a Lyapunov function as332

E = f(X)− f(x?).
With the basic convex inequality for f ∈ F1

L(Rn), we have333

f(X)− f(x?) ≤ 〈∇f(X), X − x?〉 ≤ ‖∇f(X)‖ ‖x0 − x?‖ .

Furthermore, we obtain that the time derivative is334

dE
dt

=
〈
∇f(X), Ẋ

〉
= −‖∇f(X)‖2 ≤ − (f(X)− f(x?))2

‖x0 − x?‖2
= − E2

‖x0 − x?‖2
.

Hence, the convergence rate is335

f(X)− f(x?) ≤ (f(x0)− f(x?)) ‖x0 − x?‖2

t (f(x0)− f(x?)) + ‖x0 − x?‖2
.

336

The following theorem is based on the Lyapunov function for gradient flow (2.1) in Su et al. [2016].337

Theorem A.3. Let f ∈ F1
L(Rn). The solution X = X(t) to the gradient flow (2.1) satisfies338 

f(X)− f(x?) ≤ ‖x0 − x
?‖2

2t

min
0≤u≤t

‖∇f(X(u))‖2 ≤ ‖x0 − x
?‖2

t2
.

Proof. The Lyapunov function is339

E = t (f(X)− f(x?)) + 1

2
‖X − x?‖2 .

We calculate its time derivative as340

dE
dt

= f(X)− f(x?) + t
〈
∇f(X), Ẋ

〉
+
〈
X − x?, Ẋ

〉
= f(X)− f(x?)− 〈∇f(X), X − x?〉 − t ‖∇f(X)‖22
≤ −t ‖∇f(X)‖2 .

Thus, we complete the proof.341
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Remark A.1. From the view of Lyapunov function, Theorem A.3 is essentially different from342

Theorem A.2. When the Lyapunov function343

E = t (f(X)− f(x?)) + 1

2
‖X − x?‖2

is used to take place of that344

E = f(X)− f(x?),
the same convergence rate for function value is not only obtained by the simple way of calculation,345

but we can also capture an advanced faster speed of the squared gradient norm. From this view,346

constructing Lyapunov function is a more powerful and advanced mathematical tool for optimization.347

A.2 Explicit Euler scheme348

The corresponding explicit-scheme version of Theorem A.1 is just Theorem 2.1.15 in Nesterov349

[2013]. We state it below.350

Theorem A.4 (Theorem 2.1.15, Nesterov [2013]). Let f ∈ S1µ,L(Rn). Taking any step size 0 < s ≤351

2/ (µ+ L), the iterates {xk}∞k=0 generated by GD (1.2) satisfy352

‖xk − x?‖2 ≤
(
1− 2µLs

µ+ L

)
‖x0 − x?‖2 .

In addition, if the step size is set to s = 2/(µ+ L), we get353

‖xk − x?‖2 ≤
(
L− µ
L+ µ

)2

‖x0 − x?‖2 .

This proof is from Nesterov [2013]. The only conceptual difference is that we use the Lyapunov354

function355

E(k) = ‖xk − x?‖2 ,
instead of the distance function rk in Nesterov [2013].356

The corresponding explicit version of Theorem A.2 is Theorem 2.1.14 in Nesterov [2013]. We also357

state it as follows.358

Theorem A.5 (Theorem 2.1.14, Nesterov [2013]). Let f ∈ F1
L(Rn). Taking any step size 0 < s <359

2/L, the iterates {xk}∞k=0 generated by GD (1.2) satisfy360

f(xk)− f(x?) ≤
2 (f(x0)− f(x?)) ‖x0 − x?‖2

2 ‖x0 − x?‖2 + ks(2− Ls) (f(x0)− f(x?))
. (A.1)

In addition, if the step size is set to s = 1/L, we get361

f(xk)− f(x?) ≤
2L ‖x0 − x?‖2

k + 4
. (A.2)

Again, Nesterov [2013] uses the Lyapunov function E(k) instead of rk.362

Finally, we show the corresponding discrete version of Theorem A.3, highlighting the ODE-based363

approach and the importance of Lyapunov functions in proofs.364

Theorem A.6. Let f ∈ F1
L(Rn). Taking any step size 0 < s ≤ 1/L, the iterates {xk}∞k=0 generated365

by GD (1.2) satisfy366 
f(xk)− f(x?) ≤

‖x0 − x?‖2

2ks

min
0≤i≤k

‖∇f(xi)‖2 ≤
2 ‖x0 − x?‖2

s2(k + 1)(k + 2)
.

(A.3)

In addition, if the step size is set s = 1/L, we have367 
f(xk)− f(x?) ≤

L ‖x0 − x?‖2

2k

min
0≤i≤k

‖∇f(xi)‖2 ≤
2L2 ‖x0 − x?‖2

(k + 1)(k + 2)
.

(A.4)
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To obtain this result, we use a Lyapunov function that is different from the standard analysis of368

gradient descent, which uses the Lyapunov function E(k) , f(xk) − f(x?). This Lyapunov369

function yields the O(L/k) convergence rate for the function value. For the squared gradient norm,370

however, this Lyapunov function can only exploit the L-smoothness property that transforms the371

function value to the gradient norm, giving the sub-optimal O(L2/k) rate, due to the absence372

of gradient information in this function. Our proof uses a different Lyapunov function: E(k) =373

ks (f(xk)− f(x?)) + 1
2 ‖xk − x

?‖2 .374

Proof. The corresponding discrete Lyapunov function is constructed as below375

E(k) = ks (f(xk)− f(x?)) +
1

2
‖xk − x?‖2 ,

from which we get376

E(k + 1)− E(k)

=s (f(xk)− f(x?)) + (k + 1)s (f(xk+1)− f(xk)) +
1

2
〈xk+1 − xk, xk+1 + xk − 2x?〉

≤s (f(xk)− f(x?)− 〈∇f(xk), xk − x?〉) + (k + 1)s 〈∇f(xk), xk+1 − xk〉

+

[
(k + 1)sL

2
+

1

2

]
‖xk+1 − xk‖2

≤s2
[
− 1

2Ls
− (k + 1) +

(k + 1)sL

2
+

1

2

]
‖∇f(xk)‖2

≤− s2

2
(k + 1) ‖∇f(xk)‖2

Taking k0 in the assumption completes the proof.377

Remark A.2. Same as the continuous ODE in Remark A.1, from view of the discrete algorithm, we378

can find the apunov function is a more powerful and advanced mathematical tool.379

A.3 Implicit Euler scheme380

Next, we consider the implicit Euler scheme of the gradient flow (2.1) as381

xk+1 = xk − s∇f(xk+1), (A.5)

with any initial x0 ∈ Rn. The corresponding implicit version of Theorem A.1 is shown as below.382

Theorem A.7. Let f ∈ S1µ,L(Rn), the iterates {xk}∞k=0 generated by implicit gradient descent (A.5)383

satisfy384

‖xk − x?‖ ≤
1

(1 + µs)
k
· ‖x0 − x?‖ . (A.6)

In addition, if the step size s = θ/µ, where θ > 0, we have385

‖xk − x?‖ ≤
1

(1 + θ)
k
‖x0 − x?‖ . (A.7)

Proof. The Lyapunov function is386

E(k) = ‖xk − x?‖2 .
Then, we calculate the iterate difference as387

E(k + 1)− E(k) = ‖xk+1 − x?‖2 − ‖xk − x?‖2

= 〈xk+1 − xk, xk+1 + xk − 2x?〉
= −2s 〈∇f(xk+1), xk+1 − x?〉 − s2 ‖∇f(xk+1)‖2

≤ −
(
2µs+ µ2s2

)
E(k + 1).

Hence, the proof is complete.388
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Next, we show the implicit version of Theorem A.2 as follows.389

Theorem A.8. Let f ∈ F1
L(Rn). The iterates {xk}∞k=0 generated by implicit gradient descent (A.5)390

satisfy391

f(xk)− f(x?) ≤
(1 + Ls)2 (f(x0)− f(x?)) ‖x0 − x?‖2

(1 + Ls)2 ‖x0 − x?‖2 + ks (f(x0)− f(x?))
. (A.8)

In addition, if the step size is set to s = θ/L, we have392

f(xk)− f(x?) ≤
L ‖x0 − x?‖2

2 + k · 1
θ+ 1

θ+2

. (A.9)

Proof. Note that the distance function ‖xk − x?‖2 decreases with the iteration number k as393

‖xk+1 − x?‖2 − ‖xk − x?‖2 = −2s 〈∇f(xk+1), xk+1 − x?〉 − s2 ‖∇f(xk+1)‖2

≤ −s
(
2

L
+ s

)
‖∇f(xk+1)‖2

≤ 0.

