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A.1 Proofs for Section 3

A.1.1 Proof of Theorem 2

Proof. The proof is along the lines of Corollary 3.8 in [18]. Fix a sample of data Sn =
(X,C) ∈ (X , C)n, where X = (x1, . . . , xn) and C = (c1, . . . , cn). Let F|X :=
{(w∗(f(x1)), . . . , w∗(f(xn))) : f ∈ H}. From the definition of empirical Rademacher complexity,
we have that

R̂n
SPO(H) = Eσ

[
sup
f∈H

1

n

n∑
i=1

σi`SPO(f(xi), ci)

]

= Eσ

[
sup
f∈H

1

n

n∑
i=1

σic
T
i (w∗(f(xi))− w∗(ci))

]

= Eσ

[
sup

(w1,...,wn)∈F|X

1

n

n∑
i=1

σic
T
i (wi − w∗(ci))

]

≤ ωS(C)
√

2 log |F|X|
n

≤ ωS(C)
√

2dN (w∗(H)) log(n|S|2)

n

where the first inequality is directly due to Massart’s lemma and the definition of ωS(C) and the
second inequality follows from the Natarajan Lemma (see Lemma 29.4 in [20]). The bound for
the expected version of the Rademacher complexity follows immediately from the bound on the
empirical Rademacher complexity. Applying this bound with Theorem 1 concludes the proof.

A.1.2 Proof of Corollary 1

Proof. We will prove that w∗(Hlin) is an instance of a linear multiclass predictor for a particular
class-sensitive feature mapping Ψ. Recall that |S| is the number of extreme points of S. In our
application of linear multiclass predictors, let Ψ : X ×{1, . . . , |S|} 7→ Rd×p be a function that takes
a feature vector an extreme point and maps it to a matrix and let

HΨ = {x 7→ argmax
i∈{1,...,|S|}

〈B,Ψ(x, i)〉 : B ∈ Rd×p}.

We will show that, for Ψ(x, i) = wix
T , we have that w∗(Hlin) ⊆ HΨ. Consider any f ∈ Hlin and

the associated matrix Bf . Then

w∗(Bfx) ∈ argmin
w∈S

(Bfx)Tw

= argmax
i∈{1,...,|S|}

− (Bfx)Twi

= argmax
i∈{1,...,|S|}

− Tr
(
(Bfx)Twi

)
= argmax
i∈{1,...,|S|}

− Tr
(
BTf wix

T
)

= argmax
i∈{1,...,|S|}

〈−Bf , wixT 〉.

Thus, it is clear that for Ψ(x, i) = wix
T , choosing the function inHΨ corresponding to −Bf yields

exactly the function f . Therefore w∗(Hlin) ⊆ HΨ. Theorem 7 in [5] shows that dN (HΨ)) ≤ dp.
Since w∗(Hlin) ⊆ HΨ, then dN (w∗(Hlin)) ≤ dp. Combining this bound on the Natarajan dimension
with Theorem 2 concludes the proof.
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A.1.3 Proof of Corollary 2

Proof. Consider the smallest cardinality ε-covering of the feasible region S by Euclidean balls of

radius ε. From Example 27.1 in [20], the number of balls needed is at most
(

2ρ2(S)
√
d

ε

)d
. Let the set

S̃ denote the centers of the balls from the smallest cardinality covering. Then it immediately follows
that

|S̃| ≤

(
2ρ2(S)

√
d

ε

)d
. (8)

Finally, let the function w̃ : S 7→ {1, . . . , |S̃|} be the function that takes a feasible solution in S and
maps it to the closest point in in S̃.

We can bound the empirical Rademacher complexity by

R̂n
SPO(H) = Eσ

[
sup
f∈H

1

n

n∑
i=1

σi`SPO(f(xi), ci)

]

= Eσ

[
sup
f∈H

1

n

n∑
i=1

σic
T
i (w∗(f(xi))− w∗(ci))

]

= Eσ

[
sup
f∈H

1

n

n∑
i=1

σic
T
i [w∗(f(xi))− w̃(w∗(f(xi))) + w̃(w∗(f(xi)))− w∗(ci)]

]

≤ Eσ

[
sup
f∈H

1

n

n∑
i=1

σic
T
i [w∗(f(xi))− w̃(w∗(f(xi)))]

]
+ Eσ

[
sup
f∈H

1

n

n∑
i=1

σic
T
i [w̃(w∗(f(xi)))− w∗(ci)]

]

≤ 2ερ2(C) + Eσ

[
sup
f∈H

1

n

n∑
i=1

σic
T
i [w̃(w∗(f(xi)))− w∗(ci)]

]

≤ 2ερ2(C) + (ωS(C) + 2ερ2(C))

√
2dN (w̃(w∗(H))) log(n|S̃|2)

n
(9)

The first inequality follows from the triangle inequality. The second inequality follows from the
fact that w∗(f(xi)) and w̃(w∗(f(xi))) are at most 2ε away by the definition of w̃. In the worst case,
the difference is in the direction of ci, and cTi [w∗(f(xi))− w̃(w∗(f(xi)))] ≤ 2||ci|| ≤ ρ2(C). The
third inequality follows from the same exact argument as that in Theorem 2, with the additional
observation that the maximum value of cTi [w̃(w∗(f(xi)))− w∗(ci)] is ωS(C) + 2ερ2(C) using a
similar reasoning as in the second inequality. Thus, all that remains is to bound dN (w̃(w∗(H))). To
do this, we first observe that dN (w∗(H)) ≤ dp, where the proof follows exactly that of Corollary 1
but we now have an infinite number of labels, i.e., each point in S. Finally, we observe that

dN (w̃(w∗(H))) ≤ dN (w∗(H)) ≤ dp (10)
since w̃ is simply a deterministic function, and thus the number of dichotomies (labelings) that can
be generated by w̃(w∗(H)) is at most that of w∗(H).

Now setting ε = 1
n , and combining Eq. (8), Eq. (9), and Eq. (10) yields

R̂n
SPO(H) ≤ 2ρ2(C)

n

1 +

√
2dp log(n(2nρ2(S)

√
d)2d)

n

+ ωS(C)

√
2dp log(n(2nρ2(S)

√
d)2d)

n

≤ 2ρ2(C)
n

(
1 + 2d

√
2p log(2nρ2(S)d)

n

)
+ 2dωS(C)

√
2p log(2nρ2(S)d)

n
. (11)

Finally, combining Eq. (11) with Theorem 2 yields

RSPO(f) ≤ R̂SPO(f) + 4dωS(C)
√

2p log(2nρ2(S)d)

n
+ 3ωS(C)

√
log(2/δ)

2n
+O

(
1

n

)
.
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A.2 Proofs for Section 4

A.2.1 Proof of Proposition 1

Proof. The well-known optimality condition for differentiable convex optimization problems (see
Proposition 1.1.8 of [2]) states that w̄ ∈ S is an optimal solution of (3) if and only if:

∇F (w̄)T (w − w̄) ≥ 0 for all w ∈ S . (12)

Let us now demonstrate that the conditions (4) and (12) are equivalent when S is µ-strongly convex.

Clearly, (4) implies (12). Now suppose that (12) holds and let w ∈ S be arbitrary. Define ŵ(λ) :=
λw + (1− λ)w̄ and r(λ) :=

(
µ
2

)
λ(1− λ)‖w − w̄‖2 for λ ∈ [0, 1]. By the µ-strong convexity of S,

we have that B(ŵ(λ), r(λ)) ⊆ S. Hence, applying (12) inside B(ŵ(λ), r(λ)) yields:

∇F (w̄)T (w̃ − w̄) ≥ 0 for all w̃ ∈ B(ŵ(λ), r(λ)) .

Clearly the above condition is equivalent to:

−∇F (w̄)T w̄ ≥ max
w̃∈B(ŵ(λ),r(λ))

{
−∇F (w̄)T w̃

}
= −∇F (w̄)T ŵ(λ) + r(λ)‖∇F (w̄)‖∗ ,

where the equality above follows from the definition of the dual norm ‖ · ‖∗. Rearranging the above
and using ŵ(λ)− w̄ = λ(w − w̄) as well as the definition of r(λ) yields:

λ∇F (w̄)T (w − w̄) ≥
(
µ
2

)
λ(1− λ)‖∇F (w̄)‖∗‖w − w̄‖2 for all λ ∈ [0, 1] .