With the basic convex inequality for f ∈ F1
L(Rn), we have394

f(xk+1)− f(x?) ≤ 〈∇f(xk+1), xk+1 − x?〉 ≤ ‖∇f(xk+1)‖ · ‖x0 − x?‖ .

Now, the Lyapunov function is defined as395

E(k) = f(xk)− f(x?).

Then we calculate the difference at the kth-iteration as396

E(k + 1)− E(k) = (f(xk+1)− f(x?))− (f(xk)− f(x?))

≥ 〈∇f(xk+1), xk+1 − xk〉 −
L

2
‖xk+1 − xk‖2

≥ −s
(
1 +

Ls

2

)
‖∇f(xk+1)‖2

≥ −2Ls
(
1 +

Ls

2

)
E(k + 1)

and397

E(k + 1)− E(k) = (f(xk+1)− f(x?))− (f(xk)− f(x?))
≤ 〈∇f(xk+1), xk+1 − xk〉
= −s · ‖∇f(xk+1)‖2

≤ −s · E(k + 1)2

‖x0 − x?‖22

≤ −s · E(k + 1)

E(k)
· E(k)E(k + 1)

‖x0 − x?‖2

≤ − s

(1 + Ls)2
· E(k)E(k + 1)

‖x0 − x?‖2
.

Hence, the convergence rate is given as398

f(xk)− f(x?) ≤
(1 + Ls)2 (f(x0)− f(x?)) ‖x0 − x?‖2

(1 + Ls)2 ‖x0 − x?‖2 + ks (f(x0)− f(x?))
.

399

Finally, we present the implicit version of Theorem A.3.400

14



Theorem A.9. Let f ∈ F1
L(Rn). The iterates {xk}∞k=0 generated by implicit gradient descent (A.5)401

satisfy402 
f(xk)− f(x?) ≤

‖x0 − x?‖2

2ks

min
0≤i≤k

‖∇f(xi)‖2 ≤
2 ‖x0 − x?‖2

s2(k + 1)(k + 2)
.

(A.10)

In addition, if the step size is set to s = 1/L, we have403 
f(xk)− f(x?) ≤

L ‖x0 − x?‖2

2k

min
0≤i≤k

‖∇f(xi)‖2 ≤
2L2 ‖x0 − x?‖2

(k + 1)(k + 2)
.

(A.11)

Proof. The Lyapunov function is404

E(k) = ks (f(xk)− f(x?)) +
1

2
‖xk − x?‖2 .

Then, we calculate the iterate difference as405

E(k + 1)− E(k)

= s (f(xk+1)− f(x?)) + ks (f(xk+1)− f(xk)) +
1

2
〈xk+1 − xk, xk+1 + xk − 2x?〉

≤ s (f(xk+1)− f(x?)− 〈∇f(xk+1), xk+1 − x?〉)

+ ks 〈∇f(xk+1), xk+1 − xk〉 −
1

2
‖xk+1 − xk‖2

≤ −s2
(

1

2Ls
+ k +

1

2

)
‖∇f(xk+1)‖2

≤ −s
2

2
(k + 1) ‖∇f(xk+1)‖2 .

Hence, the proof is complete.406

B Proofs for Section 3407

Here, we first describe and prove Theorem B.1 below. Then we complete the proof of Theorem 3.1408

by viewing it as a special case of Theorem B.1.409

Theorem B.1 (Discretization of NAG-SC ODE — General). For any f ∈ S1µ,L(Rn), the following410

conclusions hold:411

(a) Taking 0 < s ≤ 4/(9L), the symplectic Euler scheme satisfies412

f(xk)− f(x?)

≤

(
sL
(
2 + (1 + 3

√
µs)2

)
(1 +

√
µs)2

+
2µ

L
+

1 +
√
µs

2
−
sL(1 +

√
µs)2

2(1 + 2
√
µs)

)
L ‖x0 − x?‖2(
1 +

√
µs

6

)k . (B.1)

(b) Taking 0 < s ≤ µ/(100L2), the explicit Euler scheme satisfies413

f(xk)− f(x?)

≤
(

3− 2
√
µs+ µs

2 + 4
√
µs+ 2µs

· sL+
2µ

L
+

1 +
√
µs

2

)
L ‖x0 − x?‖2

(
1−
√
µs

8

)k
. (B.2)

(c) Taking 0 < s ≤ 1/L, the implicit Euler scheme satisfies414

f(xk)− f(x?) ≤
(

3− 2
√
µs+ µs

2 + 4
√
µs+ 2µs

· sL+
2µ

L
+

1 +
√
µs

2

)
L ‖x0 − x?‖2(
1 +

√
µs

4

)k . (B.3)

15



B.1 Proof of Theorem B.1415

(a) The Lyapunov function is constructed as416

E(k) = 1

4
‖vk‖2 +

1

4

∥∥2√µ(xk+1 − x?) + vk +
√
s∇f(xk)

∥∥2
+ (1 +

√
µs) (f(xk)− f(x?))−

(1 +
√
µs)2

1 + 2
√
µs
· s
2
‖∇f(xk)‖2 .

With the basic inequality for f ∈ S1µ,L(Rn)417

f(xk+1)− f(xk) ≤ 〈∇f(xk+1), xk+1 − xk〉 −
1

2L
‖∇f(xk+1)−∇f(xk)‖2 ,

then the iterate difference can be calculated as418

E(k + 1)− E(k)

=
1

4
〈vk+1 − vk, vk+1 + vk〉+ (1 +

√
µs) (f(xk+1)− f(xk))

+
1

4
〈2√µ(xk+2 − xk+1) + vk+1 − vk +

√
s (∇f(xk+1)−∇f(xk)) ,

2
√
µ (xk+2 + xk+1 − 2x?) + vk+1 + vk

+
√
s (∇f(xk+1) +∇f(xk))〉

−
(1 +

√
µs)2

1 + 2
√
µs
· s
2

(
‖∇f(xk+1)‖2 − ‖∇f(xk)‖2

)
≤ −√µs ‖vk+1‖2 −

√
s

2(1 +
√
µs)
〈∇f(xk+1)−∇f(xk), vk〉

+
s

2
(
1 + 2

√
µs
) ‖∇f(xk+1)−∇f(xk)‖2

+
s

2
·
1 +
√
µs

1 + 2
√
µs
〈∇f(xk+1)−∇f(xk),∇f(xk+1)〉

−
√
s
(
1 +
√
µs
)

2
〈∇f(xk+1), vk+1〉 −

1

4
‖vk+1 − vk‖2

+(1 +
√
µs)
√
s 〈∇f(xk+1), vk〉 −

1 +
√
µs

2L
‖∇f(xk+1)−∇f(xk)‖2

−1

2
〈(1 +√µs)

√
s∇f(xk+1),

(1 + 2
√
µs) vk+1 + 2

√
µ(xk+1 − x?) +

√
s∇f(xk+1)〉

−1

4
(1 +

√
µs)

2
s ‖∇f(xk+1)‖2 −

s

2

(
‖∇f(xk+1)‖2 − ‖∇f(xk)‖2

)
≤ −√µs

(
‖vk+1‖2 + (1 +

√
µs) 〈∇f(xk+1), xk+1 − x?〉

)
−
(
1 +
√
µs

2

)[√
s 〈∇f(xk+1), (1 + 2

√
µs) vk+1 − vk〉+ s ‖∇f(xk+1)‖2

]
−

√
s

2(1 +
√
µs)
〈∇f(xk+1)−∇f(xk), vk〉

+
s

2
·
1 +
√
µs

1 + 2
√
µs
〈∇f(xk+1)−∇f(xk),∇f(xk+1)〉

−1

4

[
‖vk+1 − vk‖2 + (1 +

√
µs)

2
s ‖∇f(xk+1)‖2

+ 2(1 +
√
µs)
√
s 〈∇f(xk+1), vk+1 − vk〉

]
−1

2

(
1 +
√
µs

L
− s

1 + 2
√
µs

)
‖∇f(xk+1)−∇f(xk)‖2
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−
(1 +

√
µs)2

1 + 2
√
µs
· s
2

(
‖∇f(xk+1)‖2 − ‖∇f(xk)‖2

)
.

Noting the following two inequalities419

−1

4

[
‖vk+1 − vk‖2 + (1 +

√
µs)

2
s ‖∇f(xk+1)‖2

+ 2(1 +
√
µs)
√
s 〈∇f(xk+1), vk+1 − vk〉

]
= −1

4

∥∥vk+1 − vk + (1 +
√
µs)
√
s∇f(xk)

∥∥2 ≤ 0,

and420

−1

2
(1 +

√
µs)

[√
s 〈∇f(xk+1), (1 + 2

√
µs) vk+1 − vk〉+ s ‖∇f(xk+1)‖2

]
= −

(
1 +
√
µs

2

)
[
√
s〈∇f(xk+1),

−
√
s (∇f(xk+1)−∇f(xk))−

√
s(1 +

√
µs)∇f(xk+1)〉

+ s ‖∇f(xk+1)‖2]

=

(
1 +
√
µs
)
s

2

(
〈∇f(xk+1)−∇f(xk),∇f(xk+1)〉+

√
µs ‖∇f(xk+1)‖2

)
,

we see that the iterate difference is421

E(k + 1)− E(k)

≤ −√µs
[
‖vk+1‖2 + (1 +

√
µs)

(
〈∇f(xk+1), xk+1 − x?〉 −

s

2
‖∇f(xk+1)‖2

)]
− 1

2(1 +
√
µs)
〈∇f(xk+1)−∇f(xk), xk+1 − xk〉

+
(1 +

√
µs)2

1 + 2
√
µs
· s 〈∇f(xk+1),∇f(xk+1)−∇f(xk)〉

−1

2

(
1 +
√
µs

L
− s

1 + 2
√
µs

)
‖∇f(xk+1)−∇f(xk)‖2

−
(1 +

√
µs)2

1 + 2
√
µs
· s
2

(
‖∇f(xk+1)‖2 − ‖∇f(xk)‖2

)
≤ −√µs

[
‖vk+1‖2 + (1 +

√
µs)

(
〈∇f(xk+1), xk+1 − x?〉 −

s

2
‖∇f(xk+1)‖2

)]
− 1

2(1 +
√
µs)
〈∇f(xk+1)−∇f(xk), xk+1 − xk〉

+
1

2

(
1

1 + 2
√
µs

+
(1 +

√
µs)2

1 + 2
√
µs
−

1 +
√
µs

Ls

)
s ‖∇f(xk+1)−∇f(xk)‖2 .

Furthermore, taking the basic inequality for f ∈ S1µ,L(Rn)422

〈∇f(xk+1)−∇f(xk), xk+1 − xk〉 ≥
1

L
‖∇f(xk+1)−∇f(xk)‖2 ,

the iterate difference can be calculated as423

E(k + 1)− E(k)

≤ −√µs
[
‖vk+1‖2 + (1 +

√
µs)

(
〈∇f(xk+1), xk+1 − x?〉 −

s

2
‖∇f(xk+1)‖2

)]
−
2 + 2

√
µs+ µs

2
(
1 + 2

√
µs
) ( 1

L
− s
)
‖∇f(xk+1)−∇f(xk)‖2 .

Next, we consider how to set the step size s. First, when the step size satisfies s ≤ 1/L, we424

have425

E(k + 1)− E(k)
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≤ −√µs
[
‖vk+1‖2 + (1 +

√
µs)

(
〈∇f(xk+1), xk+1 − x?〉 −

s

2
‖∇f(xk+1)‖2

)]
.

Noting the basic inequality for f ∈ S1µ,L(Rn)426

f(xk+1)− f(x?) ≤ 〈∇f(xk+1), xk+1 − x?〉 −
1

2L
‖∇f(xk+1)‖2 ,

the iterate difference can be obtained as427

E(k + 1)− E(k)

≤ −√µs [(f(xk+1)− f(x?)) + ‖vk+1‖2 +
µ

2
‖xk − x?‖2

+
√
µs
(
f(xk+1)− f(x?)−

s

2
‖∇f(xk+1)‖2

)]
.

Furthermore, using the Cauchy-Schwarz inequality428 ∥∥2√µ (xk+1 − x?) + vk +
√
s∇f(xk)

∥∥2
=
∥∥2√µ(xk − x?) + (1 + 2

√
µs)vk +

√
s∇f(xk)

∥∥2
≤ 3

(
4µ ‖xk − x?‖2 + (1 + 2

√
µs)2 ‖vk‖2 + s ‖∇f(xk)‖2

)
,

and the following basic inequality for f ∈ S1µ,L(Rn)429

3s

4
‖∇f(xk)‖2 −

(1 +
√
µs)2

1 + 2
√
µs
· s
2
‖∇f(xk)‖2

≤ Ls

2
(f(xk)− f(x?))−

µs2

2
(
1 + 2

√
µs
) ‖∇f(xk)‖2 ,

the Lyapunov function satisfies430

E(k) ≤
(
1 +
√
µs+

Ls

2

)
(f(xk)− f(x?)) + (1 + 3

√
µs+ 3µs) ‖vk‖2

+3µ ‖xk − x?‖2 +
µs

1 + 2
√
µs

(
f(xk)− f(x?)−

s

2
‖∇f(xk)‖2

)
.

Therefore, when s ≤ 4/(9L), the iterate difference for the Lyapunov function satisfies431

E(k + 1)− E(k) ≤ −
√
µs

6
E(k + 1).

Hence, the proof is complete.432

(b) The Lyapunov function is433

E(k) = 1

4
‖vk‖2 + (1 +

√
µs) (f(xk)− f(x?))

+
1

4

∥∥2√µ(xk − x?) + vk +
√
s∇f(xk)

∥∥2 .
With the basic inequality for f ∈ S1µ,L(Rn)434

f(xk+1)− f(xk) ≤ 〈∇f(xk), xk+1 − xk〉+
L

2
‖xk+1 − xk‖2 ,

we can calculate the iterate difference435

E(k + 1)− E(k)

=
1

4
〈vk+1 − vk, vk+1 + vk〉+ (1 +

√
µs) (f(xk+1)− f(xk))

+
1

4
〈2√µ(xk+1 − xk) + vk+1 − vk +

√
s (∇f(xk+1)−∇f(xk)) ,

2
√
µ (xk+1 + xk − 2x?) + vk+1 + vk +

√
s(∇f(xk+1) +∇f(xk)

〉
18



≤ 1

2
〈vk+1 − vk, vk〉+

1

4
‖vk+1 − vk‖2

+(1 +
√
µs)

(
〈∇f(xk), xk+1 − xk〉+

L

2
‖xk+1 − xk‖2

)
−1

2

〈
(1 +

√
µs)
√
s∇f(xk), 2

√
µ(xk − x?) + vk +

√
s∇f(xk)

〉
+
1

4

∥∥(1 +√µs)√s∇f(xk)∥∥2
= −√µs ‖vk‖2 −

1

2
〈∇f(xk+1)−∇f(xk), xk+1 − xk〉

+
1

4

∥∥2√µsvk +√s (∇f(xk+1)−∇f(xk)) +
√
s (1 +

√
µs)∇f(xk)

∥∥2
+
(1 +

√
µs)sL

2
‖vk‖2 −

√
µs (1 +

√
µs) 〈∇f(xk), xk − x?〉

−
(
1 +
√
µs
)
s

2
‖∇f(xk)‖2 +

1

4
(1 +

√
µs)

2
s ‖∇f(xk)‖2 .

Using the Cauchy-Schwartz inequality436 ∥∥2√µsvk +√s (∇f(xk+1)−∇f(xk)) +
√
s (1 +

√
µs)∇f(xk)

∥∥2
≤ 12µs ‖vk‖2 + 3s ‖∇f(xk+1)−∇f(xk)‖2 + 3s (1 +

√
µs)

2 ‖∇f(x0)‖2 ,
the iterate difference for the Lyapunov function can be calculated as437

E(k + 1)− E(k)

≤ −√µs
(
‖vk‖2 + (1 +

√
µs) 〈∇f(xk), xk − x?〉+

s

2
‖∇f(xk)‖2

)
−1

2
〈∇f(xk+1)−∇f(xk), xk+1 − xk〉+

3s

4
‖∇f(xk+1)−∇f(xk)‖2

+

(
3µs+

(1 +
√
µs)sL

2

)
‖vk‖2 +

[
(1 +

√
µs)

2 − 1

2

]
s ‖∇f(xk)‖2 .

Furthermore, combined with the basic inequality for f ∈ S1µ,L(Rn),438 {
‖∇f(xk+1)−∇f(xk)‖2 ≤ L 〈∇f(xk+1)−∇f(xk), xk+1 − xk〉
‖∇f(xk)‖2 ≤ L 〈∇f(xk), xk − x?〉 ,

the iterate difference for the Lyapunov function can be calculated as439

E(k + 1)− E(k)

≤ −
√
µs

2

(
‖vk‖2 + (1 +

√
µs) 〈∇f(xk), xk − x?〉+

s

2
‖∇f(xk)‖2

)
−
(

1

2L
− 3s

4

)
‖∇f(xk+1)−∇f(xk)‖2

−
(√

µs

2
− 3µs−

(1 +
√
µs)sL

2

)
‖vk‖2

−

[√
µs
(
1 +
√
µs
)

2L
−
(
1

2
+
√
µs

)
(1 +

√
µs) s

]
‖∇f(xk)‖2 .