Now suppose that λ > 0. Dividing the above by λ yields:

∇F (w̄)T (w − w̄) ≥
(
µ
2

)
(1− λ)‖∇F (w̄)‖∗‖w − w̄‖2 for all λ ∈ (0, 1] .

Taking the limit as λ→ 0 yields (4).

A.2.2 Proof of Theorem 3

In this section, we complete the proof of Theorem 3 by demonstrating that (6) holds, i.e., that the
γ-margin SPO loss is Lipschitz. Let us first present the following lemma that will be useful in proving
(6). Recall that B∗(c, r) = {ĉ : ‖ĉ− c‖∗ ≤ r} is the dual norm ball centered at c of radius r.

Lemma 1. Consider the function hγ(·, c) : B∗(0, γ)→ R defined by hγ(ĉ, c) :=
(
‖ĉ‖∗
γ

)
`SPO(ĉ, c)

for all ĉ ∈ B∗(0, γ). Then, hγ(·, c) is Lipschitz with respect to the dual norm ‖ · ‖∗ with constant
1
γ

(
‖c‖∗
µ + ωS(c)

)
≤ 3‖c‖∗

γµ .

Proof. Let ĉ1, ĉ2 ∈ B∗(0, γ) be given. Note that if either ĉ1 = 0 or ĉ2 = 0, then the result follows
since `SPO(·, c) ≤ ωS(c). Now suppose without loss of generality that 0 < ‖ĉ1‖∗ ≤ ‖ĉ2‖∗. Let
∆ := |hγ(ĉ1, c)− hγ(ĉ2, c)|. Then, we have that

∆ =

∣∣∣∣(‖ĉ1‖∗γ
)
`SPO(ĉ1, c)−

(
‖ĉ2‖∗
γ

)
`SPO(ĉ2, c)

∣∣∣∣
=

∣∣∣∣(‖ĉ1‖∗γ
)
`SPO(ĉ1, c)−

(
‖ĉ1‖∗
γ

)
`SPO(ĉ2, c) +

(
‖ĉ1‖∗
γ

)
`SPO(ĉ2, c)−

(
‖ĉ2‖∗
γ

)
`SPO(ĉ2, c)

∣∣∣∣
=

∣∣∣∣(‖ĉ1‖∗γ
)

[`SPO(ĉ1, c)− `SPO(ĉ2, c)] +

(
`SPO(ĉ2, c)

γ

)
[‖ĉ1‖∗ − ‖ĉ2‖∗]

∣∣∣∣
≤
(
‖ĉ1‖∗
γ

)(
‖c‖∗
µ‖ĉ1‖∗

)
‖ĉ1 − ĉ2‖∗ +

(
ωS(c)

γ

)
‖ĉ1 − ĉ2‖∗

=
1

γ

(
‖c‖∗
µ

+ ωS(c)

)
‖ĉ1 − ĉ2‖∗ ,

where the inequality above uses (5) and the reverse triangle inequality. Now we also claim that, due
to the strong convexity of S, we have that ωS(c) ≤ 2‖c‖∗

µ . When c = 0, this inequality is trivial.
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Otherwise, let us apply (5) with ĉ1 ← −c and ĉ2 ← c, which yields:

ωS(c) = max
w∈S

{
cTw

}
−min
w∈S

{
cTw

}
= cT (w∗(ĉ1)− w∗(ĉ2))

≤ ‖c‖∗‖w∗(ĉ1)− w∗(ĉ2)‖

≤ 2‖c‖2∗
µ‖c‖∗

=
2‖c‖∗
µ

.

Remainder of the proof of Theorem 3. We are now ready to complete the proof of (6). Without
loss of generality, we consider three cases: (i) ‖ĉ1‖∗ ≤ γ and ‖ĉ2‖∗ ≤ γ, (ii) ‖ĉ1‖∗ > γ and
‖ĉ2‖∗ > γ, and (iii) ‖ĉ1‖∗ ≤ γ and ‖ĉ2‖∗ > γ.

Let us first consider case (i), i.e., we have that ĉ1, ĉ2 ∈ B∗(0, γ). For any ĉ ∈ B∗(0, γ), we have that

`γSPO(ĉ, c) =

(
‖ĉ‖∗
γ

)
`SPO(ĉ, c) +

(
1− ‖ĉ‖∗

γ

)
ωS(c) .