Simple calculation tells us when the step size satisfies s ≤ µ/(100L2), we have440

E(k + 1)− E(k)

≤ −
√
µs

2

(
‖vk‖2 + (1 +

√
µs) 〈∇f(xk), xk − x?〉+

s

2
‖∇f(xk)‖2

)
.

Furthermore, taking the Cauchy-Schwartz inequality441
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∥∥2√µ (xk+1 − x?) + vk +
√
s∇f(xk)

∥∥2
≤ 3

(
4µ ‖xk − x?‖2 + ‖vk‖2 + s ‖∇f(xk)‖2

)
,

we can obtain the final estimate for the iterate difference442

E(k + 1)− E(k) ≤ −
√
µs

8
E(k).

Hence, the proof is complete.443

(c) The Lyapunov function is444

E(k) = 1

4
‖vk‖2 + (1 +

√
µs) (f(xk)− f(x?))

+
1

4

∥∥2√µ(xk − x?) + vk +
√
s∇f(xk)

∥∥2
With the Cauchy-Schwartz inequality445 ∥∥2√µ (xk − x?) + vk +

√
s∇f(xk)

∥∥2
≤ 3

(
4µ ‖xk − x?‖2 + ‖vk‖2 + s ‖∇f(xk)‖2

)
,

and the basic inequality for f ∈ S1µ,L(Rn)446 
f(xk+1)− f(xk) ≤ 〈∇f(xk+1), xk+1 − xk〉

f(x?) ≥ f(xk+1) + 〈∇f(xk+1), x
? − xk+1〉+

µ

2
‖xk+1 − x?‖2

〈∇f(xk+1)−∇f(xk), xk+1 − xk〉 ≥ µ ‖xk+1 − xk‖2 ≥ 0,

we can calculate the iterate difference447

E(k + 1)− E(k)

=
1

4
〈vk+1 − vk, vk+1 + vk〉+ (1 +

√
µs) (f(xk+1)− f(xk))

+
1

4

〈
2
√
µ(xk+1 − xk) + vk+1 − vk +

√
s (∇f(xk+1)−∇f(xk))

2
√
µ (xk+1 + xk − 2x?) + vk+1 + vk +

√
s (∇f(xk+1) +∇f(xk))

〉
≤ 1

2
〈vk+1 − vk, vk+1〉+ (1 +

√
µs) 〈∇f(xk+1), xk+1 − xk〉

−1

2

〈
(1 +

√
µs)
√
s∇f(xk+1), 2

√
µ(xk+1 − x?) + vk+1 +

√
s∇f(xk+1)

〉
−1

4
‖vk+1 − vk‖2 −

1

4

∥∥(1 +√µs)√s∇f(xk+1)
∥∥2

≤ −√µs
(
‖vk+1‖2 + (1 +

√
µs) 〈∇f(xk+1), xk+1 − x?〉+

s

2
‖∇f(xk+1)‖2

)
−1

2
〈∇f(xk+1)−∇f(xk), xk+1 − xk〉 −

s

2
‖∇f(xk+1)‖2

≤ −
√
µs

4
E(k + 1).

Hence, the proof is complete.448

B.2 Proof of Theorem 3.2449

Here, we first describe and prove Theorem B.2 below. Then we complete the proof of Theorem 3.2450

by viewing it as a special case of Theorem B.2.451

Theorem B.2 (Discretization of heavy-ball ODE — General). For any f ∈ S1µ,L(Rn), the following452

conclusions hold:453
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(a) Taking 0 < s ≤ µ/(16L2), the symplectic Euler scheme satisfies454

f(xk)− f(x?) ≤

((
3 + 8

√
µs+ 8µs

)
sL

(1 +
√
µs)2

+
2µ

L
+

1 +
√
µs

2

)
L ‖x0 − x?‖2(
1 +

√
µs

4

)k . (B.4)

(b) Taking 0 < s ≤ µ/(36L2), the explicit Euler scheme satisfies455

f(xk)− f(x?)

≤
(

3sL

(1 +
√
µs)2

+
2µ

L
+

1 +
√
µs

2

)
L ‖x0 − x?‖2

(
1−
√
µs

8

)k
. (B.5)

(c) Taking 0 < s ≤ 1/L, the implicit Euler scheme satisfies456

f(xk)− f(x?) ≤
(

3sL

(1 +
√
µs)2

+
2µ

L
+

1 +
√
µs

2

)
L ‖x0 − x?‖2(
1 +

√
µs

4

)k . (B.6)

Proof of Theorem B.2457

(a) The Lyapunov function is458

E(k) = 1

4
‖vk‖2 +

1

4
‖2√µ(xk − x?) + vk‖2 + (1 +

√
µs) (f(xk)− f(x?)) .

With the Cauchy-Schwartz inequality459

‖2√µ(xk − x?) + vk‖2 ≤ 2
(
4µ ‖xk − x?‖2 + ‖vk‖2

)
,

and the basic inequality for f ∈ S1µ,L(Rn)460 {
f(xk+1)− f(xk) ≤ 〈∇f(xk+1), xk+1 − xk〉

f(x?) ≥ f(xk+1) + 〈∇f(xk+1), x
? − xk+1〉+

µ

2
‖xk+1 − x?‖2 ,

then we can calculate the iterative difference461

E(k + 1)− E(k)

=
1

4
〈vk+1 − vk, vk+1 + vk〉+ (1 +

√
µs) (f(xk+1)− f(xk))

+
1

4
〈2√µ(xk+1 − xk) + vk+1 − vk, 2

√
µ(xk+1 + xk − 2x?) + vk+1 + vk〉

≤ 1

2
〈vk+1 − vk, vk+1〉+ (1 +

√
µs) 〈∇f(xk+1), xk+1 − xk〉

+
1

2
〈2√µ(xk+1 − xk) + vk+1 − vk, 2

√
µ(xk+1 − x?) + vk+1〉

−1

4
‖vk+1 − vk‖2 −

1

4
‖2√µ(xk+1 − xk) + vk+1 − vk‖2

≤ −√µs
[
‖vk+1‖2 + (1 +

√
µs) 〈∇f(xk+1), xk+1 − x?〉

]
≤ −√µs

[
‖vk+1‖2 + (1 +

√
µs) (f(x)− f(x?)) + µ

2
‖xk+1 − x?‖2

]
≤ −
√
µs

4
E(k + 1).

Hence, the proof is complete.462

(b) The Lyapunov function is463

E(k) = 1

4
‖vk‖2 +

1

4
‖2√µ(xk − x?) + vk‖2 + (1 +

√
µs) (f(xk)− f(x?)) .
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With the Cauchy-Schwartz inequality464

‖2√µ(xk − x?) + vk‖2 ≤ 2
(
4µ ‖xk − x?‖2 + ‖vk‖2

)
,

and the basic inequality for f ∈ S1µ,L(Rn)465 
f(xk+1)− f(xk) ≤ 〈∇f(xk), xk+1 − xk〉+

L

2
‖xk+1 − xk‖2

f(x?) ≥ f(xk+1) + 〈∇f(xk+1), x
? − xk+1〉+

µ

2
‖x? − xk+1‖2 ,

then we calculate the iterative difference466

E(k + 1)− E(k)

=
1

4
〈vk+1 − vk, vk+1 + vk〉+ (1 +

√
µs) (f(xk+1)− f(xk))

+
1

4
〈2√µ(xk+1 − xk) + vk+1 − vk, 2

√
µ(xk+1 + xk − 2x?) + vk+1 + vk〉

≤ 1

2
〈vk+1 − vk, vk〉+ (1 +

√
µs) 〈∇f(xk), xk+1 − xk〉

+

(
1 +
√
µs
)
L

2
‖xk+1 − xk‖2

+
1

2
〈2√µ(xk+1 − xk) + vk+1 − vk, 2

√
µ(xk − x?) + vk〉

+
1

4
‖vk+1 − vk‖2 +

1

4
‖2√µ(xk+1 − xk) + vk+1 − vk‖2

≤ −√µs
(
‖vk‖2 + (1 +

√
µs) 〈∇f(xk), xk − x?〉

)
+

(
1 +
√
µs
)
Ls

2
‖vk‖2 +

s

4
‖2√µvk +∇f(xk)‖2 +

s

4
‖∇f(xk)‖2

≤ −
√
µs

2

(
‖vk‖2 + f(xk)− f(x?) +

µ

2
‖xk − x?‖2

)
−
√
µs

2

(
‖vk‖2 +

(
1 +
√
µs
)

L
‖∇f(xk)‖2

)

+s

(
2µ+

L
(
1 +
√
µs
)

2

)
‖vk‖2 +

3s

4
‖∇f(xk)‖2 .

Since µ ≤ L, then the step size s ≤ µ/(36L2) satisfies it. Hence, the proof is complete.467

(c) The Lyapunov function is constructed as468

E(k) = 1

4
‖vk‖2 +

1

4
‖2√µ(xk+1 − x?) + vk‖2 + (1 +

√
µs) (f(xk)− f(x?)) .