Hence, on the ball B∗(0, γ), the function `γSPO(·, c) decomposes as the sum of three functions. By
Lemma 1, we have that the function in the first term of the right-hand side above is 3‖c‖∗

γµ -Lipschitz

on B∗(0, γ). Clearly, the function in the second term is ωS(c)
γ -Lipschitz. Thus, using ωS(c) ≤ 2‖c‖∗

µ

and adding these two Lipschitz constants together yields the desired result for case (i).

Now, in case (ii), we have that `γSPO(ĉ1, c) = `SPO(ĉ1, c) and `γSPO(ĉ2, c) = `SPO(ĉ2, c). Hence, (5)
yields:

|`γSPO(ĉ1, c)−`γSPO(ĉ2, c)| = |cT (w∗(ĉ1)−w∗(ĉ2))| ≤ ‖c‖∗‖w∗(ĉ1)−w∗(ĉ2)‖ ≤ ‖c‖∗
γµ
‖ĉ1−ĉ2‖∗ ,

and clearly ‖c‖∗γµ ≤
5‖c‖∗
γµ .

Finally, in case (iii), define c̄ := λĉ1 + (1− λ)ĉ2 where λ ∈ (0, 1] is such that ‖c̄‖∗ = γ. Then, we
have that:
|`γSPO(ĉ1, c)− `γSPO(ĉ2, c)| = |(`γSPO(ĉ1, c)− `γSPO(c̄, c)) + (`γSPO(c̄, c)− `γSPO(ĉ2, c))|

≤ |`γSPO(ĉ1, c)− `γSPO(c̄, c)|+ |`γSPO(c̄, c)− `γSPO(ĉ2, c)|

≤ 5‖c‖∗
γµ
‖ĉ1 − c̄‖+

5‖c‖∗
γµ
‖c̄− ĉ2‖

=
5‖c‖∗
γµ

(‖ĉ1 − c̄‖+ ‖c̄− ĉ2‖)

=
5‖c‖∗
γµ
‖ĉ1 − ĉ2‖ ,

where the second inequality follows from cases (i) and (ii), and the final equality follows since c̄
lies on the line segment between ĉ1 and ĉ2, i.e., we have that ‖ĉ1 − c̄‖ = (1 − λ)‖ĉ1 − ĉ2‖ and
‖c̄− ĉ2‖ = λ‖ĉ1 − ĉ2‖.
Finally, it is worth pointing out that the proofs of Lemma 1 and the remainder of the proof of
Theorem 4 imply that the Lipschitz constant of `γSPO can be improved slightly from 5‖c‖∗

γµ to
1
γ

(
‖c‖∗
µ + 2ωS(c)

)
.

A.2.3 Proof of Theorem 5

Proof. We prove the first inequality only; the second inequality can be proven in an identical manner.

The argument here follows closely the proof of Theorem 5.9 of [18]. Define ε := ωS(C)
√

log(2/δ)
2n

and two sequences {γk}∞k=1 and {εk}∞k=1 by

εk := ε+ ωS(C)
√

log(k)

n
, and γk :=

γ̄

2k
, for k ≥ 1 .
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Define the following events:

Ak :=

{
sup
f∈H

{
RSPO(f)− R̂γkSPO(f)− 10

√
2ρ2(C)Rn(H)

γkµ
− εk

}
> 0

}
for k ≥ 1 , Ã :=

∞⋃
k=1

Ak , and

Ǎ :=

{
sup

f∈H,γ∈(0,γ̄]

{
RSPO(f)− R̂γSPO(f)− 20

√
2ρ2(C)Rn(H)

γµ
− ωS(C)

√
log(log2(2γ̄/γ))

n
− ε

}
> 0

}
.

Let us first argue that Ǎ ⊆ Ã. Indeed, suppose that Ǎ occurs. Then, there exists some f ∈ H and
some γ ∈ (0, γ̄] such that:

RSPO(f)− R̂γSPO(f)− 20
√

2ρ2(C)Rn(H)

γµ
− ωS(C)

√
log(log2(2γ̄/γ))

n
− ε > 0 . (13)

By definition of the sequence {γk}, there exists k ≥ 1 such that γk ≤ γ ≤ 2γk. Thus, γk ≤ γ implies
that R̂γkSPO(f) ≤ R̂γSPO(f). Moreover, γ ≤ 2γk implies that −1/γk ≥ −2/γ, k ≤ log2(2γ̄/γ), and
thus

εk = ε+ ωS(C)
√

log(k)

n
≤ ε+ ωS(C)

√
log(log2(2γ̄/γ))

n
.

Now, combining the previous inequalities together with (13) yields:

RSPO(f)− R̂γkSPO(f)− 10
√

2ρ2(C)Rn(H)

γkµ
− εk > 0 ,

which means that the event Ak and correspondingly the event Ã have occurred.

Now, for each k ≥ 1, we apply Theorem 4 using γ ← γk and δ ← exp((−2nε2k)/ωS(C)2), which
yields P(Ak) ≤ exp((−2nε2k)/ωS(C)2). We now apply P(Ǎ) ≤ P(Ã) and the union bound to
obtain:

P(Ǎ) ≤
∞∑
k=1

exp

(
− 2nε2k
ωS(C)2

)

=

∞∑
k=1

exp

−2n

(√
log(2/δ)

2n
+

√
log(k)

n

)2


<

∞∑
k=1

exp (−(log(2/δ) + 2 log(k)))

=
δ

2

∞∑
k=1

1

k2
=
δ

2
· π

2

6
< δ .

Thus, we have completed the proof.

A.2.4 Bounding the multivariate Rademacher complexity for linear classes

Here we use arguments in [17, 12] to bound Rn(HB) where

HB = {f : f(x) = Bx for some B ∈ Rd×p, B ∈ B}
is the class of linear maps with matrix B constrained to lie in some set B. The following result
extends Theorem 3 of [12] to multivariate Rademacher complexity.

Theorem 6. Let S be a closed convex set and let F : S → R be α-strongly convex w.r.t. ‖ · ‖∗ s.t.
infB∈S F (B) = 0. Let X be such that

sup
σ∈{±1}d

sup
x∈X
‖σxT ‖ ≤ X.

Define B = {B ∈ S : F (B) ≤ β2
∗}. Then, we have

Rn(HB) ≤ Xβ∗

√
2

αn
.
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Proof. Define σi = (σi1, . . . , σid)
T . Then, we have

Rn(HB) = E

sup
B∈B

1

n

n∑
i=1

d∑
j=1

σij (Bxi)j

 = E

[
sup
B∈B

1

n

n∑
i=1

σTi Bxi

]

= E

[
sup
B∈B

1

n

n∑
i=1

Tr
(
σTi Bxi

)]
= E

[
sup
B∈B

1

n

n∑
i=1

Tr
(
Bxiσ

T
i

)]

= E

sup
B∈B

Tr

B( 1

n

n∑
i=1

σix
T
i

)T
= E

[
sup
B∈B
〈B, 1

n

n∑
i=1

σix
T
i 〉

]
.

Note that the inner product between matrices B,A ∈ Rd×p is defined as

〈B,A〉 =
∑
i,j

BijAij = Tr
(
BAT

)
Now fix x1, . . . , xn and note that, by our assumption, we have, for all i,

sup
σ∈{±1}d

‖σxTi ‖ ≤ X.

Let Θ be the random matrix 1
n

∑n
i=1 σix

T
i . Choose arbitrary λ > 0. By Fenchel’s inequality,

〈B, λΘ〉 ≤ F (B)

λ
+
F ∗(λΘ)

λ

Since F (B) ≤ β2
∗ for all B ∈ B, we have

sup
B∈B
〈B, λΘ〉 ≤ β2

∗
λ

+
F ∗(λΘ)

λ

Taking expectations (w.r.t. σij) gives

E[ sup
B∈B
〈B, λΘ〉] ≤ β2

∗
λ

+
E[F ∗(λΘ)]

λ

Now let Zi = λ
nσix

T
i so that Sn =

∑n
i=1 Zi = Θ. Note that ‖Zi‖ ≤ λ

nX . So the conditions of
Lemma 4 in [12] are satisfied with V 2 = λ2X2/n. That lemma gives us E[F ∗(λΘ)] ≤ λ2X2/(2αn).
Plugging this above, we have

E[ sup
B∈B
〈B, λΘ〉] ≤ β2

∗
λ

+
λX2

2αn
.