With Cauchy-Schwartz inequality469

‖2√µ(xk+1 − x?) + vk‖2 = ‖2√µ(xk − x?) + (1 + 2
√
µs)vk‖2

≤ 2
(
4µ ‖xk − x?‖2 + (1 + 2

√
µs)2 ‖vk‖2

)
,

and the basic inequality for f ∈ S1µ,L(Rn)470 
f(xk+1)− f(xk) ≤ 〈∇f(xk+1), xk+1 − xk〉 −

1

2L
‖∇f(xk+1)−∇f(xk)‖2

f(x?) ≥ f(xk+1) + 〈∇f(xk+1), x
? − xk+1〉+

µ

2
‖x? − xk+1‖2 ,

then we calculate the iterative difference471

E(k + 1)− E(k)
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=
1

4
〈vk+1 − vk, vk+1 + vk〉+ (1 +

√
µs) (f(xk+1)− f(xk))

+
1

4
〈2√µ(xk+2 − xk+1) + vk+1 − vk, 2

√
µ(xk+2 + xk+1 − 2x?) + vk+1 + vk〉

≤ 1

2
〈vk+1 − vk, vk+1〉 −

1

4
‖vk+1 − vk‖2

+(1 +
√
µs) 〈∇f(xk+1), xk+1 − xk〉 −

(
1 +
√
µs
)

2L
‖∇f(xk+1)−∇f(xk)‖2

+
1

2

〈
−
√
s (1 +

√
µs)∇f(xk+1), 2

√
µ(xk+2 − x?) + vk+1

〉
−1

4

∥∥√s (1 +√µs)∇f(xk+1)
∥∥2

≤ −√µs
(
‖vk+1‖2 + (1 +

√
µs) 〈∇f(xk+1), xk+1 − x?〉

)
−
√
s
(
1 +
√
µs
)

2
〈∇f(xk+1), (1 + 2

√
µs)vk+1 − vk〉

−
(
1 +
√
µs
)

2L
‖∇f(xk+1)−∇f(xk)‖2 −

1

4

∥∥vk+1 − vk +
√
s∇f(xk+1)

∥∥2
≤ −√µs

[
‖vk+1‖2 +

1

4
(1 +

√
µs) (f(xk+1)− f(x?)) +

µ

2
‖xk+1 − x?‖2

]
−
(
1 +
√
µs
)

4

[
3
√
µs (f(xk+1)− f(x?))− 2s ‖∇f(xk+1)‖2

]
Since µ ≤ L, then the step size s ≤ µ/(16L2) satisfies it. Hence, the proof is complete with472

some basic calculations.473

C Technical Analysis and Proofs for Section 4474

C.1 Technical details for numerical scheme of ODE (4.3)475

Proof of Theorem 4.1 (b) The Lyapunov function is constructed as476

E(k) = s (k + 2) (k + 3) (f(xk)− f(x?))+
1

2

∥∥2(xk − x?) + (k + 1)
√
s
(
vk +

√
s∇f(xk)

)∥∥2 .
With the basic inequality for f ∈ F1

L(Rn)477 {
f(xk+1)− f(xk) ≤ 〈∇f(xk+1), xk+1 − xk〉
f(xk+1)− f(x?) ≤ 〈∇f(xk+1), xk+1 − x?〉 ,

we can calculate the iterative difference as478

E(k + 1)− E(k)
= s (k + 2) (k + 3) (f(xk+1)− f(xk)) + s (2k + 6) (f(xk+1)− f(x?))

+
1

2
〈2(xk+1 − xk) −

√
s(k + 1)

(
vk +

√
s∇f(xk)

)
+
√
s(k + 2)

(
vk+1 +

√
s∇f(xk+1)

)
,

2(xk+1 + xk − 2x?) +
√
s(k + 1)

(
vk +

√
s∇f(xk)

)
+
√
s(k + 2)

(
vk+1 +

√
s∇f(xk+1)

)〉
= s (k + 2) (k + 3) (f(xk+1)− f(xk)) + s (2k + 6) (f(xk+1)− f(x?))
−〈s (k + 3)∇f(xk+1),

2(xk+1 − x?) +
√
s(k + 2)

(
vk+1 +

√
s∇f(xk+1)

)〉
−s

2

2
(k + 3)

2 ‖∇f(xk+1)‖2
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≤ −s
2

2
(k + 3) (3k + 7) ‖∇f(xk+1)‖2 .

Hence, the proof is complete with some basic calculations.479

Technical analysis of explicit Euler of ODE (4.3) The Lyapunov function is480

E(k) = s (k − 2) (k + 1) (f(xk)− f(x?)) +
1

2

∥∥2(xk − x?) + (k − 1)
√
s
(
vk +

√
s∇f(xk)

)∥∥2 .
Then we calculate the iterative difference as481

E(k + 1)− E(k)
= s (k − 1) (k + 2) (f(xk+1)− f(xk)) + 2sk (f(xk)− f(x?))

+
1

2
〈2(xk+1 − xk) +

√
sk
(
vk+1 +

√
s∇f(xk+1)

)
−
√
s(k − 1)

(
vk +

√
s∇f(xk)

)
,

2(xk+1 + xk − 2x?) +
√
sk
(
vk+1 +

√
s∇f(xk+1)

)
+
√
s(k − 1)

(
vk +

√
s∇f(xk)

)〉
= s (k − 1) (k + 2) (f(xk+1)− f(xk)) + 2sk (f(xk)− f(x?))
−
〈
s (k + 2)∇f(xk), 2(xk − x?) +

√
s(k − 1)

(
vk +

√
s∇f(xk)

)〉
+
s2

2
(k + 2)

2 ‖∇f(xk)‖2 .

• If we take the following basic inequality for f ∈ F1
L(Rn)482 f(xk+1)− f(xk) ≤ 〈∇f(xk), xk+1 − xk〉+

L

2
‖xk+1 − xk‖2

f(xk)− f(x?) ≤ 〈∇f(xk), xk − x?〉 ,

we can obtain the following estimate483

E(k + 1)− E(k)

≤ Ls2

2
(k − 1) (k + 2) ‖vk‖2−4s (f(xk)− f(x?))−

s2

2
(k + 2) (k − 4) ‖∇f(xk)‖2 ,

which cannot guarantee the right-hand side of the inequality non-positive.484

• If we take the following basic inequality for f ∈ F1
L(Rn)485 f(xk+1)− f(xk) ≤ 〈∇f(xk+1), xk+1 − xk〉 −

1

2L
‖∇f(xk+1)−∇f(xk)‖2

f(xk)− f(x?) ≤ 〈∇f(xk), xk − x?〉 ,

we can obtain the following estimate486

E(k + 1)− E(k)

≤ Ls (k − 1) (k + 2)

2

(
〈∇f(xk+1)−∇f(xk), xk+1 − xk〉

− 1

2L
‖∇f(xk+1)−∇f(xk)‖2 t

)
−4s (f(xk)− f(x?))−

s2

2
(k + 2) (k − 4) ‖∇f(xk)‖2 ,

which cannot guarantee the right-hand side of the inequality non-positive.487
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C.2 Technical details for standard numerical schemes488

Standard Euler discretization of ODE (4.1), with initial x0 and v0 = −
√
s∇f(x0), are shown as489

below. Euler scheme of (4.1): (S), (E) and (I) respectively490

(S)


xk+1 − xk =

√
svk

vk+1 − vk = −3vk+1

k + 1
−
√
s (∇f(xk+1)−∇f(xk))−

√
s

(
2k + 5

2k + 2

)
∇f(xk+1).

(E)


xk+1 − xk =

√
svk

vk+1 − vk = −3vk
k
−
√
s (∇f(xk+1)−∇f(xk))−

√
s

(
2k + 3

2k

)
∇f(xk).

(I)


xk+1 − xk =

√
svk+1

vk+1 − vk = −3vk+1

k + 1
−
√
s (∇f(xk+1)−∇f(xk))−

√
s

(
2k + 5

2k + 2

)
∇f(xk+1).

Technical analysis of symplectic scheme of ODE (4.1) The Lyapunov function is491

E(k) = s (k + 1)

(
k +

3

2

)
(f(xk)− f(x?))+

1

2

∥∥2(xk+1 − x?) + (k + 1)
√
s
(
vk +

√
s∇f(xk)

)∥∥2 .
Then we calculate the iterative difference as492

E(k + 1)− E(k)

= s (k + 1)

(
k +

3

2

)
(f(xk+1)− f(xk)) + s

(
2k +

7

2

)
(f(xk+1)− f(x?))