Setting λ =
√

2αnβ2
∗

X2 gives

E[ sup
B∈B
〈B, λΘ〉] ≤ Xβ∗

√
2

αn

which completes the proof.

This theorem can be applied with many different strongly convex functions of matrices [11, Section
2.4]. We give some interesting examples below.
Example 5 (Bounded Frobenius norm). The most basic case is F (B) = 1

2‖B‖
2
F which is 1-strongly

convex on Rd×p w.r.t. ‖ · ‖F . Note that

sup
σ∈{±1}d

sup
x∈X
‖σxT ‖F = sup

σ∈{±1}d
‖σ‖2 · sup

x∈X
‖x‖2 =

√
d sup
x∈X
‖x‖2.

Therefore, if 1
2‖B‖

2
F ≤ β2

∗ and supx∈X ‖x‖2 ≤ X2 we have

Rn(HB) ≤ X2β∗

√
2d

n
.
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Example 6 (Bounded `1 norm of vectorized matrix). Another case is when 1
2‖B‖

2
1 ≤ β2

∗ where
‖B‖q is `q norm of the vectorized matrix B. We set F (B) = 1

2‖B‖
2
q for q = log(pd)

log(pd)−1 which is
1/(3 log(pd))-strongly convex w.r.t. ‖ · ‖1 [11, Corollary 10]. Since ‖B‖q ≤ ‖B‖1, we clearly
have F (B) ≤ β2

∗ . Note that the dual norm is ‖ · ‖p′ for p′ = log(pd) and ‖Θ‖p′ ≤ 3‖Θ‖∞ for any
Θ ∈ Rd×p. Therefore,

sup
σ∈{±1}d

sup
x∈X
‖σxT ‖p′ ≤ 3 sup

σ∈{±1}d
‖σ‖∞ · sup

x∈X
‖x‖∞ = 3 sup

x∈X
‖x‖∞.

The final conclusion is that, if 1
2‖B‖

2
1 ≤ β2

∗ and supx∈X ‖x‖∞ ≤ X∞ we have

Rn(HB) ≤ X∞β∗

√
6 log(pd)

n
.

Example 7 (Bounded group-lasso norm). In case where input dimension p is large, we might want to
encode prior knowledge that only a subset of the p input variables are relevant for making predictions.
The vectorized `1 norm considered in the previous example encourages sparsity but does not result
in shared sparsity structure over the rows of B. That is, it does not cause entire columns to be set
to zero. In multivariate regression, the group-lasso norm [21, Section 4.3] is used to enforce such a
structured from of sparsity. Define the norm

‖B‖2,q =

 p∑
j=1

‖B·j‖q2

1/q

.

The subscripts above remind us that we first take the `2 norms of columns B·j and then take the
`q norm of the p resulting values. The group-lasso norm is simply ‖ · ‖2,1. Let us consider the
case when the matrices B are constrained to have low group-lasso norm, i.e. 1

2‖B‖
2
2,1 ≤ β2

∗ . We
set F (B) = 1

2‖B‖
2
2,q for q = log(p)

log(p)−1 which is 1/(3 log(p))-strongly convex w.r.t. ‖ · ‖2,1 [11,
Corollary 14]. Since ‖B‖2,q ≤ ‖B‖2,1, we clearly have F (B) ≤ β2

∗ . Note that the dual norm is
‖ · ‖2,p′ for p′ = log(p) and ‖Θ‖2,p′ ≤ 3‖Θ‖2,∞ for any Θ ∈ Rd×p. Therefore,

sup
σ∈{±1}d

sup
x∈X
‖σxT ‖2,p′ ≤ 3 sup

σ∈{±1}d
sup
x∈X
‖σxT ‖2,∞

= 3 sup
σ∈{±1}d

‖σ‖2 · sup
x∈X
‖x‖∞

≤ 3
√
d sup
x∈X
‖x‖∞.

The final conclusion is that, if 1
2‖B‖

2
2,1 ≤ β2

∗ and supx∈X ‖x‖∞ ≤ X∞ we have

Rn(HB) ≤ X∞β∗

√
6d log(p)

n
.
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