+
1

2
〈2(xk+2 − xk+1) −

√
s(k + 1)

(
vk +

√
s∇f(xk)

)
+
√
s(k + 2)

(
vk+1 +

√
s∇f(xk+1)

)
2(xk+2 + xk+1 − 2x?) +

√
s(k + 1)

(
vk +

√
s∇f(xk)

)
+
√
s(k + 2)

(
vk+1 +

√
s∇f(xk+1)

)〉
= s (k + 1)

(
k +

3

2

)
(f(xk+1)− f(xk)) + s

(
2k +

7

2

)
(f(xk+1)− f(x?))

−
〈
s

(
k +

3

2

)
∇f(xk+1), 2(xk+2 − x?) +

√
s(k + 2)

(
vk+1 +

√
s∇f(xk+1)

)〉
−s

2

2

(
k +

3

2

)2

‖∇f(xk+1)‖2 .

Now we hope to utilize the basic inequality for f ∈ F1
L(Rn) to make the right side of equality no493

more than zero. Taking the following inequalities494 f(xk+1)− f(xk) ≤ 〈∇f(xk+1), xk+1 − xk〉 −
1

2L
‖∇f(xk+1)−∇f(xk)‖2

f(xk+1)− f(x?) ≤ 〈∇f(xk+1), xk+1 − x?〉 ,

we can obtain the iterative difference is495

E(k + 1)− E(k)

≤ s

2
(f(xk+1)− f(x?))−

s2

2

(
k +

3

2

)(
3k +

7

2

)
‖∇f(xk+1)‖2

− s

2L
(k + 1)

(
k +

3

2

)
‖∇f(xk+1)−∇f(xk)‖2

+s2 (k + 1)

(
k +

3

2

)
〈∇f(xk+1),∇f(xk+1)−∇f(xk)〉
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+s2
(
k +

3

2

)(
k +

5

2

)
‖∇f(xk+1)‖2

≤ s

2
(f(xk+1)− f(x?))−

s2

2

(
k +

3

2

)(
k − 3

2
− Ls(k + 1)

)
‖∇f(xk+1)‖2 .

Since there exists a non-negative term, s2 (f(xk+1)− f(x?)), we cannot guarantee the right-hand496

side of inequality is non-positive. Hence, the convergence cannot be proved by the above description.497

Technical analysis of explicit scheme of ODE (4.1) The Lyapunov function is498

E(k) = s (k − 2)

(
k − 1

2

)
(f(xk)− f(x?))+

1

2

∥∥2(xk − x?) + (k − 1)
√
s
(
vk +

√
s∇f(xk)

)∥∥2 .
Then we calculate the iterative difference as499

E(k + 1)− E(k)

= s (k − 1)

(
k +

1

2

)
(f(xk+1)− f(xk)) + s

(
2k − 3

2

)
(f(xk)− f(x?))

+
1

2
〈2(xk+1 − xk) +

√
sk
(
vk+1 +

√
s∇f(xk+1)

)
−
√
s(k − 1)

(
vk +

√
s∇f(xk)

)
,

2(xk+1 + xk − 2x?) +
√
sk
(
vk+1 +

√
s∇f(xk+1)

)
+
√
s(k − 1)

(
vk +

√
s∇f(xk)

)〉
= s (k − 1)

(
k +

1

2

)
(f(xk+1)− f(xk)) + s

(
2k − 3

2

)
(f(xk)− f(x?))

−
〈
s

(
k +

1

2

)
∇f(xk), 2(xk − x?) +

√
s(k − 1)

(
vk +

√
s∇f(xk)

)〉
+
s2

2

(
k +

1

2

)2

‖∇f(xk)‖2 .

• If we take the following basic inequality for f ∈ F1
L(Rn)500 f(xk+1)− f(xk) ≤ 〈∇f(xk), xk+1 − xk〉+

L

2
‖xk+1 − xk‖2

f(xk)− f(x?) ≤ 〈∇f(xk), xk − x?〉 ,
we can obtain the following estimate501

E(k + 1)− E(k) ≤ Ls2

2
(k − 1)

(
k +

1

2

)
‖vk‖2

− 5s

2
(f(xk)− f(x?))−

s2

2

(
k +

1

2

)(
k − 5

2

)
‖∇f(xk)‖2 ,

which cannot guarantee the right-hand side of the inequality non-positive.502

• If we take the following basic inequality for f ∈ F1
L(Rn)503 f(xk+1)− f(xk) ≤ 〈∇f(xk+1), xk+1 − xk〉 −

1

2L
‖∇f(xk+1)−∇f(xk)‖2

f(xk)− f(x?) ≤ 〈∇f(xk), xk − x?〉 ,
we can obtain the following estimate504

E(k + 1)− E(k)

≤ Ls(k − 1)(2k + 1)

4

(
〈∇f(xk+1)−∇f(xk), xk+1 − xk〉

− 1

2L
‖∇f(xk+1)−∇f(xk)‖2

)
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−5s

2
(f(xk)− f(x?))−

s2

2

(
k +

1

2

)(
k − 5

2

)
‖∇f(xk)‖2 ,

which cannot guarantee the right-hand side of the inequality non-positive.505

Technical analysis of implicit scheme of ODE (4.1) The Lyapunov function is506

E(k) = s (k + 2)

(
k +

3

2

)
(f(xk)− f(x?))

+
1

2

∥∥2(xk − x?) + (k + 1)
√
s
(
vk +

√
s∇f(xk)

)∥∥2 .
Then we can calculate the iterative difference as507

E(k + 1)− E(k)

= s (k + 2)

(
k +

3

2

)
(f(xk+1)− f(xk)) + s

(
2k +

9

2

)
(f(xk+1)− f(x?))

+
1

2
〈2(xk+1 − xk) −

√
s(k + 1)

(
vk +

√
s∇f(xk)

)
+
√
s(k + 2)

(
vk+1 +

√
s∇f(xk+1)

)
,

2(xk+1 + xk − 2x?) +
√
s(k + 1)

(
vk +

√
s∇f(xk)

)
+
√
s(k + 2)

(
vk+1 +

√
s∇f(xk+1)

)〉
= s (k + 2)

(
k +

3

2

)
(f(xk+1)− f(xk)) + s

(
2k +

9

2

)
(f(xk+1)− f(x?))

−
〈
s

(
k +

3

2

)
∇f(xk+1), 2(xk+1 − x?) +

√
s(k + 2)

(
vk+1 +

√
s∇f(xk+1)

)〉
−s

2

2

(
k +

3

2

)2

‖∇f(xk+1)‖2 .

Now we hope to utlize the basic inequality for f ∈ F1
L(Rn) to make the right side of equality no508

more than zero. Taking the following inequalities509 {
f(xk+1)− f(xk) ≤ 〈∇f(xk+1), xk+1 − xk〉
f(xk+1)− f(x?) ≤ 〈∇f(xk+1), xk+1 − x?〉 ,

we can obtain510

E(k + 1)− E(k) ≤ 3s

2
(f(xk+1)− f(x?))−

s2

2

(
k +

3

2

)(
3k +

7

2

)
‖∇f(xk+1)‖2 .

Although the negative term concludes the multiplier k2, we cannot guarantee the right-hand side511

non-positive512

D Low-Resolution ODEs513

D.1 Low-resolution ODE for strongly convex functions514

In this subsection, we discuss the numerical discretization of (2.3). We rewrite this ODE in a515

phase-space representation516 {
Ẋ = V

V̇ = −2√µV −∇f(X)
, (D.1)

with X(0) = x0 and V (0) = 0. We have the following theorem:517

Theorem D.1. Let f ∈ S1µ,L(Rn). The solution X = X(t) to low-resolution ODE (2.3) satisfies518

f(X)− f(x?) ≤ 3L ‖x0 − x?‖2

2
e−

√
µt

4 . (D.2)
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Proof. The Lyapunov function is519

E =
1

4
‖Ẋ‖2 + 1

4
‖2√µ(X − x?) + Ẋ‖2 + f(X)− f(x?).

Using the Cauchy-Schwartz inequality520

‖2√µ(X − x?) + Ẋ‖2 ≤ 2
(
4µ‖X − x?‖2 + ‖Ẋ‖2

)
,

and the basic inequality for f ∈ S1µ,L(Rn)521

f(x?) ≥ f(X) + 〈∇f(X), x? − x〉+ µ

2
‖X − x?‖2 ,

we calculate the time derivative522

dE
dt

=
1

2

〈
Ẋ,−2√µẊ −∇f(X)

〉
+

1

2

〈
2
√
µ (X − x?) + Ẋ,−∇f(X)

〉
+
〈
∇f(X), Ẋ

〉
= −√µ

(
‖Ẋ‖2 + 〈∇f(X), X − x?〉

)
≤ −√µ

(
‖Ẋ‖2 + f(X)− f(x?) + µ

2
‖X − x?‖2

)
≤ −
√
µ

4
E .

Hence, the proof is complete.523

We now analyze the standard Euler discretization of the low-resolution ODE (2.3). All of the524

following three Euler schemes take the same initial x0 and v0 = 0.525

Euler Scheme of ODE (2.3): (S), (E) and (I) respectively526

(S)

{
xk+1 − xk =

√
svk

vk+1 − vk = −2√µsvk+1 −
√
s∇f(xk+1).

(E)

{
xk+1 − xk =

√
svk

vk+1 − vk = −2√µsvk −
√
s∇f(xk).

(I)

{
xk+1 − xk =

√
svk+1

vk+1 − vk = −2√µsvk+1 −
√
s∇f(xk+1).

Theorem D.2 (Discretization of Low-Resolution ODE — General). For any f ∈ S1µ,L(Rn), the527

following conclusions hold:528

(a) Taking 0 < s ≤ µ/(16L2), the symplectic Euler scheme satisfies529

f(xk)− f(x?) ≤
3L ‖x0 − x?‖2

2
(
1 +

√
µs

4

)k . (D.3)

(b) Taking0 < s ≤ µ/(25L2), the explicit Euler scheme satisfies530

f(xk)− f(x?) ≤
3L ‖x0 − x?‖2

2

(
1−
√
µs

8

)k
. (D.4)

(c) Taking 0 < s ≤ 1/L, the implicit Euler scheme satisfies531

f(xk)− f(x?) ≤
3L ‖x0 − x?‖2

2
(
1 +

√
µs

4

)k . (D.5)
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Proof. (a) The Lyapunov function is532

E(k) = 1

4
‖vk‖2 +

1

4
‖2√µ(xk − x?) + vk‖2 + f(xk)− f(x?).

With the Cauchy-Schwartz inequality533

‖2√µ(xk − x?) + vk‖2 ≤ 2
(
4µ ‖xk − x?‖2 + ‖vk‖2

)
,

and the basic inequality for f ∈ S1µ,L(Rn)534 {
f(xk+1)− f(xk) ≤ 〈∇f(xk+1), xk+1 − xk〉

f(x?) ≥ f(xk+1) + 〈∇f(xk+1), x
? − xk+1〉+

µ

2
‖xk+1 − x?‖2 ,

we calculate the iterave difference535

E(k + 1)− E(k)

=
1

4
〈vk+1 − vk, vk+1 + vk〉+ f(xk+1)− f(xk)

+
1

4
〈2√µ(xk+1 − xk) + vk+1 − vk, 2

√
µ(xk+1 + xk − 2x?) + vk+1 + vk〉

≤ 1

2
〈vk+1 − vk, vk+1〉+ 〈∇f(xk+1), xk+1 − xk〉

+
1

2
〈2√µ(xk+1 − xk) + vk+1 − vk, 2

√
µ(xk+1 − x?) + vk+1〉

−1

4
‖vk+1 − vk‖2 −

1

4
‖2√µ(xk+1 − xk) + vk+1 − vk‖2

≤ −√µs
(
‖vk+1‖2 + 〈∇f(xk+1), xk+1 − x?〉

)
≤ −√µs

(
‖vk+1‖2 + f(xk+1)− f(x?) +

µ

2
‖xk+1 − x?‖2

)
≤ −
√
µs

4
E(k + 1).

Hence, the proof is complete.536

(b) The Lyapunov function is537

E(k) = 1

4
‖vk‖2 +

1

4
‖2√µ(xk − x?) + vk‖2 + f(xk)− f(x?).

With the Cauchy-Schwartz inequality538

‖2√µ(xk − x?) + vk‖2 ≤ 2
(
4µ ‖xk − x?‖2 + ‖vk‖2

)
,

and the basic inequality for f ∈ S1µ,L(Rn)539 
f(xk+1)− f(xk) ≤ 〈∇f(xk), xk+1 − xk〉+

L

2
‖xk+1 − xk‖2

f(x?) ≥ f(xk+1) + 〈∇f(xk+1), x
? − xk+1〉+

µ

2
‖x? − xk+1‖2 ,

we calculate the iterave difference540

E(k + 1)− E(k)

=
1

4
〈vk+1 − vk, vk+1 + vk〉+ f(xk+1)− f(xk)

+
1

4
〈2√µ(xk+1 − xk) + vk+1 − vk, 2

√
µ(xk+1 + xk − 2x?) + vk+1 + vk〉

≤ 1

2
〈vk+1 − vk, vk〉+ 〈∇f(xk), xk+1 − xk〉+

L

2
‖xk+1 − xk‖2
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+
1

2
〈2√µ(xk+1 − xk) + vk+1 − vk, 2

√
µ(xk − x?) + vk〉

+
1

4
‖vk+1 − vk‖2 +

1

4
‖2√µ(xk+1 − xk) + vk+1 − vk‖2

≤ −√µs
(
‖vk‖2 + 〈∇f(xk), xk − x?〉

)
+
Ls

2
‖vk‖2 +

s

4
‖2√µvk +∇f(xk)‖2 +

s

4
‖∇f(xk)‖2

≤ −
√
µs

2

(
‖vk‖2 + f(xk)− f(x?) +

µ

2
‖xk − x?‖2

)
−
√
µs

2

(
‖vk‖2 +

1

L
‖∇f(xk)‖2

)
+ s

(
2µ+

L

2

)
‖vk‖2 +

3s

4
‖∇f(xk)‖2 .

Since µ ≤ L, the step size s ≤ µ/(25L2) satisfies it. Hence, the proof is complete after541

some basic calculations.542

(c) The Lyapunov function is543

E(k) = 1

4
‖vk‖2 +

1

4
‖2√µ(xk+1 − x?) + vk‖2 + f(xk)− f(x?).

With the Cauchy-Schwartz inequality544

‖2√µ(xk+1 − x?) + vk‖2 = ‖2√µ(xk − x?) + (1 + 2
√
µs)vk‖2

≤ 2
(
4µ ‖xk − x?‖2 + (1 + 2

√
µs)2 ‖vk‖2

)
,

and the basic inequality for f ∈ S1µ,L(Rn)545 
f(xk+1)− f(xk) ≤ 〈∇f(xk+1), xk+1 − xk〉 −

1

2L
‖∇f(xk+1)−∇f(xk)‖2

f(x?) ≥ f(xk+1) + 〈∇f(xk+1), x
? − xk+1〉+

µ

2
‖x? − xk+1‖2 ,

we calculate the iterave difference546

E(k + 1)− E(k)

=
1

4
〈vk+1 − vk, vk+1 + vk〉+ f(xk+1)− f(xk)

+
1

4
〈2√µ(xk+2 − xk+1) + vk+1 − vk, 2

√
µ(xk+2 + xk+1 − 2x?) + vk+1 + vk〉

≤ 1

2
〈vk+1 − vk, vk+1〉 −

1

4
‖vk+1 − vk‖2

+ 〈∇f(xk+1), xk+1 − xk〉 −
1

2L
‖∇f(xk+1)−∇f(xk)‖2

+
1

2

〈
−
√
s∇f(xk+1), 2

√
µ(xk+2 − x?) + vk+1

〉
− 1

4

∥∥√s∇f(xk+1)
∥∥2

≤ −√µs
(
‖vk+1‖2 + 〈∇f(xk+1), xk+1 − x?〉

)
−
√
s

2
〈∇f(xk+1), (1 + 2

√
µs)vk+1 − vk〉

− 1

2L
‖∇f(xk+1)−∇f(xk)‖2 −

1

4

∥∥vk+1 − vk +
√
s∇f(xk+1)

∥∥2
≤ −√µs

[
‖vk+1‖2 +

1

4
(f(xk+1)− f(x?)) +

µ

2
‖xk+1 − x?‖2

]
−1

4

[
3
√
µs (f(xk+1)− f(x?))− 2s ‖∇f(xk+1)‖2

]
.

Since µ ≤ L, the step size s ≤ µ/(16L2) satisfies it. Hence, the proof is complete after547

some basic calculations.548

549
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Corollary D.3 (Discretization of NAG-SC low-resolution ODE). For any f ∈ S1µ,L(Rn), the follow-550

ing conclusions hold:551

(a) Taking step size 0s = µ/(16L2) , the symplectic Euler scheme satisfies552

f(xk)− f(x?) ≤
3L ‖x0 − x?‖2

2
(
1 + µ

16L

)k . (D.6)

(b) Taking step size s = µ/(16L2), the explicit Euler scheme satisfies553

f(xk)− f(x?) ≤
3L ‖x0 − x?‖2

2

(
1− µ

40L

)k
. (D.7)

(c) Taking step size s = 1/L, the implicit Euler scheme satisfies554

f(xk)− f(x?) ≤
3L ‖x0 − x?‖2

2
(
1 + 1

4

√
µ
L

)k . (D.8)

Remark D.1. Compared with Theorem D.2 (a) – (c), just the Euler scheme of the low-resolution555

ODE (2.3), both the explicit scheme and the symplectic scheme can retain the convergence rate from556

the continuous version of Theorem D.1, when the step size s is of the order O(µ/L2). Although557

the explicit scheme is weaker than the symplectic scheme, it can preserve the rate to the same order558

as the symplectic scheme. However, if the step size satisfies s = O(µ/L2), the algorithm cannot559

provide acceleration. There is no limitation on the step size s for the implicit Euler scheme, but in560

general it is not practical for non-quadratic objective functions.561

D.2 Low-resolution ODE for convex functions562

In this subsection, we discuss the numerical discretization of (2.2). We rewrite it in a phase-space563

representation:564 Ẋ = V

V̇ = −3

t
V −∇f(X),

, (D.9)

with X(0) = x0 and V (0) = 0.565

Theorem D.4. Let f ∈ F1
L(Rn). The solution X = X(t) to the low-resolution ODE (2.2) satisfies566 

f(X)− f(x?) ≤ 2 ‖x0 − x?‖2

t2

min
0≤u≤t

‖∇f(X(u))‖2 ≤ 4L ‖x0 − x?‖2

t2
.

(D.10)

Theorem D.4 is combined with Theorem 3 Su et al. [2016] and a further analysis about gradient norm567

minimization in Shi et al. [2018]. The Lyapunov function is constructed in Su et al. [2016] as568

E = t2 (f(X)− f(x?)) + 1

2
‖2(X − x?) + tẊ‖2. (D.11)

D.2.1 Symplectic Euler scheme569

First, we utilize the symplectic Euler scheme with the initial x0 and v0 = 0, as shown as following:570 
xk+1 − xk =

√
svk

vk+1 − vk = − 3

k + 1
vk+1 −

√
s∇f(xk+1).

(D.12)
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Technical analysis of symplectic scheme (D.12) The Lyapunov function is571

E(k) = (k + 1)2s (f(xk)− f(x?)) +
1

2

∥∥2(xk+1 − x?) + (k + 1)
√
svk
∥∥2 .

Then we can calculate the iterate difference as572

E(k + 1)− E(k)
= (k + 1)2s (f(xk+1)− f(xk)) + (2k + 3)s (f(xk+1)− f(x?))

+
1

2

〈
2(xk+1 − xk) + (k + 2)

√
svk+1 − (k + 1)

√
svk,

2(xk+1 + xk − 2x?) + (k + 2)
√
svk+1 + (k + 1)

√
svk
〉

= (k + 1)2s (f(xk+1)− f(xk)) + (2k + 3)s (f(xk+1)− f(x?))
−
〈
(k + 1)s∇f(xk+1), 2(xk+2 − x?) + (k + 2)

√
svk+1

〉
−1

2
(k + 1)2s2 ‖∇f(xk+1)‖2 .

We hope to utilize the basic inequality for f ∈ F1
L(Rn) to make the right-hand-side of the equality573

no more than zero. Based on the following inequalities:574 
f(xk+1)− f(xk) ≤ 〈∇f(xk+1), xk+1 − xk〉 −

1

2L
‖∇f(xk+1)−∇f(xk)‖2

f(xk+1)− f(x?) ≤ 〈∇f(xk+1), xk+1 − x?〉 −
1

2L
‖∇f(xk+1)‖2 ,

we obtain the following estimate:575

E(k+1)−E(k) ≤ 1

2
(k+1)2s2 ‖∇f(xk+1)‖2 + s (f(xk+1)− f(x?))−

(k + 1)s

L
‖∇f(xk+1)‖2 ,

from which we cannot guarantee that the right-hand-side of the inequality is nonpositive.576

D.2.2 Explicit Euler scheme577

Now, we turn to the explicit Euler scheme with the initial x0 and v0 = 0, as578 xk+1 − xk =
√
svk

vk+1 − vk = −3

k
vk −

√
s∇f(xk).

(D.13)

Technical analysis of explicit scheme (D.13) Now, the Lyapunov function is579

E(k) = (k − 2)(k − 1)s (f(xk)− f(x?)) +
1

2

∥∥2(xk − x?) + (k − 1)
√
svk
∥∥2 .

Then we can calculate the iterate difference as580

E(k + 1)− E(k)
= (k − 1)ks (f(xk+1)− f(xk)) + 2(k − 1)s (f(xk)− f(x?))

+
1

2

〈
2(xk+1 − xk) + k

√
svk+1 − (k − 1)

√
svk,

2(xk+1 + xk − 2x?) + k
√
svk+1 + (k − 1)

√
svk
〉

(k − 1)ks (f(xk+1)− f(xk)) + 2(k − 1)s (f(xk)− f(x?))

+
〈
−ks∇f(xk), 2(xk − x?) + (k − 1)

√
svk
〉
+

1

2
k2s2 ‖∇f(xk)‖2 .

• If we take the following basic inequality for f ∈ F1
L(Rn)581 

f(xk+1)− f(xk) ≤ 〈∇f(xk), xk+1 − xk〉+
L

2
‖xk+1 − xk‖2

f(xk)− f(x?) ≤ 〈∇f(xk), xk − x?〉 −
1

2L
‖∇f(xk)‖2 ,
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we obtain the following estimate:582

E(k + 1)− E(k) ≤ k(k − 1)Ls

2
‖xk+1 − xk‖2

− 2s (f(xk)− f(x?))−
ks

L
‖∇f(xk)‖2 +

k2s2

2
‖∇f(xk)‖2 ,

from which we cannot guarantee that the right-hand-side of the inequality is nonpositive.583

• If we take the following basic inequality for f ∈ F1
L(Rn)584 

f(xk+1)− f(xk) ≤ 〈∇f(xk+1), xk+1 − xk〉 −
1

2L
‖∇f(xk+1)−∇f(xk)‖2

f(xk)− f(x?) ≤ 〈∇f(xk), xk − x?〉 −
1

2L
‖∇f(xk)‖2 ,

we obtain the following estimate:585

E(k + 1)− E(k)

≤ (k − 1)ks

(
〈∇f(xk+1)−∇f(xk), xk+1 − xk〉 −

1

2L
‖∇f(xk+1)−∇f(xk)‖2

)
−2s (f(xk)− f(x?))−

ks

L
‖∇f(xk)‖2 +

k2s2

2
‖∇f(xk)‖2 ,

from which we still cannot guarantee that the right-hand-side of the inequality is nonpositive.586

D.2.3 Implicit scheme587

Finally, we analyze the implicit Euler scheme with the initial x0 and v0 = 0:588 
xk+1 − xk =

√
svk+1

vk+1 − vk = − 3

k + 1
vk+1 −

√
s∇f(xk+1)

(D.14)

Technical analysis of implicit scheme (D.14) We construct the Lyapunov function as589

E(k) = (k + 1)(k + 2)s (f(xk)− f(x?)) +
1

2

∥∥2(xk − x?) + (k + 1)
√
svk
∥∥2 .

Then we can calculate the iterate difference as590

E(k + 1)− E(k)
= (k + 1)(k + 2)s (f(xk+1)− f(xk)) + 2(k + 2)s (f(xk+1)− f(x?))

+
1

2

〈
2(xk+1 − xk) + (k + 2)

√
svk+1 − (k + 1)

√
svk,

2(xk+1 + xk − 2x?) + (k + 2)
√
svk+1 + (k + 1)

√
svk
〉

= (k + 1)(k + 2)s (f(xk+1)− f(xk)) + 2(k + 2)s (f(xk+1)− f(x?))
−
〈
(k + 1)s∇f(xk+1), 2(xk+1 − x?) + (k + 2)

√
svk+1

〉
−1

2
(k + 1)2s2 ‖∇f(xk+1)‖2 .

Now, we hope to utilize the basic inequality for f ∈ F1
L(Rn) to make the right side of equality no591

more than zero. Based on the following inequalities:592 
f(xk+1)− f(xk) ≤ 〈∇f(xk+1), xk+1 − xk〉

f(xk+1)− f(x?) ≤ 〈∇f(xk+1), xk+1 − x?〉 −
1

2L
‖∇f(xk+1)‖2 ,

we obtain:593

E(k+1)−E(k) ≤ 2s (f(xk+1)− f(x?))−
(k + 1)s

L
‖∇f(xk+1)‖2−

1

2
(k+1)s2 ‖∇f(xk+1)‖2 .

Although the negative term includes the multiplier k and k2, we cannot guarantee that the right-hand-594

side of the inequality is nonpositive.595

Here, in contrast to the subtle discrete construction in Su et al. [2016], we point out that the standard596

numerical discretization of low-resolution ODE (2.2) cannot maintain the convergence rate from the597

continuous-time ODE, due the presence of numerical error.598
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